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SUMMARY

Cortical networks exhibit intrinsic dynamics that drive coordinated, large-scale fluctuations across neuronal

populations and create noise correlations that impact sensory coding. To investigate the network-level

mechanisms that underlie these dynamics, we developed novel computational techniques to fit a determin-

istic spiking network model directly to multi-neuron recordings from different species, sensory modalities,

and behavioral states. The model accurately reproduced the wide variety of activity patterns in our record-

ings, and analysis of its parameters suggested that differences in noise correlations across recordings were

due primarily to differences in the strength of feedback inhibition. Further analysis of our recordings con-

firmed that putative inhibitory interneurons were indeed more active during desynchronized cortical states

with weak noise correlations. Our results demonstrate the power of fitting spiking network models directly to

multi-neuron recordings and suggest that inhibition modulates the interactions between intrinsic dynamics

and sensory inputs by controlling network stability.
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INTRODUCTION

The patterns of cortical activity evoked by sensory stimuli provide the internal representation of the outside

world that underlies perception. However, these patterns are driven not only by sensory inputs, but also

by the intrinsic dynamics of the underlying cortical network. These dynamics can create correlations in the

activity of neuronal populations with important consequences for coding and computation [Shadlen et al.,

1996, Abbott and Dayan, 1999]. The correlations between pairs of neurons have been studied extensively

[Cohen and Kohn, 2011, Ecker et al., 2010, Averbeck et al., 2006] and substantial effort has been directed

toward understanding their origin [Renart et al., 2010]. Recent studies have demonstrated that correlations

are driven by dynamics involving coordinated, large-scale fluctuations in the activity of many neurons [Sakata

and Harris, 2009, Pachitariu et al., 2015, Okun et al., 2015] and, importantly, that the nature of these

dynamics and the correlations that they create are dependent on the state of the underlying network; it

has been shown that various factors modulate the strength of correlations, such as anaesthesia [Harris and

Thiele, 2011, Schölvinck et al., 2015, Constantinople and Bruno, 2011], attention [Cohen and Maunsell,

2009, Mitchell et al., 2009, Buran et al., 2014], locomotion [Schneider et al., 2014, Erisken et al., 2014], and

alertness [Vinck et al., 2015, McGinley et al., 2015a]. In light of these findings, it is critical that we develop a

deeper understanding of the origin and consequences of correlations at the biophysical network level.

In this study, we use a large number of multi-neuron recordings and a model-based analysis to investigate

the mechanisms that control noise correlations, a manifestation of intrinsic dynamics during sensory pro-

cessing in which the variability in responses to identical stimuli is shared between neurons. For our results to

provide direct insights into physiological mechanisms, we required a model with several properties: (1) the

model must be able to internally generate the complex intrinsic dynamics of cortical networks, (2) it must be

possible to fit the model parameters directly to spiking activity from individual multi-neuron recordings, and

(3) the model must be biophysically interpretable and enable predictions that can be tested experimentally.

Thus far, the only network models that have been fit directly to multi-neuron recordings have relied on either
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abstract dynamical systems [Curto et al., 2009] or probabilistic frameworks in which variability is modelled

as stochastic and correlated variability arises through abstract latent variables whose origin is assumed to

lie either in unspecified circuit processes [Ecker et al., 2014, Macke et al., 2011, Pachitariu et al., 2013] or

elsewhere in the brain [Goris et al., 2014, de la Rocha et al., 2007]. While these models are able to accu-

rately reproduce many features of cortical activity and provide valuable summaries of the phenomenological

and computational properties of cortical networks, their parameters are difficult to interpret at a biophysical

level.

One alternative to these abstract stochastic models is a biophysical spiking network, which can generate

variable neural activity through chaotic amplification of different initial conditions [van Vreeswijk and Som-

polinsky, 1996, Amit and Brunel, 1997, Renart et al., 2010, Litwin-Kumar and Doiron, 2012, Wolf et al.,

2014]. These networks can be designed to have interpretable parameters, but have not yet been fit directly

to multi-neuron recordings and, thus, their use has been limited to attempts to explain qualitative features

of cortical dynamics through manual tuning of network parameters. This approach has revealed a num-

ber of different network features that are capable of controlling dynamics, such as clustered connectivity

[Litwin-Kumar and Doiron, 2012], synaptic coupling strength [Ostojic, 2014], or adaptation currents [Latham

et al., 2000, Destexhe, 2009], but the inability to fit the networks directly to recordings has made it difficult to

identify which network features play an important role in vivo. To overcome this limitation, we used a novel

computational approach that allowed us to fit a spiking network directly to individual multi-neuron record-

ings. By taking advantage of the computational power of graphics processing units (GPUs), we were able

to sample from the network with millions of different parameter values to find those that best reproduced the

activity in a given recording.

