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One Sentence Summary: Comparing the frequency of very rare variation between patient 
cohorts and very large genomic reference datasets enables the reliable re-evaluation of genes 
previously implicated in Mendelian disease and more accurate assessment of the likely 
pathogenicity of different classes of variants. 

 
 
Abstract: The accurate interpretation of variation in Mendelian disease genes has lagged behind 
data generation as sequencing has become increasingly accessible. Ongoing large sequencing 
efforts present huge interpretive challenges, but also provide an invaluable opportunity to 
characterize the spectrum and importance of rare variation. Here we analyze sequence data from 
7,855 clinical cardiomyopathy cases and 60,706 ExAC reference samples to better understand 
genetic variation in a representative autosomal dominant disorder. We show that in some genes 
previously reported as important causes of a given cardiomyopathy, rare variation is not 
clinically informative and there is a high likelihood of false positive interpretation. By contrast, 
in other genes, we find that diagnostic laboratories may be overly conservative when assessing 
variant pathogenicity. We outline improved interpretation approaches for specific genes and 
variant classes and propose that these will increase the clinical utility of testing across a range of 
Mendelian diseases. 
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[Main Text: ] 
Introduction 
Interpretation of rare genetic variation, whether in a clinical diagnostic or research setting, has 
not kept pace with accelerating data generation using high-throughput DNA sequencing. 
Increasingly extensive gene panels are used to interrogate the growing number of genes 
implicated in Mendelian diseases (1). However, such panels only modestly increase the number 
of high-confidence diagnostic results while identifying ever larger numbers of variants of 
uncertain significance (VUS) (2–4). The likelihood that a rare variant is indeed pathogenic 
depends on the pre-test probability that the patient has the relevant disease. Thus testing of a 
wide panel of genes for loosely related phenotypes is expected to yield an even higher proportion 
of false positive variants. Analysis of all genes in the genome regardless of clinical indication, 
and of putative pathogenic variants found as ‘incidental findings’, will exacerbate the problem 
further. These concerns have required adoption of conservative interpretation guidelines (5) 
potentially limiting the true utility of genetic testing. 
 
Central to the challenge of rare variant interpretation is the paradox that individually rare variants 
are now seen to be collectively common. While it is accepted that a common variant can be 
excluded as a cause of a rare and penetrant Mendelian disease, the community has been slower to 
recognise that many rare variants identified in Mendelian disease genes are innocent bystanders, 
and some ‘rare’ variants are not rare at all. Recent population sequencing efforts have raised 
awareness of these issues (1000 Genomes Project (6, 7), Exome Sequencing Project 
http://evs.gs.washington.edu/EVS) but the full extent is now revealed in the Exome Aggregation 
Consortium (ExAC) study (http://exac.broadinstitute.org) where the average ExAC exome 
contains 7.6 rare non-synonymous variants (minor allele frequency [MAF] <0.1%) in well-
characterized dominant disease genes, the large majority being very rare, or ‘private (8). Clearly 
only a small minority can actually cause a penetrant Mendelian disease (9). 
 
The challenges of variant interpretation in Mendelian disorders are particularly well illustrated 
by inherited cardiomyopathies: Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy 
(DCM) and Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC). These largely 
autosomal dominant disorders are relatively common, genetically heterogeneous and medically 
important (10) and consequently cardiomyopathy genes feature prominently in the American 
College of Genetics and Genomics (ACMG) list of proposed genes to be routinely analysed in all 
exome or genome sequencing (11). While clinical genetic testing in cardiomyopathy has been 
available for over a decade, the number of genes reported as disease-causing has increased 
dramatically in recent years, often without robust evidence.  
 
Here we leverage two very substantial resources to better understand and interpret rare variation 
in cardiomyopathy genes, thereby illustrating the scale of the challenges but also possible 
solutions. We aggregated sequence data for cardiomyopathy genes from 7855 individuals with a 
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diagnosis of cardiomyopathy, sequenced in accredited diagnostic laboratories with clinical-grade 
variant interpretation (4,187 individuals sequenced at Oxford Medical Genetics Laboratories 
[OMGL] and reported here for the first time, and a recently published series of 3,668 individuals 
from the Partners HealthCare Laboratory of Molecular Medicine [LMM] (4, 12)). These data 
were compared with sequence data from 60,706 reference samples from the ExAC consortium. 
ExAC cohorts likely to be enriched for Mendelian disease were not included in this dataset and 
while cardiomyopathy has not been excluded in ExAC cases, the selection criteria for the 
component cohorts would not be expected to enrich for inherited cardiac conditions. Of crucial 
importance, the ExAC resource is the first dataset powered to assess variant alleles present in the 
population at a range of 1:1,000-100,000 that might previously have been considered pathogenic 
yet may in fact be too common to cause penetrant Mendelian disease. 
 
By empirically deriving an upper bound for the allele frequency of confirmed cardiomyopathy-
causing mutations and comparing the number of variants below this threshold in cases and in 
ExAC, we show that for some of the genes included in cardiomyopathy panel tests there is little 
or no excess of rare variants in cases and hence such variation cannot be interpreted. Research 
studies that have included such variants, or tested genes unrelated to the presenting condition, 
have reached erroneous conclusions. In contrast, our data suggest that a large fraction of variants 
found in validated genes that are currently reported as VUSs by diagnostic laboratories are 
actually likely to be pathogenic. Comparison of the localisation of rare variants in cases with 
findings from very large numbers of controls also yielded valuable protein domain-specific 
information. Hence, through these types of analyses it is possible to define the genes, regions of 
genes and/or classes of variants that can be reliably interpreted in a clinical setting and in doing 
so, increase clinical diagnostic yields. These approaches, when combined with disease priors, 
promise to enhance our interpretation of rare genetic variation, thus maximising the utility of 
sequencing for precision medicine.  

