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Abstract

Cortical networks exhibit intrinsic dynamics that drive coordinated, large-scale fluctuations across
neuronal populations and create noise correlations that impact sensory coding. To investigate
the network-level mechanisms that underlie these dynamics, we developed novel computational
techniques to fit a deterministic spiking network model directly to multi-neuron recordings from
different species, sensory modalities, and behavioral states. The model generated correlated vari-
ability without external noise and accurately reproduced the wide variety of activity patterns in
our recordings. Analysis of the model parameters suggested that differences in noise correlations
across recordings were due primarily to differences in the strength of feedback inhibition. Fur-
ther analysis of our recordings confirmed that putative inhibitory neurons were indeed more active
during desynchronized cortical states with weak noise correlations. Our results demonstrate that
network models with intrinsically-generated variability can accurately reproduce the activity pat-
terns observed in multi-neuron recordings and suggest that inhibition modulates the interactions
between intrinsic dynamics and sensory inputs to control the strength of noise correlations.

Introduction

The patterns of cortical activity evoked by sensory stimuli provide the internal representation of
the outside world that underlies perception. However, these patterns are driven not only by sen-
sory inputs, but also by the intrinsic dynamics of the underlying cortical network. These dynamics
can create correlations in the activity of neuronal populations with important consequences for
coding and computation’3. The correlations between pairs of neurons have been studied ex-
tensively®, and recent studies have demonstrated that they are driven by dynamics involving
coordinated, large-scale fluctuations in the activity of many cortical neurons®®. Inactivation of
the cortical circuit nearly completely quenches these synchronized fluctuations in both awake and
anesthetized animals, suggesting that this synchronization is cortical in origin®. Importantly, the
nature of these dynamics and the correlations that they create are dependent on the state of the
underlying network; it has been shown that various factors modulate the strength of correlations,
such as anaesthesia%-'2, attention 315, locomotion 817 and alertness '81°. In light of these find-
ings, it is critical that we develop a deeper understanding of the origin and coding consequences
of correlations at the biophysical network level.
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While a number of modeling studies have explored the impact of correlations on sensory cod-
ing 1320-23 there have been few efforts to identify their biophysical origin; the standard assumption
that correlations arise from common input noise?%242% simply pushes the correlations from spik-
ing to the membrane voltage without providing insight into their genesis. Models that use external
noise to create correlations have been used in theoretical investigations of how network dynam-
ics can transform correlations2#, but no physiological source for the external noise used in these
models has yet been identified. However, no external noise is needed to generate the correlated
activity that is observed in vivo; in vitro experimental studies have shown that cortical networks
are capable of generating large-scale fluctuations intrinsically?6-2” | and in vivo results suggest that
the majority of cortical fluctuations arise locally®. If the major source of the correlations in corti-
cal networks is, in fact, internal, then the network features that control these correlations may be
different from those that control correlations in model networks with external noise.

We demonstrate here that network models with intrinsic variability are indeed capable of repro-
ducing the activity patterns that are observed in vivo, and then proceed to use a large number of
multi-neuron recordings and a model-based analysis to investigate the mechanisms that control
intrinsically generated-noise correlations. For our results to provide direct insights into physio-
logical mechanisms, we required a model with several properties: (1) the model must be able to
internally generate the complex intrinsic dynamics of cortical networks, (2) it must be possible to
fit the model parameters directly to spiking activity from individual multi-neuron recordings, and
(3) the model must be biophysically interpretable and enable predictions that can be tested ex-
perimentally. No existing model satisfies all of these criteria; the only network models that have
been fit directly to multi-neuron recordings have relied on either abstract dynamical systems?®
or probabilistic frameworks in which variability is modelled as stochastic and correlated variability
arises through abstract latent variables whose origin is assumed to lie either in unspecified circuit
processes?'29-31 or elsewhere in the brain?%-32. While these models are able to accurately repro-
duce many features of cortical activity and provide valuable summaries of the phenomenological
and computational properties of cortical networks, their parameters are difficult to interpret at a
biophysical level.

One alternative to these abstract stochastic models is a biophysical spiking network,33-37. These
networks can be designed to have interpretable parameters, but have not been shown to internally
generate large-scale fluctuations and noise correlations of the kind routinely seen in multi-neuron
recordings. Networks with structured connectivity have been shown to generate correlated activity
in small groups containing less than 5% of all neurons3®, but not in the entire network. Further-
more, large-scale neural network models have not yet been fit directly to multi-neuron recordings
and, thus, their use has been limited to attempts to explain qualitative features of cortical dynamics
through manual tuning of network parameters. This inability to fit the networks directly to record-
ings has made it difficult to identify which of these network features, if any, play an important role
in vivo. To overcome this limitation, we used a novel computational approach that allowed us to fit
spiking networks directly to individual multi-neuron recordings. By taking advantage of the com-
putational power of graphics processing units (GPUs), we were able to simulate the network with
millions of different parameter values for 800 seconds each to find those that best reproduced the
structure of the activity in a given recording.

We developed a novel biophysical spiking network with intrinsic variability and a small number of
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parameters that was able to capture the apparently “doubly chaotic” structure of cortical activity 38.
Like classical excitatory-inhibitory networks, the model generates deterministic “microscopic” trial-
to-trial variability in the spike times of individual neurons 33, as well as “macroscopic” variability in
the form of coordinated, large-scale fluctuations that are shared across neurons. Because these
fluctuations are of variable duration, arise at random times, and do not necessarily phase-lock
to external input, they create noise correlations in evoked responses. This intrinsic variability
distinguishes our model from previous rate or spiking network models243537 as well as from phe-
nomenological dynamical systems3%3'  all of which create noise correlations by injecting common
noise into all neurons (an approach which, by construction, provides little insight into the biophys-
ical mechanisms that generate the noise?4).

To gain insight into the mechanisms that control noise correlations in vivo, we took the following
approach: (1) we assembled multi-neuron recordings from different species, sensory modalities,
and behavioral states to obtain a representative sample of cortical dynamics; (2) we generated
activity from the network model to understand how each of its parameters controls its dynam-
ics, and we verified that it was able to produce a variety of spike patterns that were qualitatively
similar to those observed in vivo; (3) we fit the model network directly to the spontaneous activ-
ity in each of our recordings, and we verified that the spike patterns generated by the network
quantitatively matched those in each recording; (4) we examined responses to sensory stimuli to
determine which of the model parameters could account for the differences in noise correlations
across recordings — the results of this analysis identified the strength of feedback inhibition as a
key parameter and predicted that the activity of inhibitory interneurons should vary inversely with
the strength of noise correlations; (5) we confirmed this prediction through additional analysis of
our recordings showing that the activity of putative inhibitory neurons is increased during periods of
cortical desynchronization with weak noise correlations in both awake and anesthetized animals.
Our results suggest that weak inhibition allows activity to be dominated by coordinated, large-scale
fluctuations that cause the state of the network to vary over time and, thus, create variability in the
responses to successive stimuli that is correlated across neurons. In contrast, when inhibition
is strong, these fluctuations are suppressed and the network state remains constant over time,
allowing the network to respond reliably to successive stimuli and eliminating noise correlations.

Results

Cortical networks exhibit a wide variety of intrinsic dynamics

To obtain a representative sample of cortical activity patterns, we collected multi-neuron record-
ings from different species (mouse, gerbil, or rat), sensory modalities (A1 or V1), and behavioral
states (awake or under one of several anesthetic agents). We compiled recordings from a total of
59 multi-neuron populations across 6 unique recording types (i.e. species/modality/state combi-
nations; see Supplementary Table 1). The spontaneous activity in different recordings exhibited
striking differences not only in overall activity level, but also in the spatial and temporal structure
of activity patterns; while concerted, large-scale fluctuations were prominent in some recordings,
they were nearly absent in others (Figure 1a). In general, large-scale fluctuations were weak in
awake animals and strong under anesthesia, but this was not always the case (see further exam-
ples in Figure 3 and summary statistics for each recording in Supplementary Figure 1).
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Figure 1. Cortical networks exhibit a wide variety of intrinsic dynamics

(a) Multi-neuron raster plots showing examples of a short segment of spontaneous activity from each of our
recording types. Each row in each plot represents the spiking of one single unit. Note that recordings made
under urethane were separated into two different recording types, synchronized (‘sync’) and desynchronized
(‘desync’), as described in the Methods.

(b) The autocorrelation function of the multi-unit activity (MUA, the summed spiking of all neurons in the
population in 15 ms time bins) for each example recording. The timescale of the autocorrelation function (the
‘autocorr decay’) was measured by fitting an exponential function to its envelope as indicated.

(c) The values of the MUA across time bins sorted in ascending order. The percentage of time bins with zero
spikes (the ‘% silence’) is indicated.