We developed a biophysical spiking network with intrinsic variability and a small number of parameters

that was able to capture the apparently doubly chaotic structure of cortical activity [Churchland and Abbott,

2012]. Like classical excitatory-inhibitory networks, the model generates deterministic microscopic trial-to-

trial variability in the spike times of individual neurons [van Vreeswijk and Sompolinsky, 1996], as well as
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macroscopic variability in the form of coordinated, large-scale fluctuations that are shared across neurons.

Because these fluctuations are of variable duration, arise at random times, and do not necessarily phase-

lock to external input, they create noise correlations in evoked responses.

To gain insight into the mechanisms that control noise correlations in vivo, we took the following approach:

(1) we assembled multi-neuron recordings from different species, sensory modalities, and behavioral states

to obtain a representative sample of cortical dynamics; (2) we generated activity from the network model to

understand how each of its parameters controls its dynamics, and we verified that it was able to produce

a variety of spike patterns that were qualitatively similar to those observed in vivo; (3) we fit the model

network directly to the spontaneous activity in each of our recordings, and we verified that the spike patterns

generated by the network quantitatively matched those in each recording; (4) we examined responses to

sensory stimuli to determine which of the model parameters could account for the differences in noise

correlations across recordings – the results of this analysis identified the strength of feedback inhibition as a

key parameter and predicted that the activity of inhibitory interneurons should vary inversely with the strength

of noise correlations; (5) we confirmed this prediction through additional analysis of our recordings showing

that the activity of fast-spiking (FS) neurons is increased during periods of cortical desynchronization with

weak noise correlations in both awake and anesthetized animals. Our results suggest that weak inhibition

allows activity to be dominated by coordinated, large-scale fluctuations that cause the state of the network

to vary over time and, thus, create variability in the responses to successive stimuli that is correlated across

neurons. In contrast, when inhibition is strong, these fluctuations are suppressed and the network state

remains constant over time, allowing the network to respond reliably to successive stimuli and eliminating

noise correlations.
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RESULTS

Cortical networks exhibit a wide variety of intrinsic dynamics

To obtain a representative sample of cortical activity patterns, we collected multi-neuron recordings from

different species (mouse, gerbil, or rat), sensory modalities (A1 or V1), and behavioral states (awake or

under one of several anesthetic agents). We compiled recordings from a total of 59 multi-neuron populations

across 6 unique recording types (i.e. species/modality/state combinations; Table S1). The spontaneous

activity in different recordings exhibited striking differences not only in overall activity level, but also in the

spatial and temporal structure of activity patterns; while concerted, large-scale fluctuations were prominent

in some recordings, they were nearly absent in others (Figure 1A). In general, large-scale fluctuations were

weak in awake animals and strong under anesthesia, but this was not always the case (see further examples

in Figure 3 and summary statistics for each recording in Figure S1).

The magnitude and frequency of the large-scale fluctuations in each recording were reflected in the auto-

correlation function of the multi-unit activity (MUA, the summed spiking of all neurons in the population in

15 ms time bins). The autocorrelation function of the MUA decayed quickly to zero for recordings with weak

large-scale fluctuations, but had oscillations that decayed slowly for recordings with stronger fluctuations

(Figure 1B). The activity patterns in recordings with strong large-scale fluctuations were characterized by

clear transitions between up states, where most of the population was active, and down states, where the

entire population was silent. These up and down state dynamics were reflected in the distribution of the

MUA across time bins; recordings with strong large-scale fluctuations had a large percentage of time bins

with zero spikes (Figure 1C).

To summarize the statistical structure of the activity patterns in each recording, we measured four quantities.

We used mean spike rate to describe the overall level of activity, mean pairwise correlations to describe the

spatial structure of the activity patterns, and two different measures to describe the temporal structure of the
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activity patterns – the decay time of the autocorrelation function of the MUA, and the percentage of MUA

time bins with zero spikes. While there were some dependencies in the values of these quantities across

different recordings (Figure 1D), there was also considerable scatter both within and across recording types.