 
Results  
Deriving allele frequencies for potentially deleterious variants  
Of the three cardiomyopathies, HCM is the most prevalent (affecting 1 in 500(13)) and HCM 
genes are known to harbour recurrent disease-causing variants. The single most common 
confirmed pathogenic variant, in both clinical cohorts, was MYBPC3 c.1504C>T (p.Arg502Trp), 
found in 104/6179 HCM cases (1.7%, 95CI 1.4-2.0%); this variant was only observed 3 times in 
ExAC (MAF 2.5x10-5). We therefore applied a minor allele frequency (MAF) cut-off of 1x10-4 
as a conservative upper-bound as variants more frequent than this in the general population 
would not be expected to be pathogenic (see Supplementary Note 1). This MAF does not exclude 
more common deleterious founder variants in specific populations where the genetic architecture 
of cardiomyopathy is not well defined.  
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Comparison of disease cohort variants with ExAC variants (ExAC MAF < 1x10-4)  
Variants identified by sequencing of putative cardiomyopathy genes in cases (n=7855) were 
collated by disease and gene (Supplementary Tables S1A and S1B). There were no significant 
differences in rare variant frequency between the two clinical genetics laboratories, so data were 
combined (Supplementary Tables S3A and S3B). We compared the burden of rare protein 
altering variants (ExAC MAF < 1x10-4) detected in 20 HCM genes, 48 DCM genes and 8 ARVC 
genes in HCM, DCM and ARVC cases, respectively, with the burden observed in ExAC. 
Predicted truncating (nonsense, frameshift, or canonical splice site) and non-truncating (missense 
or small in-frame deletions) variants were analysed separately. (Supplementary Tables S4A, S4B 
and S4C). 
 
As expected (14–16), rare variation in the two major HCM genes accounted for the majority of 
observed variation in HCM cases (MYBPC3, 19.0% of cases; MYH7, 14.2%). Rare variants were 
less numerous in other well-characterised HCM genes (TNNI3, TNNT2, TPM1, MYL2, MYL3, 
ACTC1, PLN) and phenocopy genes (GLA, LAMP2, PRKAG2) (≤2% cases per gene). For each 
of these genes there is a significant (P<0.05 after Bonferroni correction) excess of variation in 
cases as compared with ExAC, confirming their association with disease (Fig. 1 and 
Supplementary Table S5A). However, for some more recently reported HCM genes 
(TNNC1(17), MYOZ2(18), ACTN2(19), ANKRD1(20)) there was no significant excess of rare 
genetic variation in these HCM cases. 

 
DCM is reportedly highly genetically heterogeneous with up to ~60 genes previously implicated 
(16, 21, 22). In the clinical cohorts, truncating variants in TTN were most common (14.6%) in 
keeping with our findings in large research cohorts (23, 24). The prevalence of rare variants in 
other well-characterised DCM genes was modest (MYH7 5.3%, LMNA 4.4%, TNNT2 2.9% and 
TPM1 1.9%) but significantly enriched as compared to ExAC (Fig. 1 and Supplementary Table 
S5B). However, with the exception of truncating variants in DSP (2.8%), there was limited 
burden and modest or no significant excess variation in the remaining 40 genes tested. In ARVC, 
the five major genes each showed significant excess in cases (Supplementary Table S5C). 
 
Overall, the yield of pathogenic (P) and likely pathogenic (LP) variants was 32% in HCM, 13% 
in DCM (but note that TTN was only sequenced in a third of samples) and 36% in ARVC. Of 
note, however, even variants of uncertain significance (VUS) were seen in substantial excess 
over controls for all of the genes robustly supported by pathogenic and likely pathogenic 
variants, suggesting that clinical labs may be overly conservative.  
 
To assess for any confounding effects of population stratification between cases and controls, the 
LMM DCM cohort (the only cardiomyopathy dataset for which individual, self-reported 
ethnicity data was available) was compared to ExAC across all case and control samples and 
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separately for “white” cases versus the non-Finnish European subset of ExAC. There was full 
correlation between the genes that were significantly enriched in both comparisons 
(Supplementary Table S13), with a Pearson correlation coefficient of 0.97 between the case 
excess values for genes in the two comparisons (Supplementary Fig 1), showing that population 
stratification effects are not a confounder in this study. 
 

Using case: control variant burdens to interpret individual variants 
Many variants in confirmed disease-genes can be interpreted with confidence based on 
cumulative experience (e.g. segregation in families, multiple occurrences in cases, de novo 
mutations) and/or functional insights (e.g. null alleles in haploinsufficient genes), and this 
underlies current clinical utility. But our ability to evaluate the pathogenicity of the large number 
of variants that are seen for the first time depends on the signal to noise ratio. For each gene and 
variant class we calculated two related metrics: the odds ratio (OR) (ratio of odds of 
cardiomyopathy comparing rare variant carriers with non-carriers) and the etiological fraction 
(EF), a commonly used measure in epidemiology (25–27) which estimates the proportion of 
cases in which the exposure (in this case a rare variant in a gene) was causal (see Supplementary 
Note 2).  
 
These analyses reaffirm high ORs and EFs in key cardiomyopathy genes but also highlight a 
number of previously reported cardiomyopathy genes that show limited disease association when 
compared with a very large number of controls (Fig. 2 and Supplementary Tables S5A, S5B and 
S5C). As expected, many genes have divergent results for truncating as compared to non-
truncating variants. MYH7 is a typical example, with an OR of 1 [0.5-4.5] for truncating variants 
vs. an OR of 12 [10.9-13.3] for non-truncating variants in HCM cases. 

 
This observation confirms the widely accepted view that missense alleles of MYH7 act as 
dominant negatives in HCM whereas truncating variants are not pathogenic. In genes where 
truncating alleles are disease-causing, ORs are typically higher due to the lower rate of 
truncating variants in the population. As expected, truncating variation in MYBPC3 associates 
strongly with HCM (the result of haploinsufficiency (28)), but neither truncating nor non-
truncating variation in MYBPC3 shows significant association with DCM (OR=1.3 [0.8-1.8]; 
EF=0.21 [0-0.46]), a finding that fits with mechanistic insights but challenges some widely held 
viewpoints (29, 30). Amongst the ARVC genes, truncating alleles are informative for four major 
genes (and particularly common for PKP2 and DSP), whereas non-truncating variants in these 
genes are difficult to interpret reliably (Fig. 2 and Supplementary Tables S4C and S5C). 
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Using protein domain knowledge to improve variant interpretation 
At the gene-level, ORs for non-truncating variants are typically modest, and in the absence of 
prior clinical experience or functional data, interpretation is often uncertain. This may be 
improved by considering protein topology, as pathogenic variants often cluster in specific 
regions in cases (31, 32). We evaluated the distribution of rare missense alleles in MYH7, which 
encodes a protein with well-characterised functional and structural domains, to assess whether 
adding a systematic analysis of variant distribution refines such interpretation. Non-random 
mutation cluster analysis (33) revealed a significant cluster (p<3x10-15, False Discovery Rate 
(FDR) q<5x10-13) between residues 181 and 937 in HCM cases, whereas variants in ExAC 
controls were depleted in this region and instead clustered between residues 1271 and 1903 
(p<3x10-8, FDR q<4x10-5) (Fig. 3). These data more precisely define the boundaries of mutation-
enriched and depleted zones that can be used to generate more discriminating EFs, e.g. for rare 
variants in HCM patients, EFs range from 0.97 in the HCM cluster to 0.67 in the control cluster 
(Figs. 3 and 4). 