(d) Scatter plots showing all possible pairwise combinations of the summary statistics for each recording. Each
point represents the values for one recording. Colors correspond to recording types as in A. The recordings
shown in A are denoted by open circles. The best fit line and the fraction of the variance that it explained are
indicated on each plot. Spearman’s rank correlation p-values for each plot (from left to right, top to bottom)
are as follows: p<0.05, p<104, p<103, p<1072, p=0.447, p<0.05.

(e) The percent of the variance in the summary statistics across recordings that is explained by each principal
component of the values.
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The magnitude and frequency of the large-scale fluctuations in each recording were reflected in
the autocorrelation function of the multi-unit activity (MUA, the summed spiking of all neurons in
the population in 15 ms time bins). The autocorrelation function of the MUA decayed quickly to
zero for recordings with weak large-scale fluctuations, but had oscillations that decayed slowly for
recordings with stronger fluctuations (Figure 1b). The activity patterns in recordings with strong
large-scale fluctuations were characterized by clear transitions between up states, where most of
the population was active, and down states, where the entire population was silent. These up and
down state dynamics were reflected in the distribution of the MUA across time bins; recordings
with strong large-scale fluctuations had a large percentage of time bins with zero spikes (Figure
1c).

To summarize the statistical structure of the activity patterns in each recording, we measured
four quantities. We used mean spike rate to describe the overall level of activity, mean pairwise
correlations to describe the spatial structure of the activity patterns, and two different measures
to describe the temporal structure of the activity patterns — the decay time of the autocorrelation
function of the MUA, and the percentage of MUA time bins with zero spikes. While there were
some dependencies in the values of these quantities across different recordings (Figure 1d), there
was also considerable scatter both within and across recording types. This scatter suggests that
there is no single dimension in the space of cortical dynamics along which the overall level of
activity and the spatial and temporal structure of the activity patterns all covary, but rather that cor-
tical dynamics span a multi-dimensional continuum '°. This was confirmed by principal component
analysis; even in the already reduced space described by our summary statistics, three princi-
pal components were required to account for the differences in spike patterns across recordings
(Figure 1e).

A deterministic spiking network model of cortical activity

To investigate the network-level mechanisms that control cortical dynamics, we developed a biophysically-
interpretable model that was capable of reproducing the wide range of activity patterns observed
in vivo. We constructed a minimal deterministic network of excitatory spiking integrate-and-fire
neurons with non-selective feedback inhibition and single-neuron adaptation currents (Figure 2a).
Each neuron receives constant tonic input, and the neurons are connected randomly and sparsely
with 5% probability. The neurons are also coupled indirectly through global, supralinear inhibitory
feedback driven by the spiking of the entire network3?, reflecting the near-complete interconnec-
tivity between pyramidal neurons and interneurons in local populations*%-#2. The supralinearity of
the inhibitory feedback is a critical feature of the network, as it shifts the balance of excitation and
inhibition in favor of inhibition when the network is strongly driven, as has been observed in awake
animals 3.

The model has five free parameters: three controlling the average strength of excitatory connec-
tivity, the strength of inhibitory feedback, and the strength of adaptation, respectively, and two
controlling the strength of the tonic input to each neuron, which is chosen from an exponential dis-
tribution. The timescales that control the decay of the excitatory, inhibitory and adaptation currents
are fixed at 5 ms, 3.75 ms and 375 ms, respectively. (These timescales have been chosen based
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on the physiologically known timescales of AMPA, GABA,, and the calcium-dependent afterhyper-
polarizing current. We also verified that the qualitative nature of our results did not change when
we included slow conductances or clustered connectivity; see Supplementary Figure 2.)

Note that no external noise input is required to generate variable activity; population-wide fluctua-
tions over hundreds of milliseconds are generated when the slow adaptation currents synchronize
across neurons to maintain a similar state of adaptation throughout the entire network, which, in
turn, results in coordinated spiking#44°. The variability in the model arises through chaotic am-
plification of small changes in initial conditions or small perturbations to the network that cause
independent simulations to diverge. In some parameter regimes, the instability of the network is
such that the structure of the spike patterns generated by the model is sensitive to changes in the
spike times of individual neurons. In fact, a single spike added randomly to a single neuron during
simulated activity is capable of changing the time course of large-scale fluctuations, in some cases
triggering immediate population-wide spiking (Figure 2b, top rows). Similar phenomena have been
observed in vivo previously“® and were also evident in our recordings when comparing different
extracts of cortical activity; spike patterns that were similar for several seconds often then began
to diverge almost immediately (Figure 2b, bottom rows).

Multiple features of the network model can control its dynamics

The dynamical regime of the network model is determined by the interactions between its different
features. To determine the degree to which each feature of the network was capable of influencing
the structure of its activity patterns, we analyzed the effects of varying the value of each model
parameter. We started from a fixed set of parameter values and simulated activity while indepen-
dently sweeping each parameter across a wide range of values. The results of these parameter
sweeps clearly demonstrate that each of the five parameters can exert strong control over the
dynamics of the network, as both the overall level of activity and the spatial and temporal structure
of the patterns in simulated activity varied widely with changes in each parameter (Figure 2c-d).

With the set of fixed parameter values used for the parameter sweeps, the network is in a regime
with slow, ongoing fluctuations between up and down states. In this regime, the amplification of a
small perturbation results in a sustained, prolonged burst of activity (up state), which, in turn, drives
a build-up of adaptation currents that ultimately silences the network for hundreds of milliseconds
(down state) until the cycle repeats. These fluctuations can be suppressed by an increase in the
strength of feedback inhibition, which eliminates slow fluctuations and shifts the network into a
regime with weak, tonic spiking and weak correlations (Figure 2c-d, first column); in this regime,
small perturbations are immediately offset by the strong inhibition and activity is returned to base-
line. Strong inhibition also offsets externally-induced perturbations in balanced networks®3®, but in
our model such perturbations are internally-generated and would result in runaway excitation in
the absence of inhibitory stabilization. The fluctuations between up and down states can also be
suppressed by decreasing adaptation (Figure 2c-d, second column); without adaptation currents
to create slow, synchronous fluctuations across the network, neurons exhibit strong, tonic spiking.

The dynamics of the network can also be influenced by changes in the strength of the recurrent
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Figure 2. A deterministic spiking network model of cortical activity

(a) A schematic diagram of our deterministic spiking network model. An example of a short segment of the
intracellular voltage of a model neuron is also shown, along with the corresponding excitatory, inhibitory and
adaptation currents.

(b) An example of macroscopic variability in cortical recordings and network simulations. The top two multi-neuron
raster plots show spontaneous activity generated by the model. By adding a very small perturbation, in this case one
spike added to a single neuron, the subsequent activity patterns of the network can change dramatically. The middle
traces show the intracellular voltage of the model neuron to which the spike was added. The bottom two raster
plots show a similar phenomenon observed in vivo. Two segments of activity extracted from different periods during
the same recording were similar for three seconds, but then immediately diverged.

(c) The autocorrelation function of the MUA measured from network simulations with different model parameter
values. Each column shows the changes in the autocorrelation function as the value of one model parameter is
changed while all others are held fixed. The fixed values used were w, = 0.22, w, = 0.80, w; = 4.50, b, = 0.03, b, =
0.013.

(d) The summary statistics measured from network simulations with different model parameter values. Each line
shows the changes in the indicated summary statistic as one model parameter is changed while all others are held
fixed. Fixed values were as in panel c.
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excitation or tonic input. Increasing the strength of excitation results in increased activity and
stronger fluctuations, as inhibition is unable to compensate for the increased ampilification of small
perturbations (Figure 2c-d, third column). Increasing the spread or baseline level of tonic input also
results in increased activity, but with suppression, rather than enhancement, of slow fluctuations
(Figure 2c-d, fourth and fifth column). As either the spread or baseline level of tonic input is
increased, more neurons begin to receive tonic input that is sufficient to overcome their adaptation
current and, thus, begin to quickly reinitiate up states after only brief down states and, eventually,
transition to tonic spiking.

The network model reproduces the dynamics observed in vivo

The network simulations demonstrate that each of its features is capable of controlling its dynamics
and shaping the structure of its activity patterns. To gain insight into the mechanisms that may be
responsible for creating the differences in dynamics observed in vivo, we fit the model to each
of our recordings. We optimized the model parameters so that the patterns of activity generated
by the network matched those observed in spontaneous activity (Figure 3a). We measured the
agreement between the simulated and recorded activity by a cost function which was the sum of
discrepancies in the autocorrelation function of the MUA, the distribution of MUA values across
time bins, and the mean pairwise correlations. Together, these statistics describe the overall level
of activity in each recording, as well as the spatial and temporal structure of its activity patterns.