This scatter suggests that there is no single dimension in the space of cortical dynamics along which the

overall level of activity and the spatial and temporal structure of the activity patterns all covary, but rather

that cortical dynamics span a multi-dimensional continuum [Harris and Thiele, 2011]. This was confirmed

by principal component analysis; even in the already reduced space described by our summary statistics,

three principal components were required to account for the differences in spike patterns across recordings

(Figure 1E).

A deterministic spiking network model of cortical activity

To investigate the network-level mechanisms that control cortical dynamics, we developed a biophysically-

interpretable model that was capable of reproducing the wide range of activity patterns observed in vivo.

We constructed a minimal deterministic network of excitatory spiking integrate-and-fire neurons with non-

selective feedback inhibition and single-neuron adaptation currents (Figure 2A). Each neuron receives con-

stant tonic input, and the neurons are connected randomly and sparsely with 5% probability. The neurons

are also coupled indirectly through global, supralinear inhibitory feedback driven by the spiking of the en-

tire network [Rubin et al., 2015], reflecting the near-complete interconnectivity between pyramidal neurons

and interneurons in local populations [Hofer et al., 2011, Fino and Yuste, 2011, Packer and Yuste, 2011].

The supralinearity of the inhibitory feedback is a critical feature of the network, as it shifts the balance of

excitation and inhibition in favor of inhibition when the network is strongly driven [Haider et al., 2013].

The model has five free parameters: three controlling the average strength of excitatory connectivity, the

strength of inhibitory feedback, and the strength of adaptation, respectively, and two controlling the strength

of the tonic input to each neuron, which is chosen from an exponential distribution. The timescales that

control the decay of the excitatory, inhibitory and adaptation currents are fixed at 5 ms, 3.75 ms and 375
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ms, respectively. Note that no external noise input is required to generate variable activity; population-wide

fluctuations over hundreds of milliseconds are generated when the slow adaptation currents synchronize

across neurons to maintain a similar state of adaptation throughout the entire network, which, in turn, results

in coordinated spiking [Latham et al., 2000, Destexhe, 2009].

The variability in the model arises through chaotic amplification of small changes in initial conditions or small

perturbations to the network that cause independent simulations to diverge. In some parameter regimes, the

instability of the network is such that the structure of the spike patterns generated by the model is sensitive

to changes in the spike times of individual neurons. In fact, a single spike added randomly to a single

neuron during simulated activity is capable of changing the time course of large-scale fluctuations, in some

cases triggering immediate population-wide spiking (Figure 2B, top rows). Similar phenomena have been

observed in vivo previously [London et al., 2010] and were also evident in our recordings when comparing

different extracts of cortical activity; spike patterns that were similar for several seconds often then began to

diverge almost immediately (Figure 2B, bottom rows).

Multiple features of the network model can control its dynamics

The dynamical regime of the network model is determined by the interactions between its different features.

To determine the degree to which each feature of the network was capable of influencing the structure of its

activity patterns, we analyzed the effects of varying the value of each model parameter. We started from a

fixed set of parameter values and simulated activity while independently sweeping each parameter across

a wide range of values. The results of these parameter sweeps clearly demonstrate that each of the five

parameters can exert strong control over the dynamics of the network, as both the overall level of activity

and the spatial and temporal structure of the patterns in simulated activity varied widely with changes in

each parameter (Figure 2C-D).

With the set of fixed parameter values used for the parameter sweeps, the network is in a regime with slow,
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ongoing fluctuations between up and down states. In this regime, the amplification of a small perturbation

results in a sustained, prolonged burst of activity (up state), which, in turn, drives a build-up of adaptation

currents that ultimately silences the network for hundreds of milliseconds (down state) until the cycle repeats.

These fluctuations can be suppressed by an increase in the strength of feedback inhibition, which eliminates

slow fluctuations and shifts the network into a regime with weak, tonic spiking and weak correlations (Figure

2C-D, first column); in this regime, small perturbations are immediately offset by the strong inhibition and

activity is returned to baseline [Renart et al., 2010]. The fluctuations between up and down states can

also be suppressed by decreasing adaptation (Figure 2C-D, second column); without adaptation currents to

create slow, synchronous fluctuations across the network, neurons exhibit strong, tonic spiking.

The dynamics of the network can also be influenced by changes in the strength of the recurrent excitation

or tonic input. Increasing the strength of excitation results in increased activity and stronger fluctuations, as

inhibition is unable to compensate for the increased amplification of small perturbations (Figure 2C-D, third

column). Increasing the spread or baseline level of tonic input also results in increased activity, but with

suppression, rather than enhancement, of slow fluctuations (Figure 2C-D, fourth and fifth column). As either

the spread or baseline level of tonic input is increased, more neurons begin to receive tonic input that is

sufficient to overcome their adaptation current and, thus, begin to quickly reinitiate up states after only brief

down states and, eventually, transition to tonic spiking.