 
Application of findings  
To facilitate the application of these findings for research and clinical use we provide an 
overview of the genetic landscape of cardiomyopathy as represented by patient referrals received 
by UK and US clinical testing laboratories. This shows both the relative importance of 
cardiomyopathy genes within these patient populations (measured as a ‘case excess’), and their 
interpretability (expressed as the etiological fraction) (Fig. 4). Furthermore, we have created a 
web resource, Atlas of Cardiac Genetic Variation (http://cardiodb.org/ACGV) to provide easy 
access to our data to aid those assessing the relevance of specific genes and classes of variant to 
cardiomyopathies. We believe this provides an exemplar of how large case series combined with 
ExAC control data can be used across diseases to refine our understanding of disease genetics.  

 
Reassessing extended gene panel studies of cardiomyopathy 
A number of recent research studies (29, 30, 34, 35) using extended gene panels have reported 
putative genetic overlap between diverse inherited cardiac diseases that poses great challenges 
for clinical interpretation and appears at odds with known disease mechanisms. We surmise that 
many such studies have not adequately accounted for background genetic variation, have relied 
on variant data from incompletely annotated disease-centred databases and have not used 
segregation. Here, using ExAC control data, we present a reanalysis of two of these research 
studies (30, 34–36). In the research HCM cases, the excess variation in the known HCM genes 
(e.g. MYBPC3, MYH7) is substantial. In stark contrast, the measured variation in DCM, ARVC 
and ion channel genes in the HCM patients, while also substantial, is similar to that seen in 
ExAC samples with little, if any, excess burden (Fig. 5A and Supplementary Table S6). This 
suggests that the large majority of these variants, though individually rare, are benign bystanders, 
and that any overlap between the disorders has been over-estimated. In the DCM research 
studies, even though sequencing was limited to putative DCM genes, some genes which were 
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proposed on the basis of these and other recent studies as amongst the most common causes 
DCM, such as MYBPC3, MYH6 and SCN5A (29, 30, 35) in fact showed no excess variation (Fig. 
5B and Supplementary Table S7). 

 
Reclassification of variants previously reported as pathogenic using ExAC 
We examined the allele frequency of variants previously reported to cause HCM, DCM or 
ARVC, as catalogued by HGMD (Supplementary Tables S8-S10). A substantial number of 
purported disease-causing variants for HCM (25.2%, 322/1280), DCM (29.2%, 222/759) and 
ARVC (34.6%, 167/483) were observed in ExAC. While presence in ExAC does not preclude 
pathogenicity, a significant number are present at an allele frequency incompatible with 
causation of penetrant cardiomyopathy (6.5% of HCM, 11.9% of DCM and 13.5% of ARVC 
variants are present at MAF >1x10-4, Supplementary Table S11). Tellingly, some 75% of 
HGMD variants that could not be excluded as disease-causing using the NHLBI Exome 
Sequencing Project (the largest control dataset prior to ExAC), due to a control allele count of 
one, can be discounted by ExAC refinement. In total, 11.7%, 19.6% and 20.1% of individuals in 
ExAC have reported HCM, DCM and ARVC variants respectively, far in excess of disease 
prevalence. Hence variant prioritization based on HGMD status alone is not advised for 
cardiomyopathy genes, a fact that is increasingly apparent with larger control datasets. 
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Discussion  
We present an analysis of data from 7,855 individuals referred for clinical sequencing and 
variant interpretation for inherited cardiomyopathies, alongside 60,706 ExAC reference samples. 
These data exemplify the many challenges of variant interpretation in genetically heterogeneous 
disorders. We propose that in the absence of large matched case control series, the approaches 
described here, using data from large patient cohorts and broader reference datasets such as 
ExAC, may be applied to a range of multi-genic, multi-allelic diseases 
 
We show that the pathogenicity of disease genes originally identified through family linkage are 
resoundingly validated, for example the majority of sarcomere genes in HCM. However, genes 
implicated in cardiomyopathy through candidate gene studies, including genes on panel tests in 
routine clinical use, are often not convincingly associated with disease. For example, MYBPC3, 
MYH6 and SCN5A have all been reported to be major contributors to DCM (29, 30, 35), but 
show little or no excess burden despite adequate numbers and power; instead we see that these 
are in fact genes that have the highest background variation. 
 
We also show that it is crucial not only to distinguish variant classes, but to assess these in light 
of known disease mechanisms for each gene and disorder. For example, cardiomyopathy-causing 
variants in most myofilament proteins incorporate into the sarcomere and act as dominant 
negatives (HCM mutations are activating, whereas DCM mutations depress myofibrillar 
function) (37). Hence protein-truncating variants, which do not incorporate would not be 
expected to cause these conditions, and this is borne out in our data. In contrast, MYBPC3 
truncation alleles cause HCM through haploinsufficiency, making it unlikely that they could also 
cause DCM, which we confirm with our findings.  
 
We summarize our analyses of cardiomyopathy genes in two measures, capturing the 
contribution of each gene to a disease (case excess) and our ability to interpret variation in each 
gene (etiological fraction). Etiological fraction (EF) can be interpreted as the proportion of 
affected carriers where the variant caused the disease, i.e. the proportion of true positives. EF is 
based on pooled rare variant frequency data so it summarizes the average risk across many 
variants in a gene (some of which will be pathogenic but others benign); EF will be particularly 
useful for selecting panels of genes that are informative for discrete phenotypes. Of critical 
importance, the probability that a novel variant is pathogenic depends on the clinical status of the 
individual carrying the variant. Thus when variants are found in individuals with a 
remote/unrelated clinical diagnosis, or as an incidental finding during exome or genome 
sequencing, the proportion of variants expected to be pathogenic will be considerably lower.  
 
While detailed phenotyping of the cardiomyopathy patients in this study was not available, we 
are confident that the clinical diagnoses are robust as current clinical practice is to test only 
individuals with a confirmed diagnosis (15, 16). The proportion of cases with inherited 
cardiomyopathy is unknown, as evidence of familial disease is not a requirement for testing. The 
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clinical sensitivity (proportion of patients with a pathogenic variant) in our case series was lower 
than earlier surveys that may reflect more restricted testing of stringently selected cases, typically 
from multiply-affected families with severe disease (38, 39). However, the cohorts studied are 
representative of those encountered by clinical diagnostic laboratories, rather than a highly 
selected subset.  
 