Fitting the model to the recordings required us to develop new computational techniques. The
network parametrization is fundamentally nonlinear, and the statistics used in the cost function
are themselves nonlinear functions of a dynamical system with discontinuous integrate-and-fire
mechanisms. Thus, as no gradient information was available to guide the optimization, we used
Monte Carlo simulations to generate activity and measure the relevant statistics with different
parameter values. By using GPU computing resources, we were able to design and implement
network simulations that ran 10000x faster than real time, making it feasible to sample the cost
function with high resolution and locate its global minimum to identify the parameter configuration
that resulted in activity patterns that best matched those of each recording. We also verified that
the global minimum of the cost function could be identified with 10x fewer samples of simulated
activity using a Gibbs sampling optimizer with simulated annealing (Supplementary Figure 3), but
the results presented below are based on the global minima identified by the complete sampling
of parameter space.

The model was flexible enough to capture the wide variety of activity patterns observed across our
recordings, producing both decorrelated, tonic spiking and coordinated, large-scale fluctuations
between up and down states as needed (see examples in Figure 3b, statistics for all recordings
and models in Supplementary Figure 1, and parameter values and goodness-of-fit measures for
all recordings in Supplementary Figure 4). Because we used a cost function that captured many
different properties of the recorded activity while fitting only a very small number of model param-
eters, the risk of network degeneracies was relatively low*”#8. Nonetheless, we also confirmed
that analysis of model parameters corresponding to local minima of the cost function did not lead
to a different interpretation of our results (see Supplementary Figure 5).
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Figure 3. Deterministic spiking networks reproduce the dynamics observed in vivo

(a) A schematic diagram illustrating how the parameters of the network model were fit to individual multi-neuron
recordings.

(b) Examples of spontaneous activity from different recordings, along with spontaneous activity generated by the
model fit to each recording.

(c) The left column shows the autocorrelation function of the MUA for each recording, plotted as in Figure 1. The
black lines show the autocorrelation function measured from spontaneous activity generated by the model fit to each
recording. The middle column shows the sorted MUA for each recording along with the corresponding model fit. The
right column shows the mean pairwise correlations between the spiking activity of all pairs of neurons in each
recording (after binning activity in 15 ms bins). The colored circles show the correlations measured from the
recordings and the black open circles show the correlations measured from from spontaneous activity generated by
the model fit to each recording.
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Figure 4. Deterministic spiking networks reproduce the noise correlations observed in vivo

(a) Multi-neuron raster plots and PSTHs showing examples of evoked responses from each of our recording types.
Each row in each raster plot represents the spiking of one single unit. Each raster plot for each recording type shows
the response on a single trial. The PSTH shows the MUA averaged across all presentations of the stimulus. Different
stimuli were used for different recording types (see Methods).
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Figure 4. Deterministic spiking networks reproduce the noise correlations observed in vivo

(b) A scatter plot showing the mean spike rates and mean pairwise noise correlations (after binning the evoked
responses in 15 ms bins) for each recording. Each point represents the values for one recording. Colors correspond to
recording types as in panel a. The recordings shown in panel a are denoted by open circles. Values are only shown for
the 38 of 59 recordings that contained both spontaneous activity and evoked responses. The Spearman’s rank
correlation was significant with p=0.0105.

(c) A schematic diagram illustrating the modelling of evoked responses. We constructed the external input using
recordings of responses from more than 500 neurons in the inferior colliculus (IC), the primary relay nucleus of the
auditory midbrain that provides the main input to the thalamocortical circuit. We have shown previously that the
Fano factors of the responses of IC neurons are close to 1 and the noise correlations between neurons are extremely
weak (Garcia-Lazaro et al, 2013), suggesting that the spiking activity of a population of IC neurons can be well
described by series of independent, inhomogeneous Poisson processes. To generate the responses of each model
network to the external input, we averaged the activity of each IC neuron across trials, grouped the IC neurons by
their preferred frequency, and selected a randomly chosen subset of 10 neurons from the same frequency group to
drive each cortical neuron.

(d) The top left plot shows the sound waveform presented in the IC recordings used as input to the model cortical
network. The top right plot shows PSTHs formed by averaging IC responses across trials and across all IC neurons in
each preferred frequency group. The raster plots show the recorded responses of two cortical populations on
successive trials, along with the activity generated by the network model fit to each recording when driven by IC
responses to the same sounds.

(e) A scatter plot showing the noise correlations of responses measured from the actual recordings and from

simulations of the network model fit to each recording when driven by IC responses to the same sounds. The
Spearman’s rank correlation for the recordings versus the model were p<10-.
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Strong inhibition suppresses noise correlations

Our main interest was in understanding how the different network-level mechanisms that are ca-
pable of controlling intrinsic dynamics contribute to the correlated variability in responses evoked
by sensory stimuli. The wide variety of intrinsic dynamics in our recordings was reflected in the
differences in evoked responses across recording types; while some recordings contained strong,
reliable responses to the onset of a stimulus, other recordings contained responses that were
highly variable across trials (Figure 4a). There were also large differences in the extent to which
the variability in evoked responses was correlated across the neurons in each recording; pairwise
noise correlations were large in some recordings and extremely weak in others, even when firing
rates were similar (Figure 4b).

Because evoked spike patterns can depend strongly on the specifics of the sensory stimulus, we
could not make direct comparisons between experimental responses across different species and
modalities; our goal was to identify the internal mechanisms that are responsible for the differ-
ences in noise correlations across recordings and, thus, any differences in spike patterns due to
differences in external input would confound our analysis. To overcome this confound and enable
the comparison of noise correlations across recording types, we simulated the response of the
network to the same external input for all recordings. We constructed the external input using
recordings of spiking activity from the inferior colliculus (IC), a primary relay nucleus in the sub-
cortical auditory pathway (Figure 4c-d). Using the subset of our cortical recordings in which we
presented the same sounds that were also presented during the IC recordings, we verified that
the noise correlations in the simulated cortical responses were similar to those in the recordings
(Figures 4e).

The parameter sweeps described in Figure 2 demonstrated that there are multiple features of the
model network that can control its intrinsic dynamics, and a similar analysis of the noise corre-
lations in simulated responses to external input produced similar results (Supplementary Figure
4).To gain insight into which of these features could account for the differences in noise correlations
across our recordings, we examined the dependence of the strength of the noise correlations in
each recording on each of the model parameters. While several parameters were able to explain a
significant amount of the variance in noise correlations across recordings, the amount of variance
explained by the strength of inhibitory feedback was by far the largest (Figure 5a). The predomi-
nance of inhibition in the control of noise correlations was confirmed by the measurement of partial
correlations (the correlation between the noise correlations and each parameter that remains after
factoring out the influence of the other parameters; partial 2 for inhibition: 0.67, excitation: 0.02,
adaptation: 0.08, tonic input spread: 0.17, and tonic input baseline: 0.04). We also performed
parameter sweeps to confirm that varying only the strength of inhibition was sufficient to result in
large changes in noise correlations in the parameter regime of each recording (Figure 5b).
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Figure 5. Strong inhibition suppresses noise correlations and enhances selectivity and decoding

(a) Scatter plots showing the mean pairwise noise correlations measured from simulations of the network model fit to
each recording when driven by external input versus the value of the different model parameters. Colors correspond
to recording types as in Figure 4. The recordings shown in Figure 4d are denoted by open circles. Spearman’s rank
correlation p-values for inhibition, excitation, adaptation, tonic input spread, and tonic input baseline were p<10-18,
p=0.339, p=0.011, p<10, and p<10-3 respectively.

(b) The mean pairwise noise correlations measured from network simulations with different values of the inhibition
parameter w,. The values of all other parameters were held fixed at those fit to each recording. Each line corresponds
to one recording. Colors correspond to recording types as in Figure 4.

(c,e) Scatter plots showing tuning width and decoding error, plotted as in panel a. For panel c, Spearman’s rank
correlation p-values for inhibition, excitation, adaptation, tonic input spread, and tonic input baseline were p<10-%°,
p=0.642, p<10%, p<10?, and p<10~ respectively. For panel e, Spearman’s rank correlation p-values for inhibition,
excitation, adaptation, tonic input spread, and tonic input baseline were p<10~?, p=0.799, p=0.0766, p<10?, and p<10
4 respectively.

(d,f) The tuning width and decoding error measured from network simulations with different values of the inhibition
parameter w,, plotted as in panel b.
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Strong inhibition sharpens tuning and enables accurate decoding

We also examined how different features of the network controlled other aspects of evoked re-
sponses. We began by examining the extent to which differences in the value of each model
parameter could explain differences in stimulus selectivity across recordings. To estimate se-
lectivity, we drove the model network that was fit to each cortical recording with external inputs
constructed from IC responses to tones, and used the simulated responses to measure the width
of the frequency tuning curves of each model neuron. Although each model network received the
same external inputs, the selectivity of the neurons in the different networks varied widely. The
average tuning width of the neurons in each network varied most strongly with the strength of the
inhibitory feedback in the network (Figure 5c; partial »? for inhibition: 0.74, excitation: 0.06, adap-
tation: 0.48, tonic input spread: 0.01, and tonic input baseline: 0.37), and varying the strength of
inhibition alone was sufficient to drive large changes in tuning width (Figure 5d). These results
are consistent with experiments demonstrating that inhibition can control the selectivity of cortical
neurons“?, but suggest that this control does not require structured lateral inhibition.