The network model reproduces the dynamics observed in vivo

The network simulations demonstrate that each of its features is capable of controlling its dynamics and

shaping the structure of its activity patterns. To gain insight into the mechanisms that may be responsible

for creating the differences in dynamics observed in vivo, we fit the model to each of our recordings. We

optimized the model parameters so that the patterns of activity generated by the network matched those

observed in spontaneous activity (Figure 3A). We measured the agreement between the simulated and

recorded activity by a cost function which was the sum of discrepancies in the autocorrelation function of the
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MUA, the distribution of MUA values across time bins, and the mean pairwise correlations. Together, these

statistics describe the overall level of activity in each recording, as well as the spatial and temporal structure

of its activity patterns.

Fitting the model to the recordings required us to develop new computational techniques. The network

parametrization is fundamentally nonlinear, and the statistics used in the cost function are themselves non-

linear functions of a dynamical system with discontinuous integrate-and-fire mechanisms. Thus, as no

gradient information was available to guide the optimization, we used Monte Carlo simulations to generate

activity and measure the relevant statistics with different parameter values. By using GPU computing re-

sources, we were able to design and implement network simulations that ran 10000x faster than real time,

making it feasible to sample the cost function with high resolution and locate its global minimum to identify

the parameter configuration that resulted in activity patterns that best matched those of each recording.

The model was flexible enough to capture the wide variety of activity patterns observed across our record-

ings, producing both decorrelated, tonic spiking and coordinated, large-scale fluctuations between up and

down states as needed (see examples in Figure 3B, statistics for all recordings and models in Figure S1,

and parameter values and goodness-of-fit measures for all recordings in Figure S2). Because we used a

cost function that captured many different properties of the recorded activity while fitting only a very small

number of model parameters, the risk of network degeneracies was relatively low [Marder et al., 2015].

Nonetheless, we also confirmed that analysis of model parameters corresponding to local minima of the

cost function did not lead to a different interpretation of our results (see Figure S3).

Strong inhibition suppresses noise correlations

Our main interest was in understanding how the different network-level mechanisms that are capable of

controlling intrinsic dynamics contribute to the correlated variability in responses evoked by sensory stimuli.

The wide variety of intrinsic dynamics in our recordings was reflected in the differences in evoked responses
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across recording types; while some recordings contained strong, reliable responses to the onset of a stim-

ulus, other recordings contained responses that were highly variable across trials (Figure 4A). There were

also large differences in the extent to which the variability in evoked responses was correlated across the

neurons in each recording; pairwise noise correlations were large in some recordings and extremely weak

in others, even when firing rates were similar (Figure 4B).

Because evoked spike patterns can depend strongly on the specifics of the sensory stimulus, we could

not make direct comparisons between experimental responses across different species and modalities; our

goal was to identify the internal mechanisms that are responsible for the differences in noise correlations

across recordings and, thus, any differences in spike patterns due to differences in external input would

confound our analysis. To overcome this confound and enable the comparison of noise correlations across

recording types, we simulated the response of the network to the same external input for all recordings. We

constructed the external input using recordings of spiking activity from the inferior colliculus (IC), a primary

relay nucleus in the subcortical auditory pathway (Figure 4C-D). Using the subset of our cortical recordings

in which we presented the same sounds that were also presented during the IC recordings, we verified that

the noise correlations in the simulated cortical responses were similar to those in the recordings (Figures

4E).

The parameter sweeps described in Figure 2 demonstrated that there are multiple features of the model

network that can control its intrinsic dynamics, and a similar analysis of the noise correlations in simulated

responses to external input produced similar results (Figure S3).To gain insight into which of these features

could account for the differences in noise correlations across our recordings, we examined the dependence

of the strength of the noise correlations in each recording on each of the model parameters. While several

parameters were able to explain a significant amount of the variance in noise correlations across recordings,

the amount of variance explained by the strength of inhibitory feedback was by far the largest (Figure 5A).

The predominance of inhibition in the control of noise correlations was confirmed by the measurement

of partial correlations (the correlation between the noise correlations and each parameter that remains
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after factoring out the influence of the other parameters; partial r2 for inhibition: 0.67, excitation: 0.02,

adaptation: 0.08, tonic input spread: 0.17, and tonic input baseline: 0.04). We also performed parameter

sweeps to confirm that varying only the strength of inhibition was sufficient to result in large changes in noise

correlations in the parameter regime of each recording (Figure 5B).