Despite high levels of confidence in interpreting many well-characterised variants (which may 
give ORs in the hundreds), diagnostic laboratories are understandably cautious when interpreting 
a variant that has not been seen before. Our analyses demonstrate that for many genes even 
variants currently reported as Uncertain Significance (VUS) show a several-fold case excess over 
the background in ExAC (Fig. 1). More refined interpretation of variants in validated genes, for 
example leveraging domain information, regional evolutionary constraint and cumulative clinical 
experience, could lead to substantial increases in the diagnostic yield of genetic testing, and 
indeed are likely to lead to much more substantial gains than the expansion of gene panels.  
 
In contrast to the conservative strategy of clinical laboratories, research studies often report large 
“yields”. Some may not adequately control for the background rate of rare variation or may 
include genes for other conditions and as a result genes nominated as important contributors to 
disease in fact have little if any excess variation in cases. Testing of broad gene panels and 
overly inclusive interpretation of variants may lead to erroneous conclusions about pleiotropic 
effects of genetic variation (29, 34) and overestimates of double or compound mutations (40, 41) 
and the population prevalence of the disease if extrapolated from genetic variation (42). 
 
We highlight that despite the absence of demonstrable excess of overall rare variation in a gene, 
specific variants identified in family studies may still be disease-causing. However, if such 
variants are a small minority of rare variants in cases, clinical testing of that gene will yield more 
false than true positives. Moreover, for some of the genes that show no excess despite reasonable 
numbers of variants detected (Fig. 1) we note that the original reports did not include any variant 
with robust evidence of segregation (i.e. LOD >3) and here the possibility exists that the reported 
disease association is entirely spurious. An argument is often made that variants in candidate 
genes, even if not causal, could be contributing as modifiers (43, 44). This remains possible but 
in the absence of any significant over-representation in cases the more parsimonious 
interpretation is that they are phenotypically silent. We have not tested more common variants 
(MAF>1x10-4), which could be mechanistically informative but are likely to have smaller effects 
(45) and have not evaluated individual level data to assess the impact of co-inheritance of 
variants, which are limitations of the analyses. 
 
A further limitation of this study was the varying sequencing strategies in the case and control 
cohort, with the exome sequencing data of ExAC potentially less sensitive at detecting variants 
than clinical sequencing. We adjusted for this where coverage in ExAC is poor, while retaining 
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only confidently-called variants. Additionally, if the frequency of rare variation in ExAC has still 
been marginally underestimated, it suggests that we have been conservative with respect to the 
key conclusions of this study, i.e. that variants in many previously associated genes are not 
enriched in cases. Another potential limitation of these analyses was that ethnicity data was not 
available for the OMGL or LMM HCM patients, therefore, we were unable to confirm the extent 
to which the cohorts used in this study were matched by race. However, by studying the 
aggregate burden of multiple very rare variants we expect that any confounding effects by 
individual population-specific variants in cases or controls will be limited. Supporting this 
assumption, an analysis of the LMM DCM cohort comparing findings from all populations with 
the Caucasian-only subsets revealed that the conclusions are robust.  
 
Our findings highlight the need for systematic evaluation of the evidence of disease association 
and disease mechanisms (e.g. gain or loss of function) for clinical interpretation of putative 
disease genes, such as the ClinGen project (http://clinicalgenome.org (46)), alongside large 
population databases representing diverse ethnic origins, preferably linked to phenotypic data. 
 
In conclusion, we have demonstrated that new opportunities for large-scale comparison of rare 
variation in Mendelian disease genes between patient cohorts and the wider population can 
highlight the genes, regions of genes and/or classes of variants which can be reliably interpreted 
in a clinical setting. For validated disease genes, there is clear potential to increase the yield of 
correctly interpreted, actionable variants. At the same time, problems must be avoided by 
recognizing that many implicated genes, and a significant proportion of variants, may not be 
robust. As clinical genetic testing moves to large gene panels and whole exome and genome 
sequencing, an understanding of gene and variant pathogenicity will be increasingly important in 
order to deliver reliable genomic interpretation. 
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Materials and Methods 
 
Study Design 

Clinical cohorts 

Oxford Medical Genetics Laboratory (OMGL) 
The OMGL cohort comprises apparently unrelated index cases referred from Clinical Genetics 
centers across the UK, with initial clinical diagnosis of HCM, DCM or ARVC made by a 
consultant cardiologist. All samples received for diagnostic genetic testing of HCM, DCM or 
ARVC genes were eligible and analysis was undertaken in a routine clinical setting using clinical 
consent. Comprehensive data on patient ethnicity is not available for this cohort. Genotype data 
was obtained from 3267 individuals with HCM, 559 with DCM and 361 with ARVC. The 
current panel sizes include 16 genes for HCM, 28 genes for DCM and 8 genes for ARVC. Not all 
patients were analyzed for every gene (see Supplementary Table S2). Variants reported in this 
cohort were classified according to national guidelines (http://www.acgs.uk.com) as highly likely 
to be pathogenic (Class 5), likely to be pathogenic (Class 4), or variant of unknown significance 
(VUS) (Class 3). 
 
Laboratory of Molecular Medicine, Partners Healthcare (LMM) 
Data from LMM was downloaded from the supplemental files of published HCM (12) (18 genes 
sequenced in 632 - 2912 patients) and DCM (4) (46 genes sequenced in 121 - 756 patients) 
cohorts. The LMM HCM cohort comprised unrelated probands referred for HCM clinical genetic 
testing. Any individuals with an unclear clinical diagnosis of HCM, or with left ventricular 
hypertrophy due to an identified syndrome such as Fabry or Danon disease, or unaffected 
individuals with a family history of HCM were excluded. The LMM DCM cohort comprised 
individual probands referred for DCM clinical genetic testing. According to the published report, 
all patients had DCM or clinical features consistent with DCM based on the medical and family 
history information provided by ordering providers. Additionally, any cases with confirmed 
diagnoses of other cardiomyopathies, structural heart disease, congenital heart disease or 
syndromic or environmental causes were not included in the study. Variants are classified as 
pathogenic, likely pathogenic, VUS favor pathogenic or others (other VUS, likely benign) 
according to the LMM's clinical grade variant classification criteria (4). 
 