We also investigated the degree to which the activity patterns generated by the model fit to each
cortical recording could be used to discriminate different external inputs. We trained a decoder
to infer which of seven possible stimuli evoked a given single-trial activity pattern and examined
the extent to which differences in the value of each model parameter could account for the differ-
ences in decoder performance across recordings. Again, the amount of variance explained by the
strength of inhibitory feedback was by far the largest (Figure 5e; partial r2 for inhibition: 0.5, excita-
tion: 0.16, adaptation 0.27, tonic input spread 0.02, and tonic input baseline 0.03); decoding was
most accurate for activity patterns generated by networks with strong inhibition, consistent with
the weak noise correlations and high selectivity of these networks. Parameter sweeps confirmed
that varying only the strength of inhibition was sufficient to result in large changes in decoder
performance (Figure 5f).

Activity of fast-spiking (FS) neurons is increased during periods of cortical desynchroniza-
tion with weak noise correlations

Our model-based analyses suggest an important role for feedback inhibition in controlling the way
in which responses to sensory inputs are shaped by intrinsic dynamics. In particular, our results
predict that inhibition should be strong in dynamical regimes with weak noise correlations. To test
this prediction, we performed further analysis of our recordings to estimate the strength of inhibition
in each recorded population. We classified the neurons in each recording based on the width of
their spike waveforms (Supplementary Figure 7). The waveforms for all recording types fell into
two distinct clusters, allowing us to separate fast-spiking (FS) neurons from regular-spiking (RS)
neurons. In general, more than 90% of FS cortical neurons have been reported to be parvalbumin-
positive (PV+) inhibitory neurons®%-5% and this value approaches 100% in the deep cortical layers
where we recorded®®. While the separation of putative inhibitory and excitatory neurons based on
spike waveforms is imperfect (nearly all FS neurons are inhibitory, but a small fraction (less than
20%) of RS neurons are also inhibitory®”), it is still effective for approximating the overall levels of
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inhibitory and excitatory activity in a population.

Given the results of our model-based analyses, we hypothesized that the overall level of activity of
FS neurons should vary inversely with the strength of noise correlations. To identify sets of trials in
each recording that were likely to have either strong or weak noise correlations, we measured the
level of cortical synchronization. Previous studies have shown that noise correlations are strong
when the cortex is in a synchronized state, where activity is dominated by concerted, large-scale
fluctuations, and weak when the cortex is in a desynchronized state, where these fluctuations are
suppressed 1.

We began by analyzing our recordings from V1 of awake mice. We classified the cortical state dur-
ing each stimulus presentation based on the ratio of low-frequency LFP power to high-frequency
LFP power®® and compared evoked responses across the most synchronized and desynchro-
nized subsets of trials (Figure 6a). As expected, noise correlations were generally stronger during
synchronized trials than during desynchronized trials, and this variation in noise correlations with
cortical synchrony was evident both within individual recordings and across animals (Figure 6b-c).
As predicted by our model-based analyses, the change in noise correlations with cortical syn-
chrony was accompanied by a change in FS activity; there was a four-fold increase in the mean
spike rate of FS neurons from the most synchronized trials to the most desynchronized trials, while
RS activity remained constant (Figure 6d-f).

We next examined our recordings from gerbil A1 under urethane in which the cortex exhibited tran-
sitions between distinct, sustained synchronized and desynchronized states (Figure 6g). As in our
awake recordings, cortical desynchronization under urethane was accompanied by a decrease in
noise correlations and an increase in FS activity (Figures 6h-k). In fact, both FS and RS activity in-
creased with cortical desynchronization under urethane, but the increase in FS activity was much
larger. The increase in RS activity suggests that cortical desynchronization under urethane may
involve other mechanisms in addition to an increase in feedback inhibition (a comparison of the
model parameters fit to desynchronized and synchronized urethane recordings (Supplementary
Figure 3) suggests that the average level of tonic input is significantly higher during desynchro-
nization (desynchronized: 0.075+/-0.008, synchronized: 0.0195+/-0.0054, p =0.006)).

Finally, we examined our remaining recordings from gerbil A1 under either ketamine/xylazine (KX)
or fentanyl/medetomidine/midazolam (FMM) anesthesia. In these recordings, the cortex did not
transition between different dynamical regimes, so we could not track changes in noise correlations
and FS activity within individual recordings. However, recordings under KX and FMM exhibited
stable states with strong and weak noise correlations respectively’ (Figure 7a), so we were able to
make comparisons across recordings. Noise correlations under FMM were extremely weak, while
those under KX were the largest in any of our recordings, so we expected FS activity under FMM
to be much higher than that under KX. Surprisingly, our initial analysis suggested the opposite;
the average spike rate of FS neurons under KX was larger than that under FMM (Figure 7b).
Further analysis revealed, however, that there were many fewer FS neurons in our KX recordings
than in our FMM recordings (Figure 7c), and this effect was most pronounced for FS neurons
with low spike rates (Figure 7d). The low number of FS neurons in our KX recordings suggests
that many FS neurons become completely silent under KX (all recordings were made in the same
region of gerbil A1 with the same multi-tetrode arrays, so a similar number of FS neurons should
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Figure 6. Fast-spiking neurons are more active during periods of cortical desynchronization
with weak noise correlations

(a) The cortical synchrony at different points during two recordings from V1 of awake mice, measured as the log of
the ratio of low-frequency (3 -10 Hz) LFP power to high-frequency (11 - 96 Hz). The distribution of synchrony values
across each recording is also shown. The lines indicate the median of each distribution.

(b) A scatter plot showing the noise correlations measured during trials in which the cortex was in either a relatively
synchronized (‘sync’) or desynchronized (‘desync’) state for each recording. Each point indicates the mean pairwise
correlations between the spiking activity of all pairs of neurons in one recording (after binning the activity in 15 ms
bins). Trials with the highest 50% of synchrony values were classified as sync and trials with the lowest 50% of
synchrony values were classified as desync. Values for 13 different recordings are shown. The Wilcoxon two-sided
sighed-rank test p-value was p<10-2.

Continued on next page ...
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Figure 6. Fast-spiking neurons are more active during periods of cortical desynchronization
with weak noise correlations

(c) A scatter plot showing noise correlations versus the mean synchrony for trials with the highest and lowest 50% of
synchrony values for each recording. Colors indicate different recordings. The Spearman’s rank correlation
significance among all recordings was p<10-2.

(d) Spectrograms showing the average LFP power during trials with the highest (sync) and lowest (desync) 20% of
synchrony values across all recordings. The values shown are the deviation from the average spectrogram computed
over all trials.

(e) The average PSTHs of FS and RS neurons measured from evoked responses during trials with the highest (sync)
and lowest (desync) 20% of synchrony values across all recordings. The lines show the mean across all neurons, and
the error bars indicate +/-1 SEM.

(f) The average spike rate of FS and RS neurons during the period from 0 to 500 ms following stimulus onset,
averaged across trials in each synchrony quintile. The lines show the mean across all neurons, and the error bars
indicate +/-1 SEM. The Wilcoxon two-sided signed-rank test comparing FS activity between the highest and lowest
quintile had a significance of p<10° and for RS activity, the significance was p<10-2.

(g) The cortical synchrony at different points during a urethane recording, plotted as in panel a. The line indicates
the value used to classify trials as synchronized (sync) or desynchronized (desync).

(h) A scatter plot showing the noise correlations measured during trials in which the cortex was in either a
synchronized (sync) or desynchronized (desync) state. Values for two different recordings are shown. Each point for
each recording shows the noise correlations measured from responses to a different sound. The Wilcoxon two-sided
signed-rank test between sync and desync state noise correlations had a significance of p<10-3.

(i) Spectrograms showing the average LFP power during synchronized and desynchronized trials, plotted as in panel
d.

(j) The average PSTHs of FS and RS neurons during synchronized and desynchronized trials, plotted as in panel e.
(k) The average spike rate of FS and regular-spiking RS neurons during the period from 0 to 500 ms following
stimulus onset during synchronized and desynchronized trials. The points show the mean across all neurons, and the

error bars indicate +/-1 SEM. The Wilcoxon two-sided signed-rank test comparing FS activity between the sync and
desync had a significance of p<10-3 and for RS activity, the significance was p<10-5.
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Figure 7. Many fast-spiking neurons are silent under ketamine/xylazine anesthesia

(a) The noise correlations measured from recordings of responses to speech in gerbil Al under
ketamine/xylazine (KX) and fentanyl/medetomidine/midazolam (FMM). Each point indicates the mean
pairwise correlations between the spiking activity of all pairs of neurons in one recording (after binning the
activity in 15 ms bins). Recordings were sorted in order of increasing noise correlations.