Strong inhibition sharpens tuning and enables accurate decoding

We also examined how different features of the network controlled other aspects of evoked responses. We

began by examining the extent to which differences in the value of each model parameter could explain

differences in stimulus selectivity across recordings. To estimate selectivity, we drove the model network

that was fit to each cortical recording with external inputs constructed from IC responses to tones, and

used the simulated responses to measure the width of the frequency tuning curves of each model neuron.

Although each model network received the same external inputs, the selectivity of the neurons in the different

networks varied widely. The average tuning width of the neurons in each network varied most strongly with

the strength of the inhibitory feedback in the network (Figure 5C; partial r2 for inhibition: 0.74, excitation:

0.06, adaptation: 0.48, tonic input spread: 0.01, and tonic input baseline: 0.37), and varying the strength of

inhibition alone was sufficient to drive large changes in tuning width (Figure 5D). These results are consistent

with experiments demonstrating that inhibition can control the selectivity of cortical neurons [Lee et al.,

2012], but suggest that this control does not require structured lateral inhibition.

We also investigated the degree to which the activity patterns generated by the model fit to each corti-

cal recording could be used to discriminate different external inputs. We trained a decoder to infer which

of seven possible stimuli evoked a given single-trial activity pattern and examined the extent to which dif-

ferences in the value of each model parameter could account for the differences in decoder performance

across recordings. Again, the amount of variance explained by the strength of inhibitory feedback was by far

the largest (Figure 5E; partial r2 for inhibition: 0.5, excitation: 0.16, adaptation 0.27, tonic input spread 0.02,

and tonic input baseline 0.03); decoding was most accurate for activity patterns generated by networks with
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strong inhibition, consistent with the weak noise correlations and high selectivity of these networks. Param-

eter sweeps confirmed that varying only the strength of inhibition was sufficient to result in large changes in

decoder performance (Figure 5F).

Activity of fast-spiking (FS) neurons is increased during periods of cortical desynchronization with

weak noise correlations

Our model-based analyses suggest an important role for feedback inhibition in controlling the way in which

responses to sensory inputs are shaped by intrinsic dynamics. In particular, our results predict that inhibition

should be strong in dynamical regimes with weak noise correlations. To test this prediction, we performed

further analysis of our recordings to estimate the strength of inhibition in each recorded population. We

classified the neurons in each recording based on the width of their spike waveforms (Figure S5); the

waveforms fell into two distinct clusters, allowing us to separate fast-spiking (FS) neurons, which are mostly

parvalbumin-positive (PV+) inhibitory interneurons, from regular-spiking (RS) neurons, which are mostly

excitatory pyramidal neurons [Kawaguchi and Kubota, 1997, Barthó et al., 2004, Povysheva et al., 2008, Cho

et al., 2010, Madisen et al., 2012, Roux and Buzsáki, 2015, Cardin et al., 2009].

Given the results of our model-based analyses, we hypothesized that the overall level of activity of FS

neurons should vary inversely with the strength of noise correlations. To identify sets of trials in each

recording that were likely to have either strong or weak noise correlations, we measured the level of cortical

synchronization. Previous studies have shown that noise correlations are strong when the cortex is in

a synchronized state, where activity is dominated by concerted, large-scale fluctuations, and weak when

the cortex is in a desynchronized state, where these fluctuations are suppressed [Pachitariu et al., 2015,

Schölvinck et al., 2015].

We began by analyzing our recordings from V1 of awake mice. We classified the cortical state during each

stimulus presentation based on the ratio of low-frequency LFP power to high-frequency LFP power [Sakata

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/041103doi: bioRxiv preprint 

https://doi.org/10.1101/041103


and Harris, 2012] and compared evoked responses across the most synchronized and desynchronized

subsets of trials (Figure 6A). As expected, noise correlations were generally stronger during synchronized

trials than during desynchronized trials, and this variation in noise correlations with cortical synchrony was

evident both within individual recordings and across animals (Figure 6B-C). As predicted by our model-

based analyses, the change in noise correlations with cortical synchrony was accompanied by a change in

FS activity; there was a four-fold increase in the mean spike rate of FS neurons from the most synchronized

trials to the most desynchronized trials, while RS activity remained constant (Figure 6D-F).