OMGL and LMM use similar clinical guidelines and employ equivalent approaches for variant 
classification in line with published guidelines (5), however different names are used for each 
class. In this manuscript the term Pathogenic (P), includes OMGL Class 5, and LMM 
Pathogenic; Likely pathogenic (LP), includes OMGL Class 4 and LMM Likely pathogenic; and 
Variant of Uncertain significance (VUS), includes OMGL Class 3 and the LMM VUS favor 
pathogenic and other VUS (see Fig. 1).  
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Fisher’s exact test was performed using Stata statistical analysis software  (V10.0) to compare 
the proportion of cases with rare (MAF 1x10-4) variants in each gene between the OMGL and 
LMM cohorts (see Supplementary Tables S3A, S3B). All statistical tests used in these analyses 
are two sided, unless otherwise stated. 
 
In these clinical cohorts, sequence data was generated using a range of mutation scanning and 
direct sequencing techniques of varying sensitivity (High-resolution DNA melting, WAVE 
dHPLC, LightScanner®, DNA microarray [Cardiochip], Sanger sequencing, targeted Next 
Generation Sequencing [NGS]). These targeted tests are designed to cover the coding regions 
and splice sites of the key genes of interest; the analytical sensitivity of these methods is 
estimated to be in the region of 98-100% (data from in house validation). As all putative 
pathogenic variants are confirmed by Sanger sequencing the rate of false positive variant calls 
will be negligible. 

 
Exome Aggregation Consortium (ExAC) cohort  

The ExAC dataset comprises aggregated sequencing data from a variety of large-scale exome 
sequencing projects, reprocessed through the same pipeline. VCF data was downloaded from the 
Exome Aggregation Consortium (ExAC), Cambridge, MA (http://exac.broadinstitute.org) 
[version 0.3, Jan 2015]. Quality control analyses suggest a sensitivity of 97-99.8% for single 
nucleotide variants (SNVs) and approximately 95% for insertions and deletions (indels)(8).  To 
minimize any bias resulting from the higher sensitivity strategies employed by diagnostic 
laboratories, only genes with a high proportion of coding region covered to a median sequence 
depth of >30x and only high quality (PASS filter) variants were included in our analyses. In 
addition we adjusted the total number of ExAC samples per gene based on the mean coverage at 
the variant sites of interest. 

 

Sample size was fixed by the availability of clinically sequenced and ExAC samples. Illustrative 
power calculations are reported in Supplementary table S12. Table 1 provides an overview of all 
of the cohorts analyzed in this study.  

 

Calculation of frequency of rare variation in cardiomyopathy cohorts and ExAC  

A minor allele frequency (MAF) cut off of 1x10-4 was used to define rare variants – the Results 
section and Supplementary Note 1 describe how this was defined. For each gene, the overall 
frequency of ExAC variants with a minor allelic frequency (MAF) below the selected threshold 
was calculated by dividing the sum of the adjusted allele count by the mean of the total adjusted 
alleles. Only likely protein-altering variants in designated canonical transcripts (Supplementary 
Table S2) were analyzed, i.e. missense, in-frame insertions/deletions, frameshift, nonsense and 
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variants affecting the splice donor and acceptor regions (first and last two bases of each intron). 
Analyses were performed on all protein-altering variants and separately on variants predicted to 
be non-truncating (missense and in frame insertions and deletions) and variants predicted to be 
truncating (frameshift, nonsense, splice donor/acceptor).  

 

The frequency of rare variation in the cardiomyopathy cohorts was calculated by dividing the 
sum of rare variants identified in cardiomyopathy cases by the total number of patients analyzed 
for each gene. In total, after combining data from both clinical laboratories and excluding poorly 
covered genes in ExAC, 20 genes sequenced in 632 - 6179 HCM patients, 46 genes sequenced in 
121 - 1315 DCM patients and 8 genes sequenced in 93 - 361 ARVC patients were analyzed. See 
Supplementary Table S2 for full details of cohort sizes for each gene. 

 

Comparison of variation between disease cohorts and ExAC controls 

For each gene, the frequency of rare variation observed in the clinical cohort was compared to 
that observed in ExAC. The case excess was defined by subtracting the proportion of individuals 
in ExAC with a filtered variant, from the proportion in the clinical cohort. For these analyses we 
made the simplifying assumption that the frequency of rare, benign variants was equivalent in 
cases and controls and that the frequency of pathogenic variants in the ExAC is sufficiently low 
so as not to affect this comparison (as the highest estimated prevalence of these diseases are 1 in 
500 people(13). Fisher’s exact test was performed using Stata software. The level of 
significance, p=0.05, was adjusted with Bonferroni correction for each gene set (HCM P<0.0025, 
DCM P<0.001, ARVC P<0.006). 

 

For each gene and variant class we calculated two related metrics: the odds ratio (OR) and the 
etiological fraction (EF)(25–27) (for further information on EF please refer to Supplementary 
Note 2). ORs (with 95% confidence intervals) were calculated using Stata software. For cells 
with zero values a 0.5 correction was added to all cells before calculating the OR. The EF was 
calculated as follows: (OR-1)/OR x 100. EF values and ORs were calculated for all protein-
altering variants and separately on predicted non-truncating and predicted truncating subsets.  

 

Figures summarizing statistical analyses are based on binary (case/control) methods that estimate 
odds ratios, these methods are assumption-free with respect to data distributions. 

 

Assessment of population-specific effects 
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As ethnicity data was not available for the OMGL cases or for the specific variants identified in 
the LMM HCM cohort, the total case and control datasets were used in this study. ExAC is a 
mixed dataset but with a majority of samples of European descent (52% non-Finnish European) 
which should be well matched to the LMM cohorts (62% white/Caucasian) and the unselected 
UK referral population of the OMGL cohorts. To assess if population-specific variants in these 
full datasets had any confounding effects, we compared the results observed between the LMM 
DCM cohort (for which individual self-reported patient ethnicity data is available) and ExAC for 
the full datasets and for white DCM patients (456 samples) versus the ExAC non-Finnish 
European subset (33,370 samples). Discrepancies were defined as any gene which had a 
significant case excess (as defined above) in one of the analyses but not the other. The 
correlation (Pearson coefficient) between case excess frequencies observed in both analyses was 
also calculated for genes with more than 300 samples sequenced. 

 

Distribution of missense variants in MYH7 

To identify putative hotpots of pathogenic missense mutations in MYH7, distinct rare missense 
variants in the clinical HCM and DCM cohorts and the ExAC population controls were mapped 
along the protein sequence. Non-random mutation cluster (NMC)(47), implemented in the iPAC 
Bioconductor R package, was used to identify clusters of variants in each cohort. (R source code 
of NMC algorithm: https://www.bioconductor.org/packages/devel/bioc/html/iPAC.html) 

 

Analysis of research cardiomyopathy cohorts 

Research cardiomyopathy cohorts are defined as published studies from research laboratories 
where patient samples were subjected to sequencing across panels of cardiac genes, but for 
which clinical grade variant classification was not performed. Instead, putative pathogenic 
variants were defined based on the type of variant (truncating or other), presence or absence in 
small control or population cohorts and databases and the output of in silico algorithms used to 
predict the effect of missense variants. The full details of the classification criteria used in each 
study are described in the references described below.  