(b) The average PSTHs of FS and RS neurons under FMM or KX, plotted as in Figure 6.
(c) The average number of FS and RS neurons in recordings under FMM and KX. The points show the mean
across all recordings, and the error bars indicate +/-1 SEM. The Wilcoxon two-sided rank-sum test between the

number of FS neurons in FMM versus KX yielded a significance of p<10-3, and between the number of RS
neurons, p=0.381.

(d) Histograms of the average spike rate of FS neurons during the period from 0 to 500 ms following stimulus
onset in recordings under FMM or KX. The arrows indicate the median values.

(e) The summed PSTHs of FS and RS neurons under FMM or KX, plotted as in Figure 6.

(f) The ratio of the total number of spikes from FS and RS neurons during the period from 0 to 500 ms

following stimulus onset. Each point shows the value for one recording. The Spearman’s rank correlation was
r2=0.31 and its significance was p<10-2.
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be expected). When we measured FS activity as the sum of all spiking in each recording rather
than the average spike rate of each neuron, the amount of FS activity was indeed much larger
under FMM than under KX, consistent with our observations in other recording types and the
predictions of our model-based analyses that stronger overall inhibition is accompanied by lower
noise correlations (Figure 7e-f).

Discussion

We have shown here that a deterministic spiking network model is capable of intrinsically gener-
ating population-wide fluctuations in neural activity, without requiring external modulating inputs.
Such fluctuations have been recently shown to arise in localized cortical networks, in both awake
and anesthetized animals, and are not due to external inputs®. However, no models have been
previously shown to realistically reproduce such coordinated activity in a local network of con-
nected neurons. By fitting our spiking network model with adaptation currents directly to experi-
mental recordings, we demonstrated that the model is able to reproduce the wide variety of multi-
neuron cortical activity patterns observed in vivo without the need for external noise. Through
chaotic amplification of small perturbations, the model generates activity with both trial-to-trial
variability in the spike times of individual neurons and coordinated, large-scale fluctuations of the
entire network. These fluctuations continue in the presence of sensory stimulation, thus creating
noise correlations in a deterministic neural network.

The development of a network model that can reproduce experimentally-observed activity patterns
through intrinsic variability alone is a major advance beyond previous models29-24.29.35  Networks
in the classical balanced state produce activity with zero mean pairwise correlations between
neurons?43335 and, thus, are not suitable to describe the population-wide fluctuations that are
observed in many brain states in vivo®. To obtain single neuron rate fluctuations in balanced
networks, structured connectivity has been used to create clustered networks?*. However, while
clustered networks do produce activity with positive correlations between a small fraction of neuron
pairs (less than 1 in 1000), the average noise correlations across all pairs are still near zero and,
thus, these networks are still unable to generate population-wide fluctuations.

We were able to overcome the limitations of previous models and generate intrinsic large-scale
variability that is quantitatively similar to that observed in vivo by using spike-frequency adapta-
tion currents in excitatory neurons, which have been well-documented experimentally>%>°. The
population-wide fluctuations generated by the interaction between recurrent excitation and adap-
tation were a robust feature of the network and persisted in more sophisticated networks that
included multiple conductance timescales, many more neurons, spiking inhibitory neurons, struc-
tured connectivity, and kurtotic distributions of synaptic efficacies (see Supplementary Figure 2).

Although several features of the model network are capable of controlling its intrinsic dynamics, our
analysis suggests that differences in feedback inhibition account for the differences in correlations
across our in vivo recordings. When we fit the model to each of our individual recordings, we found
that noise correlations, as well as stimulus selectivity and decoding accuracy, varied strongly with
the strength of inhibition in the network. We also found that the activity of putative inhibitory
neurons in our recordings was increased during periods of cortical desynchronization with weak
noise correlations. Taken together, these results suggest that the control of correlated variability
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by inhibition plays a critical role in modulating the impact of intrinsic cortical dynamics on sensory
responses.

Inhibition controls the strength of the large-scale fluctuations that drive noise correlations

Our results are consistent with experiments showing that one global dimension of variability largely
explains both the pairwise correlations between neurons® and the time course of population ac-
tivity22. In our network model, the coordinated, large-scale fluctuations that underlie this global
dimension of variability are generated primarily by the interaction between recurrent excitation and
adaptation. When inhibition is weak, small deviations from the mean spike rate can be amplified
by strong, non-specific, recurrent excitation into population-wide events (up states). These events
produce strong adaptation currents in each activated neuron, which, in turn, result in periods of
reduced spiking (down states)284445.60 The alternations between up states and down states have
an intrinsic periodicity given by the timescale of the adaptation currents, but the chaotic nature of
the network adds an apparent randomness to the timing of individual events, thus creating intrinsic
temporal variability.

The intrinsic temporal variability in the network imposes a history dependence on evoked re-
sponses; because of the build-up of adaptation currents during each spiking event, external inputs
arriving shortly after an up state will generally result in many fewer spikes than those arriving dur-
ing a down state?®. This history dependence creates a trial-to-trial variability in the total number
of stimulus-evoked spikes that is propagated and reinforced across consecutive stimulus presen-
tations to create noise correlations. However, when the strength of the inhibition in the network is
increased, the inhibitory feedback is able to suppress some of the amplification by the recurrent ex-
citation, and the transitions between clear up and down states are replaced by weaker fluctuations
of spike rate that vary more smoothly over time. If the strength of the inhibition is increased even
further, such that it becomes sufficient to counteract the effects of the recurrent excitation entirely,
then the large-scale fluctuations in the network disappear, weakening the history dependence of
evoked responses and eliminating noise correlations.

Strong inhibition sharpens tuning curves and enables accurate decoding by stabilizing
network dynamics

Numerous experiments have demonstrated that inhibition can shape the tuning curves of corti-
cal neurons, with stronger inhibition generally resulting in sharper tuning®'. The mechanisms
involved are still a subject of debate, but this sharpening is often thought to result from structured
connectivity that produces differences in the tuning of the excitatory and inhibitory synaptic inputs
to individual neurons; lateral inhibition, for example, can sharpen tuning when neurons with simi-
lar, but not identical, tuning properties inhibit each other. Our results, however, demonstrate that
strong inhibition can sharpen tuning in a network without any structured connectivity simply by
controlling its dynamics.
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In our model, broad tuning curves result from the over-excitability of the network. When inhibition
is weak, every external input will eventually excite every neuron in the network because those
neurons that receive the input directly will relay indirect excitation to the rest of the network. When
inhibition is strong, however, the indirect excitation is largely suppressed, allowing each neuron to
respond selectively to only those external inputs that it receives either directly or from one of the
few other neurons to which it is strongly coupled. Thus, when inhibition is weak and the network
is unstable, different external inputs will trigger similar population-wide events®?, so the selectivity
of the network in this regime is weak and its ability to encode differences between sensory stimuli
is poor. In contrast, when inhibition is strong and the network is stable, different external inputs
will reliably drive different subsets of neurons, and the activity patterns in the network will encode
different stimuli with high selectivity and enable accurate decoding.

Two different dynamical regimes with weak noise correlations

A number of studies have observed that the noise correlations in cortical networks can be ex-
tremely weak under certain conditions®73%83 |t was originally suggested that noise correlations
were weak because the network was in an asynchronous state in which neurons are continuously
depolarized with a resting potential close to the spiking threshold333%. Experimental support for
this classical asynchronous state has been provided by intracellular recordings showing that the
membrane potential of cortical neurons is increased during locomotion '® and hyper-arousal'?, re-
sulting in tonic spiking. However, other experiments have shown that the membrane potential of
cortical neurons in behaving animals can also be strongly hyperpolarized with clear fluctuations
between up and down states '9-64-66

These apparently conflicting results suggest that there may be multiple dynamical regimes in be-
having animals that are capable of producing weak noise correlations. There is mounting evidence
suggesting that different forms of arousal may have distinct effects on neural activity®”. While
most forms of arousal tend to reduce the power of low-frequency fluctuations in membrane po-
tential 196668 |ocomotion tends to cause a persistent depolarization of cortical neurons and drive
tonic spiking. In contrast, task-engagement in stationary animals is generally associated with hy-
perpolarization and suppression of activity 1%18:19.66.69  The existence of two different dynamical
regimes with weak noise correlations was also apparent in our recordings; while some record-
ings with weak noise correlations resembled the classical asynchronous state with spontaneous
activity consisting of strong, tonic spiking (e.g. desynchronized urethane recordings and some
awake recordings), other recordings with weak noise correlations exhibited a suppressed state
with relatively low spontaneous activity that contained clear, albeit weak, up and down states (e.g.
FMM recordings and other awake recordings). Our model was able to accurately reproduce spon-
taneous activity patterns and generate evoked responses with weak noise correlations in both of
these distinct regimes.