We next examined our recordings from gerbil A1 under urethane in which the cortex exhibited transitions

between distinct, sustained synchronized and desynchronized states (Figure 6G). As in our awake record-

ings, cortical desynchronization under urethane was accompanied by a decrease in noise correlations and

an increase in FS activity (Figures 6H-K). In fact, both FS and RS activity increased with cortical desynchro-

nization under urethane, but the increase in FS activity was much larger.

Finally, we examined our remaining recordings from gerbil A1 under either ketamine/xylazine (KX) or fen-

tanyl/medetomidine/midazolam (FMM) anesthesia. In these recordings, the cortex did not transition between

different dynamical regimes, so we could not track changes in noise correlations and FS activity within in-

dividual recordings. However, recordings under KX and FMM exhibited stable states with strong and weak

noise correlations respectively [Pachitariu et al., 2015] (Figure 7A), so we were able to make comparisons

across recordings. Noise correlations under FMM were extremely weak, while those under KX were the

largest in any of our recordings, so we expected FS activity under FMM to be much higher than that under

KX. Surprisingly, our initial analysis suggested the opposite; the average spike rate of FS neurons under

KX was larger than that under FMM (Figure 7B). Further analysis revealed, however, that there were many

fewer FS neurons in our KX recordings than in our FMM recordings (Figure 7C), and this effect was most

pronounced for FS neurons with low spike rates (Figure 7D). The low number of FS neurons in our KX

recordings suggests that many FS neurons become completely silent under KX (all recordings were made

in the same region of gerbil A1 with the same multi-tetrode arrays, so a similar number of FS neurons should
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be expected). When we measured FS activity as the sum of all spiking in each recording rather than the

average spike rate of each neuron, the amount of FS activity was indeed much larger under FMM than

under KX, consistent with our observations in other recording types and the predictions of our model-based

analyses (Figure 7E-F).

DISCUSSION

We have shown that a deterministic spiking network model is capable of reproducing the wide variety of

multi-neuron cortical activity patterns observed in vivo. Through chaotic amplification of small perturbations,

the model generates activity with both trial-to-trial variability in the spike times of individual neurons and

coordinated, large-scale fluctuations of the entire network. Although several features of the model network

are capable of controlling its intrinsic dynamics, our analysis suggests that the differences in the correlated

variability in evoked responses across our in vivo recordings can be accounted for by differences in feedback

inhibition. When we fit the model to each of our individual recordings, we found that noise correlations, as

well as stimulus selectivity and decoding accuracy, varied strongly with the strength of inhibition in the

network. We also found that the activity of fast-spiking neurons in our recordings was increased during

periods of cortical desynchronization with weak noise correlations. Taken together, these results suggest

that the control of network stability by inhibition plays a critical role in modulating the impact of intrinsic

cortical dynamics on sensory responses.

Inhibition controls the strength of the large-scale fluctuations that drive noise correlations

Our results are consistent with experiments showing that one global dimension of variability largely explains

both the pairwise correlations between neurons [Okun et al., 2015] and the time course of population ac-

tivity [Ecker et al., 2014]. In our network model, the coordinated, large-scale fluctuations that underlie this

global dimension of variability are generated primarily by the interaction between recurrent excitation and
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adaptation. When inhibition is weak, small deviations from the mean spike rate can be amplified by strong,

non-specific, recurrent excitation into population-wide events (up states). These events produce strong

adaptation currents in each activated neuron, which, in turn, result in periods of reduced spiking (down

states) [Latham et al., 2000, Destexhe, 2009, Curto et al., 2009, Mochol et al., 2015]. The alternations

between up states and down states have an intrinsic periodicity given by the timescale of the adaptation

currents, but the chaotic nature of the network adds an apparent randomness to the timing of individual

events, thus creating intrinsic temporal variability.

The intrinsic temporal variability in the network imposes a history dependence on evoked responses; be-

cause of the build-up of adaptation currents during each spiking event, external inputs arriving shortly after

an up state will generally result in many fewer spikes than those arriving during a down state [Curto et al.,

2009]. This history dependence creates a trial-to-trial variability in the total number of stimulus-evoked

spikes that is propagated and reinforced across consecutive stimulus presentations to create noise corre-

lations. However, when the strength of the inhibition in the network is increased, the inhibitory feedback is

able to suppress some of the amplification by the recurrent excitation, and the transitions between clear up

and down states are replaced by weaker fluctuations of spike rate that vary more smoothly over time. If the

strength of the inhibition is increased even further, such that it becomes sufficient to counteract the effects

of the recurrent excitation entirely, then the large-scale fluctuations in the network disappear, weakening the

history dependence of evoked responses and eliminating noise correlations.