 

The HCM research cohort(34) sequenced 874 patients across 35 genes (12 primarily associated 
with HCM, 7 with DCM, 7 with ARVC and 9 with arrhythmias, as stated by Lopes et al.). The 
DCM research cohort(30, 35, 36) comprised 312 - 324 patients sequenced for 12 confirmed and 
putative DCM genes (not including TTN). For all cohorts, variant lists were downloaded and rare 
variant frequencies and case excess were calculated for each gene as described for the clinical 
cohorts above. 
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To assess the accuracy of the variant classification methods used in these published research 
cohorts, the number of variants reported to be putatively pathogenic for each gene in these 
studies was compared to the number predicted to be pathogenic based on the case excess 
observed in these cohorts.  

 

Coverage of HGMD cardiomyopathy mutations in ExAC 

Variants in the Human Genome Mutation Database (HGMD, professional version 2015.1) 
associated with HCM, DCM or ARVC were identified based on manual curation of the HGMD 
disease terms. Only HGMD "disease-causing mutations" were assessed - analysis was performed 
on all variants (with a HGMD tag of DM and DM?) and separately on just those variants with a 
DM tag (according to HGMD documentation, variants with a tag of DM? have a degree of doubt 
with regard to pathogenicity). The total allele frequency and adjusted allele count from ExAC 
was extracted for each variant. Polymorphisms (defined as an ExAC allele frequency >1x10-2) 
were removed from the analysis. The number of HGMD variants present in ExAC was 
calculated, at any frequency and at a common frequency (MAF > 1 x 10-4) highly unlikely to be 
compatible with pathogenicity. The total number of ExAC alleles and the total number of ExAC 
individuals with HGMD-associated cardiomyopathy variants was also calculated for each 
disease. Additionally, the ExAC frequencies of HGMD cardiomyopathy variants previously 
observed only once in the Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS/) 
were analyzed to assess how the enhanced resolution of ExAC can clarify previously 
uninterruptable variants. 
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Supplementary Materials 
 

Supplementary Note 1: Selecting an allele frequency threshold to define potentially pathogenic 
and penetrant variants in Mendelian conditions 

Supplementary Note 2: Etiological fraction (EF) 

 

Fig. S1. Comparison of the excess of rare variants in LMM DCM cases over controls between all 
population analysis and Caucasians only. 

 
Table S1A. Variants identified in HCM, DCM and ARVC patients tested at Oxford Medical 
Genetics Laboratories (OMGL). 

Table S1B. Variants identified in HCM and DCM patients tested at Partners Healthcare 
Laboratory of Molecular Medicine (LMM) 

Table S2. Genes and transcripts analysed in this study and the number of patients sequenced in 
each disease cohort. 

Table S3A. Comparison of the frequency of pathogenic variants in tested genes between OMGL 
and LMM clinical laboratories for HCM cohorts 

Table S3B. Comparison of the frequency of pathogenic variants in tested genes between OMGL 
and LMM clinical laboratories for DCM cohorts 

Table S4A. Comparison of the frequency of rare variation (ExAC MAF < 0.0001) in clinical 
HCM cases compared to ExAC controls. 

Table S4B. Comparison of the frequency of rare variation (ExAC MAF < 0.0001) in clinical 
DCM cases compared to ExAC controls.  

Table S4C. Comparison of the frequency of rare variation (ExAC MAF < 0.0001) in clinical 
ARVC cases compared to ExAC controls. 

Table S5A. Odds ratios and Fisher's Exact test results testing for significance of the excess of 
rare variation in HCM cases versus ExAC controls. 

Table S5B. Odds ratios and Fisher's Exact test results testing for significance of the excess of 
rare variation in DCM cases versus ExAC controls. 

Table S5C. Odds ratios and Fisher's Exact test results testing for significance of the excess of 
rare variation in ARVC cases versus ExAC controls. 

Table S6. Frequency of rare variants in HCM research cohort with comparison between the 
number of variants reported as pathogenic by Lopes et al with the number predicted by the case 
excess observed versus ExAC controls. 
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Table S7. Frequency of rare variants in DCM research cohort with comparison between the 
number of variants reported as pathogenic by Hershberger et al with the number predicted by the 
case excess observed versus ExAC controls. 

Table S8. Numbers of variants in the HGMD database (professional version 2015.1) associated 
with HCM by gene with number of these variants present in ExAC (at any frequency and greater 
than 0.0001), the Exome Sequencing Project (ESP) or 1000 Genomes (1KG) and the total 
number of ExAC alleles and individuals with a HCM-associated variant.  

Table S9. Numbers of variants in the HGMD database (professional version 2015.1) associated 
with DCM by gene with number of these variants present in ExAC (at any frequency and greater 
than 0.0001), the Exome Sequencing Project (ESP) or 1000 Genomes (1KG) and the total 
number of ExAC alleles and individuals with a DCM-associated variant. 

Table S10. Numbers of variants in the HGMD database (professional version 2015.1) associated 
with ARVC by gene with number of these variants present in ExAC (at any frequency and 
greater than 0.0001), the Exome Sequencing Project (ESP) or 1000 Genomes (1KG) and the total 
number of ExAC alleles and individuals with an ARVC-associated variant. 

Table S11. Summary of the numbers of variants in the HGMD database (professional version 
2015.1) associated with HCM, DCM and ARVC which are present in ExAC (at any frequency 
and greater than 0.0001), the Exome Sequencing Project (ESP) or 1000 Genomes (1KG) and the 
total number of ExAC alleles and individuals with a ARVC-associated variant. 

Table S12. Power calculations. 