In addition to strong inhibition, the classical asynchronous state with strong, tonic spiking appears
to require a combination of weak adaptation and an increase in the number of neurons receiv-
ing strong tonic input (see parameter sweeps in Figures 2c-d and parameter values for awake
mouse V1 recordings in Supplementary Figure 4). Since large-scale fluctuations arise from the
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synchronization of adaptation currents across the population, reducing the strength of adaptation
diminishes the fluctuations?84560_ |ncreasing tonic input also diminishes large-scale fluctuations,
but in a different way**; when a subset of neurons receive increased tonic input, their adapta-
tion currents may no longer be sufficient to silence them for prolonged periods, and the activity
of these neurons during what would otherwise be a down state prevents the entire population
from synchronizing. When the network in the asynchronous state is driven by an external input,
it responds reliably and selectively to different inputs. Because the fluctuations in the network are
suppressed and its overall level of activity remains relatively constant, every input arrives with the
network in the same moderately-adapted state, so there is no history dependence to create noise
correlations in evoked responses.

Unlike in the classical asynchronous state, networks in the suppressed state have slow fluctuations
in their spontaneous activity, and the lack of noise correlations in their evoked responses is due
to different mechanisms (see parameter values for gerbil A1 FMM recordings in Supplementary
Figure 4). The fluctuations in the hyperpolarized network are only suppressed when the network
is driven by external input. In our model, this suppression of the correlated variability in evoked
responses is caused by the supralinearity of the feedback inhibition3°. The level of spontaneous
activity driven by the tonic input to each neuron results in feedback inhibition with a relatively
low gain, which is insufficient to suppress the fluctuations created by the interaction between
recurrent excitation and adaptation. However, when the network is strongly driven by external
input, the increased activity results in feedback inhibition with a much higher gain, which stabilizes
the network and allows it to respond reliably and selectively to different inputs. This increase
in the inhibitory gain of the driven network provides a possible mechanistic explanation for the
recent observation that the onset of a stimulus quenches variability’® and switches the cortex
from a synchronized to a desynchronized state®®, as well as the suppression of responses to
high-contrast stimuli in alert animals”".

Experimental evidence for inhibitory stabilization of cortical dynamics

The results of several previous experimental studies also support the idea that strong inhibition
can stabilize cortical networks and enhance sensory coding. In vitro studies have shown that
pharmacologically reducing inhibition increases the strength of the correlations between excitatory
neurons in a graded manner’2. In vivo whole-cell recordings in awake animals have demonstrated
that the stimulus-evoked inhibitory conductance is much larger than the corresponding excitatory
conductance*3. This strong inhibition in awake animals quickly shunts the excitatory drive and re-
sults in sharper tuning and sparser firing than the balanced excitatory and inhibitory conductances
observed under anesthesia. While some of the increased inhibition in awake animals may be due
to inputs from other brain areas’3, the increased activity of local inhibitory interneurons appears
to play an important role 87475 However, not all studies have observed increased inhibition in
behaving animals’®, and the effects of behavioral state on different inhibitory interneuron types
are still being investigated®677-78,

The effects of local inhibition on sensory coding have also been tested directly using optogenetics.
While the exact roles played by different inhibitory neuron types are still under investigation 7989,
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the activation of inhibitory interneurons generally results in sharper tuning, weaker correlations,
and enhanced behavioral performance*%8182 while suppression of inhibitory interneurons has
the opposite effect, decreasing the signal-to-noise ratio and reliability of evoked responses across
trials 883, These results demonstrate that increased inhibition enhances sensory processing and
are consistent with the overall suppression of cortical activity that is often observed during active
behaviors 1516:69.75 |n fact, one recent study found that the best performance in a detection task
was observed on trials in which the pre-stimulus membrane voltage was hyperpolarized and low-
frequency fluctuations were absent'®, consistent with a suppressed, inhibition-stabilized network
state.

Neuromodulators and inhibitory control of cortical dynamics

Neuromodulators can exert a strong influence on cortical dynamics by regulating the balance of ex-
citation and inhibition in the network. While the exact mechanisms by which neuromodulators con-
trol cortical dynamics are not clear, several lines of evidence suggest that neuromodulator release
serves to enhance sensory processing by increasing inhibition. Increases in acetylcholine (ACh)
and norepinephrine (NE) have been observed during wakefulness and arousal®, and during
periods of cortical desynchronization in which slow fluctuations in the LFP are suppressed®286.87
Stimulation of the basal forebrain has been shown to produce ACh-mediated increases in the
activity of FS neurons and decrease the variability of evoked responses in cortex8-88. In addi-
tion, optogenetic activation of cholinergic projections to cortex resulted in increased firing of SOM+
inhibitory neurons and reduced slow fluctuations®2. The release of NE in cortex through microdial-
ysis had similar effects, increasing fast-spiking activity and reducing spontaneous spike rates®’,
while blocking NE receptors strengthened slow fluctuations in membrane potential . More stud-
ies are needed to tease apart the effects of different neurotransmitters on pyramidal neurons and
interneurons®87:88  but most of the existing evidence is consistent with our results in suggest-
ing that neuromodulators can suppress intrinsic fluctuations and enhance sensory processing in
cortical networks by increasing inhibition.

Simulating the neocortical architecture

Recently, there have been major efforts toward constructing neural network simulations of in-
creasingly larger scale®® and biological fidelity®®. There are many biological sources of informa-
tion that can constrain the parameters of such large-scale simulations, including physiological®°,
anatomical®'23 and genetic®*9. However, while such complex simulations may be able to cap-
ture the relevant properties of a circuit and replicate features of its neural activity in detail, they
may not necessarily provide direct insight into the general mechanisms that underlie the circuit’s
function. Thus, a complementary stream of research is needed to seek minimal functional, yet
physiologically-based, models that are capable of reproducing relevant phenomena. The model
we have investigated here includes only a very restricted set of physiological properties, yet is
able to reproduce the full range of dynamics observed across different species, brain areas, and
behavioral states. This simple model provides a compact and intuitive description of the circuit
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mechanisms that are capable of coordinated dynamics in networks with intrinsic variability. We
have already shown that the same mechanisms can also control the dynamics of more complex
functional models, but further work is needed to develop methods to bridge the gap between func-
tional models and large-scale digital reconstructions.

Methods

All of the recordings analyzed in this study have been described previously. Only a brief summary
of the relevant experimental details are provided here. Each recording is considered as a single
sample point to which we fit our model. Thus, our sample size is 59. This is justified as sufficient
because our samples span multiple brain regions and multiple species, and may be considered
as representative activity for a range of different brain states. Due to the sample size, we used the
Spearman’s (non-parametric) rank correlation in most of our analyses.

Mouse V1

The experimental details for the mouse V1 recordings have been previously described®. The
recordings were performed on male and female mice older than 6-7 weeks, of C57BL/6J strain.
Mice were on 12 hours non-reversed light-dark regime. The mice were implanted with head plates
under anaesthesia. After head-plate implant each mouse was housed individually. After a few
days of recovery the mice were accustomed to having their head fixed while sitting or standing in a
custom built tube. On the day of the recording, the mice were briefly anaesthetised with isoflurane,
and a small craniectomy above V1 was made. Recordings were performed at least 1.5h after the
animals recovered from the anaesthesia. Buzsaki32 or A4x8 silicon probes were used to record
the spiking activity of populations of neurons in the infragranular layers of V1.

Visual stimuli were presented on two of the three available LCD monitors, positioned 25 cm
from the animal and covering a field of view of 120° x 60°, extending in front and to the right
of the animal. Visual stimuli consisted of multiple presentations of natural movie video clips. For
recordings of spontaneous activity, the monitors showed a uniform grey background.

Rat A1

The experimental procedures for the rat A1 recordings have been previously described®. Briefly,
head posts were implanted on the skull of male Sprague Dawley rats (300-500 g, normal light
cycle, regular housing conditions) under ketamine—xylazine anesthesia, and a hole was drilled
above the auditory cortex and covered with wax and dental acrylic. After recovery, each animal
was trained for 6-8 d to remain motionless in the restraining apparatus for increasing periods
(target, 1-2 h). On the day of the recording, each animal was briefly anesthetized with isoflurane
and the dura resected; after a 1 h recovery period, recording began. The recordings were made
from infragranular layers of auditory cortex with 32-channel silicon multi-tetrode arrays.

Sounds were delivered through a free-field speaker. As stimuli we used pure tones (3, 7, 12, 20,

or 30 kHz at 60 dB). Each stimulus had duration of 1s followed by 1s of silence. All procedures
conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.
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Gerbil A1

The gerbil A1 recordings have been described in detail previously’. Briefly, adult male gerbils
(70-90 g, P60-120, normal light-dark cycle, group housed) were anesthetized with one of three
different anesthetics: ketamine/xylazine (KX), fentanyl/medetomidine/midazolam (FMM), or ure-
thane. A small metal rod was mounted on the skull and used to secure the head of the animal
in a stereotaxic device in a sound-attenuated chamber. A craniotomy was made over the primary
auditory cortex, an incision was made in the dura mater, and a 32-channel silicon multi-tetrode
array was inserted into the brain. Only recordings from A1 were analyzed. Recordings were made
between 1 and 1.5 mm from the cortical surface (most likely in layer V). All gerbils were used in
this study, except for one gerbil under FMM which exhibited little to no firing over the recordings.