Strong inhibition sharpens tuning curves and enables accurate decoding by stabilizing network

dynamics

Numerous experiments have demonstrated that inhibition can shape the tuning curves of cortical neurons,

with stronger inhibition generally resulting in sharper tuning [Isaacson and Scanziani, 2011]. The mecha-

nisms involved are still a subject of debate, but this sharpening is often thought to result from structured

connectivity that produces differences in the tuning of the excitatory and inhibitory synaptic inputs to individ-
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ual neurons; lateral inhibition, for example, can sharpen tuning when neurons with similar, but not identical,

tuning properties inhibit each other. Our results, however, demonstrate that strong inhibition can sharpen

tuning in a network without any structured connectivity simply by controlling its dynamics.

In our model, broad tuning curves result from the over-excitability of the network. When inhibition is weak,

every external input will eventually excite every neuron in the network because those neurons that receive

the input directly will relay indirect excitation to the rest of the network. When inhibition is strong, however,

the indirect excitation is largely suppressed, allowing each neuron to respond selectively to only those

external inputs that it receives either directly or from one of the few other neurons to which it is strongly

coupled. Thus, when inhibition is weak and the network is unstable, different external inputs will trigger

similar population-wide events [Bathellier et al., 2012], so the selectivity of the network in this regime is

weak and its ability to encode differences between sensory stimuli is poor. In contrast, when inhibition is

strong and the network is stable, different external inputs will reliably drive different subsets of neurons, and

the activity patterns in the network will encode different stimuli with high selectivity and enable accurate

decoding.

Two different dynamical regimes with weak noise correlations

A number of studies have observed that the noise correlations in cortical networks can be extremely weak

under certain conditions [Ecker et al., 2010, Renart et al., 2010, Hansen et al., 2012, Pachitariu et al., 2015].

It was originally suggested that noise correlations were weak because the network was in an asynchronous

state in which neurons are continuously depolarized with a resting potential close to the spiking thresh-

old [Renart et al., 2010, van Vreeswijk and Sompolinsky, 1996]. Experimental support for this classical

asynchronous state has been provided by intracellular recordings showing that the membrane potential of

cortical neurons is increased during locomotion [McGinley et al., 2015a] and hyper-arousal [Constantinople

and Bruno, 2011], resulting in tonic spiking. However, other experiments have shown that the membrane

potential of cortical neurons in behaving animals can also be strongly hyperpolarized with clear fluctuations
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between up and down states [Sachidhanandam et al., 2013, Tan et al., 2014, McGinley et al., 2015a, Polack

et al., 2013].

These apparently conflicting results suggest that there may be multiple dynamical regimes in behaving an-

imals that are capable of producing weak noise correlations. There is mounting evidence suggesting that

different forms of arousal may have distinct effects on neural activity [McGinley et al., 2015b]. While most

forms of arousal tend to reduce the power of low-frequency fluctuations in membrane potential [Bennett

et al., 2013, Polack et al., 2013, McGinley et al., 2015a], locomotion tends to cause a persistent depolar-

ization of cortical neurons and drive tonic spiking. In contrast, task-engagement in stationary animals is

generally associated with hyperpolarization and suppression of activity [Vinck et al., 2015, Polack et al.,

2013, McGinley et al., 2015a, Otazu et al., 2009, Buran et al., 2014]. The existence of two different dynam-

ical regimes with weak noise correlations was also apparent in our recordings; while some recordings with

weak noise correlations resembled the classical asynchronous state with spontaneous activity consisting of

strong, tonic spiking (e.g. desynchronized urethane recordings and some awake recordings), other record-

ings with weak noise correlations exhibited a suppressed state with relatively low spontaneous activity that

contained clear, albeit weak, up and down states (e.g. FMM recordings and other awake recordings). Our

model was able to accurately reproduce spontaneous activity patterns and generate evoked responses with

weak noise correlations in both of these distinct regimes.

In addition to strong inhibition, the classical asynchronous state with strong, tonic spiking appears to require

a combination of weak adaptation and an increase in the number of neurons receiving strong tonic input (see

parameter sweeps in Figures 2C-D and parameter values for awake mouse V1 recordings in Figure S2).