Table S13. Comparison of case-control analysis for LMM DCM cases with (1) Caucasian DCM 
patients versus ExAC Non-Finnish European subset and (2) All DCM patients versus total ExAC 
dataset. 
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Figures:  

 

 
Figure 1: Proportion of individuals with rare variants in HCM and DCM in combined clinical cohorts (data from OMGL 
and LMM) compared to ExAC (grey columns).  
Variants counted were single nucleotide change or small insertion/deletion variant detected in the coding region ±2bp, with 
an ExAC minor allele frequency (MAF) of <1x10-4 (see Methods).  
Clinical cohorts: HCM n=632 to 6179, DCM n=121 to 1315 (see Supplemental tables S5A and S5B). Overlaid is 
information on reported pathogenicity class (red = pathogenic (P), orange = likely pathogenic (LP), yellow = variant of 
uncertain significance (VUS). See Supplemental Tables S4A and S4B for full details. ^ = genes analyzed in fewer than 200 
cases.  
ExAC: n=mean of total adjusted allele count for rare variant carriers. For HCM genes n ranged from 47153 to 60647, for 
DCM genes n was 42697 to 60647 (see Supplemental tables S5A and S5B). CTF1 and RBM20 were removed from 
analysis due to poor coverage in ExAC. 
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Figure 2: Odds ratios (OR) with 95% CI for each gene tested in the HCM (n=632 to 6179), DCM (n=121 to 131) and 
ARVC (n=93 to 361) clinical cohorts compared to ExAC reference samples (n=mean of total adjusted allele count for 
rare variant carriers. For HCM genes n=47153 to 60647, DCM genes n=42697 to 60647 and ARVC genes n=51126 to 
60218).  
Data has been plotted (log10 scale) for all protein-altering variants (black) and truncating variants (blue). For 
truncating variants, OR with 95% CI have been plotted on for genes where a statistically significant difference was 
observed for this variant type on FET. 
*= Statistically significant Fishers exact test (FET) (P=0.05 with Bonferroni correction, HCM P=<0.0025, DCM 
P=0.001 and ARVC P=<0.006.)  
See Supplemental tables S5A, S5B and S5C for data use to generate this plot. 
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^ =genes analyzed in fewer than 200 cases.  
CTF1 and RBM20 were removed from analysis due to poor coverage in ExAC. 

 

 
Figure 3: Distribution of rare (ExAC MAF <1x10-4) MYH7 missense variants in HCM (n=864) and DCM (n=69) 
clinical cohorts and ExAC controls (n=816), with the key myosin protein regions highlighted. Using non-random 
mutation cluster analysis (NMC), (refer to Online Methods), a significant variant cluster (p<3x10-15, False 
Discovery Rate (FDR) q<5x10-13) was identified between residues 181 and 937 (involving the motor domain, lever 
arm and part of the rod) in HCM cases, and depletion in this region and a significant cluster (p<3x10--8, FDR 
q<4x10-5) between residues 1271 and 1903 (in the part of the rod that forms the filament backbone) in controls. The 
etiological fraction (EF) for a rare MYH7 missense variant identified in a HCM proband ranges from 0.97 in the 
HCM cluster to 0.67 in the control cluster. Vertical grey bars depict the positions of variants in cohorts, grey scale 
showing variant density where variants are co-incident. 

 

 

 

Figure 4: An overview of the genetic landscape of HCM (A) and DCM (B) for truncating (blue) and non-truncating 
(grey) variants, as well as MYH7 missense variants in the clusters identified in Fig. 3 (orange, disease cluster; 
yellow, ExAC control cluster). The case excess (y-axis) is the frequency of rare variation in disease cohorts over and 
above the frequency in ExAC controls and indicates the relative importance of the gene and variant class to the 
genetic etiology of each cardiomyopathies. The etiological fraction (EF) (x-axis) is a measure of the interpretability 
of variants of this class, being an estimate of the proportion of affected carriers where the variant caused the disease 
(see Supplementary Tables S4A and 4B for full details). This measure is an average of all variants of a given class, 
some of which will be pathogenic but others benign. 
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Figure 5: Comparison of the number of variants reported as putatively pathogenic in HCM (A) and DCM (B) in 
research studies (using generic analysis criteria such as variant class, missense effect predictions and variant 
population frequency in ESP) with those predicted as pathogenic by the excess of variation in cases over ExAC 
controls in each gene. For the HCM study (34) (A), genes are colored by the cardiac disease for which they are 
primarily associated, as defined by Lopes et al (34). While there is good concordance between the research findings 
and the ExAC predictions for established HCM genes, for genes primarily associated with DCM, ARVC and 
arrhythmias, the variation in cases is similar to that in controls. In the DCM study (30, 35, 36) (B), variation burden 
in MYBPC3, SCN5A and MYH6 is similar between the published research cases and ExAC controls, suggesting 
most variants in these genes are unlikely to be causing DCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 24, 2016. ; https://doi.org/10.1101/041111doi: bioRxiv preprint 

https://doi.org/10.1101/041111


 

 
Table 1: Overview of the datasets analyzed in this study. Clinical data is from the Oxford Medical Genetics 
Laboratories (OMGL), UK and the Laboratory of Molecular Medicine (LMM), USA (combined clinical datasets for 
HCM and DCM are shaded in grey).  

 

 

 

 

 

 

 

Dataset Cohort Type Reference Sample 
size 

No. 
genes 
tested 

Methods used to 
generate sequence 
data 

OMGL 
HCM Clinical this paper 807 - 3267 16 

High-resolution DNA 
melting (WAVE dHPLC, 
LightScanner®)  
Sanger sequencing  
Targeted NGS 

LMM 
HCM Clinical (12) 632 - 2912 18 

DNA microarray 
(Cardiochip) 
Sanger sequencing. 
Targeted NGS 

Combined 
HCM Clinical - 632 - 6179 20 As detailed above 

OMGL 
DCM Clinical this paper 304 - 559 28 

High-resolution DNA 
melting (WAVE dHPLC, 
LightScanner®) 
Sanger sequencing 
Targeted NGS 

LMM 
DCM Clinical (4) 121 - 756 46 

DNA microarray 
(Cardiochip) 
Sanger sequencing 
Targeted NGS 

Combined 
DCM Clinical - 121 - 1315 48 As detailed above 

OMGL 
ARVC Clinical this paper 93 - 361 8 

High-resolution DNA 
melting (WAVE dHPLC, 
LightScanner®) 
Sanger sequencing 
Targeted NGS 

Research 
HCM Research (34) 874 36 Targeted NGS 

Research 
DCM Research (30, 35, 36) 312 - 324 12 Sanger sequencing 

ExAC  Database http://exac.broadi
nstitute.org Up to 60706 all Exome sequencing 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 24, 2016. ; https://doi.org/10.1101/041111doi: bioRxiv preprint 

https://doi.org/10.1101/041111


Supplementary Materials: 
 

 
Figure S1: Comparison of the excess of rare variants in LMM DCM cases over controls between all population 
analysis (all cases versus full ExAC dataset) and Caucasian only (Caucasian DCM cases versus non-Finnish 
European subset of ExAC). Genes with a significant excess in cases (Fisher’s exact test p<0.001 with Bonferroni 
correction for 48 tests) are shown in red. The Pearson correlation coefficient was calculated at 0.97. Only genes with 
>300 samples sequenced are shown. 
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Supplementary Note 1 

Selecting an allele frequency threshold to define potentially pathogenic and penetrant variants in 
Mendelian conditions 
How many times must a variant be observed in ExAC to consider it too common to cause a 
Mendelian cardiomyopathy? 
 