Sounds were delivered to speakers coupled to tubes inserted into both ear canals for diotic sound
presentation along with microphones for calibration. Repeated presentations of a 2.5 s segment
of human speech were presented at a peak intensity of 75 dB SPL. For analyses of responses to
different speech tokens, seven 0.25 s segments were extracted from the responses to each 2.5 s
segment.

Gerbil IC

The gerbil IC recordings have been described in detail previously®’. Recordings were made under
ketamine/xylazine anesthesia using a multi-tetrode array placed in the low-frequency laminae of
the central nucleus of the IC. Experimental details were otherwise identical to those for gerbil A1.
In addition to the human speech presented during the A1 recordings, tones with a duration of 75
ms and frequencies between 256 Hz and 8192 Hz were presented at intensities between 55 and
85 dB SPL with a 75 ms pause between each presentation.

All relevant data are available from the authors upon request.
Spiking network model

We developed a network model using conductance-based quadratic integrate and fire neurons.
There are three currents in the model: an excitatory, an inhibitory and an adaptation current. The
subthreshold membrane potential for a single neuron i obeys the equation

dv;
Tm gy = ~(Vi= Br)* (Vi = Vin) = 95,(Vi = Ep) = 91,(Vi = Er) = 94,(Vi = Ea).

When V' > V};,, a spike is recorded in the neuron and the neuron’s voltage is reset 10 V,cser =
0.9V4,. For simplicity, we set V;;, = 1 and the leak voltage F;, = 0. The excitatory voltage Ep =
2Vy, and Er = E4 = —0.5Vy,. Each of the conductances has a representative differential equation
which is dependent on the spiking of the neurons in the network at the previous time step, s;—1.
The excitatory conductance obeys

dgr

TEidt =—gp+Js;_1+b.
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where J is the matrix of excitatory connectivity and b is the vector of tonic inputs to the neurons.
The matrix of connectivity is random with a probability of 5% for the network of 512 neurons and
their connectivities are randomly chosen from a uniform distribution between 0 and wg. The tonic
inputs b have a minimum value by, which we call the tonic input baseline added to a random draw
from an exponential distribution with mean b;, which we call the tonic input spread, such that for
neuron i, b(i) = by + exprnd(b;). The inhibitory conductance obeys

d
TI% = —gr +wy * (exp(z st—1*xc)—1).

where ¢ controls the gain of the inhibitory conductance.

The adaptation conductance obeys

dga

TA? = —8A+ WASt_1.

The simulations are numerically computed using Euler's method with a time-step of 0.75 ms (this
was the lock-out window used for spike-sorting the in vivo recordings and allowed for fast simula-
tions). To avoid numerical instabilities at low voltages, we rectified the voltages at the activation
potential of the inhibitory conductance. Each parameter set was simulated for 900 seconds. The
timescales are setto 7,,, = 20 ms, 7z = 5.10 ms, 77 = 3.75 ms, 74 = 375 ms, and the inhibitory
non-linearity controlled by ¢ = 0.25. The remaining five parameters (w;, wa, wg, b1, and by) were
fit to the spontaneous activity from multi-neuron recordings using the techniques described below.
Their ranges were (0.01-0.4), (0.4-1.45), (2.50-5.00), (0.005-0.10), and (0.0001-0.05) respectively.

To illustrate the ability of the network to generate activity patterns with macroscopic variability, we
simulated spontaneous activity with a parameter set that produces up and down state dynamics.
Figure 2a shows the membrane potential of a single neuron in this simulation and its conductances
at each time step. Figure 2b shows the model run twice with the same set of initial conditions and
parameters, but with an additional single spike inserted into the network on the second run (circled
in green).

This code will be made available for use after publication.
Parameter sweep analysis

Figure 2c and d summarize the effects of changing each parameter on the structure of the spon-
taneous activity patterns generated by the model. We held the values for all but one parameter
fixed and swept the other parameter across a wide range of values. The fixed parameter values
were set to approximately the median values obtained from fits to all in vivo recordings. Figure
5b, d, and f and Supplementary Figure 6 show the results of similar parameter sweep analyses for
stimulus-driven activity with the external input to the network derived from IC activity as described
below. For these analyses, the values of the parameters that were not swept were fixed at those
fit to each individual recording.

GPU implementation
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We accelerated the network simulations by programming them on graphics processing units (GPUs)
such that we were able to run them at 650x real time with 15 networks running concurrently on

the same GPU. We were thus able to simulate ~10000 seconds of simulation time in 1 second of

real time. To achieve this acceleration, we took advantage of the large memory bandwidth of the

GPUs. For networks of 512 neurons, the state of the network (spikes, conductances and mem-

brane potentials) can be stored in the very fast ‘shared memory’ available on each multiprocessor

inside a GPU. A separate network was simulated on each of the 8 or 15 multiprocesssors available

(video cards were GTX 690 or Titan Black). Low-level CUDA code was interfaced with Matlab via

mex routines.

Summary statistics

Several statistics of spikes were used to summarize the activity patterns observed in the in vivo
recordings and in the network simulations. Because there were on the order of 50 neurons in each
recording, all of the statistics below were influenced by small sample effects. To replicate this bias
in the analysis of network simulations, we subsampled 50 neurons from the network randomly and
computed the same statistics we computed from the in vivo recordings.

The noise correlations between each pair of neurons in each recording were measured from re-
sponses to speech. The response of each neuron to each trial was represented as a binary vector
with 15 ms time bins. The total correlation for each pair of neurons was obtained by computing
the correlation coefficient between the actual responses. The signal correlation was computed
after shuffling the order of repeated trials for each time bin. The noise correlation was obtained by
subtracting the signal correlation from the total correlation.

The multi-unit activity (MUA) was computed as the sum of spikes in all neurons in bins of 15 ms.

The autocorrelation function of the MUA at time-lag = was computed from the formula

ACF(r) = —— %"

Nsamples

MUA(t) « MUA(t + 7)

To measure the autocorrelation timescale, we fit one side of the ACF with a parametric function
ACF(7) ~ aexp(—7/T) - COS(T/(Qﬂ'tperiod))

where « is an overall amplitude, 7" is a decay timescale and tperiog iS the oscillation period of the

autocorrelation function. There was not always a significant oscillatory component in the ACF,

but the timescale of decay accurately captured the duration over which the MUA was significantly
correlated.

Parameter searches

To find the best fit parameters for each individual recording, we tried to find the set of model
parameters for which the in vivo activity and the network simulations had the same statistics.
We measured goodness of fit for each of the three statistics: pairwise correlations, the MUA

27


https://doi.org/10.1101/041103
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041103; this version posted July 16, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

distribution, the MUA ACF. Each statistic was normalized appropriately to order 1, and the three
numbers obtained were averaged to obtain an overall goodness of fit.

The distance measure D. between the mean correlations ¢y obtained from a set of parameters 6
and the mean correlations ¢, in recording n was simply the squared error D.(c,, cg) = (¢ — cp)*.
This was normalized by the variance of the mean correlations across recordings to obtain the
normalized correlation cost Cost., where (z,),, is used to denote the average of a variable = over
recordings indexed by n.

Dc(cm CG)
(De(ens (en)))

The distance measure D,,, for the MUA distribution was the squared difference summed over the
order rank bins k of the distribution D,,,(MUA,,, MUAy) = Z(MUAn(k) — MUAy(k))?. This was

Cost, =

k
normalized by the distance between the data MUA and the mean data MUA. In other words, the
cost measures how much closer the simulation is to the data distribution than the average of all
data distributions.

Dy (MUA,,, MUA,)

Costn = 55, (MUA,,, (MUA,))

Finally, the distance measure D,, for the autocorrelation function of the MUA was the squared differ-
ence summed over time lag bins ¢ of the distribution D,(ACF,,, ACF,) = Z(ACFn(t) — ACFy(1))%

t
This was normalized by the distance between the data ACF and the mean data ACF.

_ D,(ACF,,ACFy)
~ D.(ACF,, (ACF,.))

Cost,

The total cost of parameters 6 on recording n is therefore Cost(n,6) = Cost. + Cost,, + Cost,.
Approximately one million networks were simulated on a grid of parameters for 600 seconds each
of spontaneous activity, and their summary statistics (cy, MUAy and ACFy) were retained. The
Cost was smoothed for each recording by averaging with the nearest 10 other simulations on the
grid. This ensured that some of the sampling noise was removed and parameters were estimated
more robustly. The best fit set of parameters was chosen as the minimizer of this smoothed cost
function, on a recording by recording basis.

Alternative Gibbs sampling parameter optimization

We also demonstrate an alternative approach to finding the best fitting parameters through a
sampling-based optimization procedure (Supplementary Figure 3). This reduces the necessary
number of simulations from 1 million to 100,000. Future work might in principle devise even faster
optimizations, thus allowing analysis on a bigger scale than presented here. Briefly, the sampling-
based optimization is based on defining the energy landscape as the negative of the cost function,
and thus defining a probability distribution over parameters P(0) = exp(—Cost(6)/T'), where T is
the “temperature”. We use a proposal distribution that always proposes neighbors of the current
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sample on the grid on which we did the full parameter sweeps, and accept the proposals according
to the balance equations of Markov Chain Monte Carlo sampling (MCMC):

P(enew)
P(enew) + P(Qold)
1
" 1+ exp(—(Cost(fnew) — Cost(6oq))/T)

prob(accept) =

To avoid the MCMC chains getting stuck into low probability parts of the energy landscape, we
restart the chain every 50 samples from the pool of already-sampled points, chosen with probability
proportional to its P(#). Furthermore, we allow the chain used to optimize the model parameters
for one recording to use information from the chains used for the other recordings by pooling
together the already-sampled points from all datasets and restarting chains based on all these
points.

NMDA and GABAg conductance network

We added long timescale excitatory and inhibitory conductances to the model and simulated the
model at multiple levels of inhibitory feedback strength. The strength of the NMDA conductance
was 4% the strength of the AMPA conductance and 7x;p4 = 100 ms (thus the integrated current
was approximately the same as the AMPA integrated current injection). The strength of the GABAg
conductance was 2% the strength of the GABA conductance and it had the same timescale as
NMDA. The parameter set used for Supplementary Figure 2a was 6 = (0.51, wy, 2.6, 0.008, 0.037),
where w; ranged from 0.02 to 0.25.

Clustered neuronal network with intrinsic variability and spiking inhibitory neurons

We also simulated a clustered architecture with variability and adaptation currents. This model
consisted of 144 clusters, each with 32 neurons, 8 of which were inhibitory neurons and 24 of
which were excitatory neurons. The probability of within cluster excitatory-excitatory (E-E) con-
nectivity was 0.3, and within cluster inhibitory-excitatory (I-E) and excitatory-inhibitory (E-l) were
0.15 and 0.1 respectively. The probability of out of cluster E-E, I-E, and E-l connectivity were
0.012, 0.03, and 0.01 respectively. The inhibitory-inhibitory connectivity was unclustered. The
probability of connection was 0.01 and its strength was 0.17. The average connection strengths
for E-E and I-E were 0.024 and 0.016 respectively. The E-I strength in Supplementary Figure 2b
ranged from 0.025 to 0.057. The adaptation current had strength 0.45 and 74 = 220 ms. The
membrane timescale for excitatory and inhibitory neurons were 25 ms and 5 ms respectively, and
Tp =6 msand 77 =3 ms.

Stimulus-driven activity

Once the simulated networks were fit to the spontaneous neuronal activity, we drove them with
an external input to study their evoked responses. The stimulus was either human speech (as
presented during our gerbil A1 recordings) or pure tones. The external input to the network was
constructed using recordings from 563 neurons from the inferior colliculus (IC). For all recordings
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in the IC the mean pairwise noise correlations were near-zero and the Fano Factors of individual
neurons were close to 197, suggesting that responses of IC neurons on a trial-by-trial basis are fully
determined by the stimulus alone, up to Poisson-like variability. Thus, we averaged the responses
of IC neurons over trials and drove the cortical network with this trial-averaged IC activity. We
binned IC neurons by their preferred frequency in response to pure tones, and drove each model
cortical neuron with a randomly chosen subset of 10 neurons from the same preferred-frequency
bin. We rescaled the IC activity so that the input to the network had a mean value of 0.06 and a
maximum value of 0.32, which was three times greater than the average tonic input.

We kept the model parameters fixed at the values fit to spontaneous activity and drove the network
with 330 repeated presentations of the stimulus. We then calculated the statistics of the evoked
activity. Noise correlations were measured in 15-ms bins as the residual correlations left after
subtracting the mean response of each neuron to the stimulus across trials:

1
Namples Zt:(si(t)_ < sil) >)(s(t) = < s5(1) >)

Cij =
where s;(t) is the summed spikes of neuron i in a 15-ms bin and < s;(¢) > is the mean response
of neuron i to the stimulus. The noise correlation value given for each recording is the mean of ¢;;.

Tuning width

To determine tuning width to sound frequency, we used responses of IC neurons to single tones as
inputs to the model network. The connections from IC to the network were the same as described
in the previous section. Because the connectivity was tonotopic and IC responses are strongly
frequency tuned, the neurons in the model network inherited the frequency tuning. We did not
model the degree of tonotopic fan-out of connections from IC to cortex and, as a result, the tuning
curves of the model neurons were narrow relative to those observed in cortical recordings’. We
chose the full width of the tuning curve at half-max as a standard measure of tuning width.

Decoding tasks

We computed decoding error for a classification task in which the single-trial activity of all model
neurons was used to infer which of seven different speech tokens was presented. The classifier
was built on training data using a linear discriminant formulation in which the Gaussian noise term
was replaced by Poisson likelihoods. Specifically, the activity of a neuron for each 15-ms bin during
the response to each token was fit as a Poisson distribution with the empirically-observed mean.
To decode the response to a test trial, the likelihood of each candidate token was computed and the
token with the highest likelihood was assigned as the decoded class. This classifier was chosen
because it is very fast and can be used to model Poisson-like variables, but we also verified that it
produced decoding performance as good as or better than classical high-performance classifiers
like support vector machines.

Classifying FS and RS neurons

We classified fast-spiking and regular-spiking neurons based on their spike shape®. We deter-
mined the trough-to-peak time of the mean spike waveform after smoothing with a gaussian kernel
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of o = 0.5 samples. The distribution of the trough-to-peak time = was clearly bimodal in all types
of recordings. Following® we classified FS neurons in the awake data with 7 < 0.6ms and RS
neurons with 7 > 0.8ms. The distributions of 7 in the anesthetized data, although bimodal, did not
have a clear separation point, so we conservatively required = < 0.4ms to classify an FS cell in
these recordings and = > 0.65ms to classify RS neurons (see Supplementary Figure 7). The rest
of the neurons were not considered for the plots in Figures 7 and 8 and are shown in gray on the
histogram in Supplementary Figure 7.

Although one recent study has raised doubts on the accuracy of spike-width based classification%,
a large number of other studies have shown 90-100% classification accuracy of FS neurons as PV-
positive interneurons , and even®8 show that the classification is near-perfect using other features
of the spike waveform. We propose that the difference arises due to different properties of the
bandpass filters used in these studies, and we show that in our datasets, trough-to-peak duration
of the raw waveform is a highly bimodal distribution in all cases (see Supplementary Figure 7),
unlike the distributions shown in%8.

Local field potential

The low-frequency potential (LFP) was computed by low-pass filtering the raw signal with a cutoff
of 300 Hz. Spectrograms with adaptive time-frequency resolution were obtained by filtering the
LFP with Hamming-windowed sine and cosine waves and the spectral power was estimated as
the sum of their squared amplitudes. The length of the Hamming-window was designed to include
two full periods of the sine and cosine function at the respective frequency, except for frequencies
of 1 Hz and above 30 Hz, where the window length was clipped to a single period of the sine
function at 1 Hz and two periods of the sine function at 30 Hz respectively. The synchrony level
was measured as the log of the ratio of the low to high frequency power (respective bands: 3-10
Hz and 11-96 Hz, excluding 45-55 Hz to avoid the line noise). We did not observe significant
gamma power peaks except for the line noise, in either the awake or anesthetized recordings.

Dividing trials by synchrony

We computed a synchrony value for each trial in the 500-ms window following stimulus onset.
For urethane recordings, the values had a clear bimodal distribution and we separated the top
and bottom of these distributions into synchronized and desynchronized trials respectively. For
awake recordings, the synchrony index was not clearly bimodal, but varied across a continuum of
relatively synchronized and desynchronized states. To examine the effect of synchrony on noise
correlations, we sorted all trials by their synchrony value, classified the 50% of trials with the lowest
values as desynchronized and the 50% of trials with the highest values as synchronized, and
computed the noise correlations for each set of trials for each recording. To examine the effect of
synchrony on FS and RS activity, we pooled all trials from all recordings, divided them into quintiles
by their synchrony value, and computed the average spike rates of FS and RS neurons for each
set of trials. For Figures 6 and 7, noise correlations were computed aligned to the stimulus onsets
in windows of 500ms, to match the window used for measuring FS and RS activity as well as LFP
power.
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