Clearly, a penetrant Mendelian allele should not be present in an unselected population more 
frequently than the disease it causes. Moreover, for a genetically heterogeneous condition it must 
not be more frequent than the proportion of cases attributable to that gene, or indeed to any 
single variant. Given the substantial datasets presented here we can now estimate these 
proportions reasonably robustly, but must take care to provide an appropriate margin of error 
given that these estimates are derived from samples of fixed size and ethnicity. 
 
HCM has an estimated prevalence of 1:500(13). In this series the variant to which the largest 
proportion of cases is attributable is MYBPC3 c.1504C>T (p.Arg502Trp), found in 104/6179 
HCM cases (1.7%, 95CI 1.4-2.0%). Caution must be applied when considering calculating 
confidence intervals for allele frequencies, especially for very rare alleles, as the underlying 
distribution of allele frequencies from which our sample is drawn is not fully known, and 
strongly left skewed (e.g. a singleton variant is much more likely to have a true frequency below 
the measured frequency than above it). Nonetheless, the binomial distribution is a fair 
approximation at this allele frequency range, and will generally be conservative when calculating 
upper confidence intervals for the frequency of rare alleles, though not at all robust for 
calculating lower confidence intervals. 
 
Given that MYBPC3c.1504C>T is seen in 1.7% of cases (in the heterozygous state), and cases 
have a prevalence of 1:500, we expect a population allele frequency around 1.7 x10-5. 
104/6179 x 1/500 x 1/2 (as each individual is diploid) = 1.7x10-5 
 
We can cross-reference this against ExAC. This variant is observed 3 times in ExAC (in 60557 
individuals genotyped at this site), and twice in 33329 Europeans (non-Finnish). This gives an 
observed ExAC global MAF = 2.5x10-5 (6.0x10-5 in Europeans), and an upper bound for the 
true population frequency of this allele would be estimated as 5.3 x10-5 based on a binomial 
distribution around the ExAC global MAF, or 7.2x10-5 based on the European subset. 
 
# upper limit based on observation in global ExAC 
binom::binom.confint(3,2*60557,methods="asymptotic",confint=0.95)$upper 

## [1] 5.279914e-05 

# upper limit based on observation in ExAC Europeans 
binom::binom.confint(2,2*33329,methods="asymptotic",confint=0.95)$upper 

## [1] 7.15858e-05 

 
So we consider that a variant with a true population allele frequency > 7 x 10-5 as too common 
to cause HCM. We may want to adjust this threshold to allow for reduced penetrance. We could 
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simply divide this maximum frequency by the penetrance of the condition (e.g. a variant with a 
penetrance of 0.5 could be present at double this frequency). 
 
In fact we have made a series of conservative assumptions (and more are to come), so have not 
made an additional correction for reduced penetrance at this point. 
 
Finally, we ask how many times such a variant might be a variant with true population allele 
frequency 7x10-5 be observed in a random population sample. This can be modeled using a 
poisson distribution: for a 5% error rate we take the 95th centile of a poisson distribution with λ 
= expected allele count given by 2 x sample size x population allele frequency: 
 
maxAF=7E-5 

myCI=0.95 

nSamples=60706 

alleleNumber=2*nSamples 

maxAC = qpois(myCI, alleleNumber*maxAF) 
 

maxAC 

## [1] 14 

 
This allows us to adjust our threshold for variants that are not sequenced in the entire cohort 
(indicated by the “AN” field in ExAC), or by focusing on one ethnic subgroup. For example, if 
the variant was found only in East Asians, we could derive an ExAC AC cut-off as follows: 
 
nSamples=4327 # (ExAC EAS) 
qpois(myCI,2*nSamples*maxAF) 

## [1] 2 

 
Limitations 
In the populations studied, a measured AF greater than this threshold is incompatible with 
penetrant Mendelian cardiomyopathy. However, deleterious founder variants may be present in 
other populations in whom the genetic architecture of CM is undefined. As described here, we 
have not accounted for reduced penetrance. 
The maximum allele frequency that is compatible with pathogenicity will be different for each 
condition according to its prevalence and the known genetic architecture of the disease. 
 
Examples here are generated using the R statistical environment. 
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Supplementary Note 2 
 
Etiological fraction (EF) 
 
Attributable risk percent among exposed (ARP), provides an estimate of the proportion of the 
risk in an exposed population that can be attributed to the exposure. This epidemiological 
measure is meaningful where there is strong evidence of a biologically plausible causal 
relationship between exposure and disease. In our context, ARP corresponds to the proportion of 
the risk of cardiomyopathy in mutation carriers that can be attributable to the mutation. The 
measure was popularized by Cole & MacMahon (25), and defined as follows: 
 

 
 

where 
 = risk in the exposed (i.e. carriers of rare variant in gene of interest) 
 = risk in the unexposed (i.e. individuals with no rare variant in gene of interest) 

The equation can be conveniently rewritten as: 
 

 
 

where 
 = relative risk (ratio of risk among exposed to risk among unexposed) (Robins & Greenland 

(27)) 
 
For cross-sectional (i.e. case-control) data, odds ratios (OR) provide accurate estimates of the 
underlying relative risk (49), leading to: 
 

 
 
Now ARP, when expressed as a decimal fraction, has been called the etiological fraction (EF) 
(27) i.e. 
 

 
 
 
and we refer to EF hence-with. 
 
In the diagnostic context, where we are treating cardiomyopathy as a Mendelian disease, and are 
interested in interpreting whether an individual rare variant was likely causative, the EF can be 
interpreted in several waysa: 
• the proportion of variant-carrying probands in which the variant was causal 

 
• the proportion of variants, found in affected individuals, that were penetrant 
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• the probability that an individual rare variant, found in a proband, was responsible for the 
disease 

 
EF therefore represents our confidence in interpreting variation as etiologically significant when 
found in an individual with disease. 
 
aIt is worth noting that in each case we cannot disentangle incomplete penetrance. Without 
additional information we cannot determine whether an EF of 50% indicates that half of the 
variants found in our case cohort are fully penetrant and disease-causing (and the other half have 
zero penetrance), or if all of the variants are pathogenic, but with reduced (50%) penetrance. 
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