Since large-scale fluctuations arise from the synchronization of adaptation currents across the population,

reducing the strength of adaptation diminishes the fluctuations [Destexhe, 2009, Curto et al., 2009, Mochol

et al., 2015]. Increasing tonic input also diminishes large-scale fluctuations, but in a different way [Latham

et al., 2000]; when a subset of neurons receive increased tonic input, their adaptation currents may no

longer be sufficient to silence them for prolonged periods, and the activity of these neurons during what
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would otherwise be a down state prevents the entire population from synchronizing. When the network in

the asynchronous state is driven by an external input, it responds reliably and selectively to different inputs.

Because the fluctuations in the network are suppressed and its overall level of activity remains relatively

constant, every input arrives with the network in the same moderately-adapted state, so there is no history

dependence to create noise correlations in evoked responses.

Unlike in the classical asynchronous state, networks in the suppressed state have slow fluctuations in their

spontaneous activity, and the lack of noise correlations in their evoked responses is due to different mech-

anisms (see parameter values for gerbil A1 FMM recordings in Figure S2). The fluctuations in the hyper-

polarized network are only suppressed when the network is driven by external input. In our model, this

suppression of the correlated variability in evoked responses is caused by the supralinearity of the feedback

inhibition [Rubin et al., 2015]. The level of spontaneous activity driven by the tonic input to each neuron

results in feedback inhibition with a relatively low gain, which is insufficient to suppress the fluctuations cre-

ated by the interaction between recurrent excitation and adaptation. However, when the network is strongly

driven by external input, the increased activity results in feedback inhibition with a much higher gain, which

stabilizes the network and allows it to respond reliably and selectively to different inputs. This increase in

the inhibitory gain of the driven network provides a possible mechanistic explanation for the recent obser-

vation that the onset of a stimulus quenches variability [Churchland et al., 2010] and switches the cortex

from a synchronized to a desynchronized state [Tan et al., 2014], as well as the suppression of responses

to high-contrast stimuli in alert animals [Zhuang et al., 2014].

Experimental evidence for inhibitory stabilization of cortical dynamics

The results of several previous experimental studies also support the idea that strong inhibition can stabilize

cortical networks and enhance sensory coding. In vitro studies have shown that pharmacologically reducing

inhibition increases the strength of the correlations between excitatory neurons in a graded manner [Sippy

and Yuste, 2013]. In vivo whole-cell recordings in awake animals have demonstrated that the stimulus-
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evoked inhibitory conductance is much larger than the corresponding excitatory conductance [Haider et al.,

2013]. This strong inhibition in awake animals quickly shunts the excitatory drive and results in sharper

tuning and sparser firing than the balanced excitatory and inhibitory conductances observed under anes-

thesia. While some of the increased inhibition in awake animals may be due to inputs from other brain areas

[Yu et al., 2015], the increased activity of local inhibitory interneurons appears to play an important role

[Schneider et al., 2014, Kato et al., 2013, Kuchibhotla et al., 2016]. However, not all studies have observed

increased inhibition in behaving animals [Zhou et al., 2014], and the effects of behavioral state on different

inhibitory interneuron types are still being investigated [Gentet et al., 2010, Gentet et al., 2012, Polack et al.,

2013].

The effects of local inhibition on sensory coding have also been tested directly using optogenetics. While

the exact roles played by different inhibitory neuron types are still under investigation [Lee et al., 2014,

Seybold et al., 2015], the activation of inhibitory interneurons generally results in sharper tuning, weaker

correlations, and enhanced behavioral performance [Wilson et al., 2012, Lee et al., 2012, Chen et al., 2015],

while suppression of inhibitory interneurons has the opposite effect, decreasing the signal-to-noise ratio and

reliability of evoked responses across trials [Zhu et al., 2015, Chen et al., 2015]. These results demonstrate

that increased inhibition enhances sensory processing and are consistent with the overall suppression of

cortical activity that is often observed during active behaviors [Otazu et al., 2009, Schneider et al., 2014,

Kuchibhotla et al., 2016, Buran et al., 2014]. In fact, one recent study found that the best performance in a

detection task was observed on trials in which the pre-stimulus membrane voltage was hyperpolarized and

low-frequency fluctuations were absent [McGinley et al., 2015a], consistent with a suppressed, inhibition-

stabilized network state.

Neuromodulators and inhibitory control of cortical dynamics

Neuromodulators can exert a strong influence on cortical dynamics by regulating the balance of excitation

and inhibition in the network. While the exact mechanisms by which neuromodulators control cortical dy-
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namics are not clear, several lines of evidence suggest that neuromodulator release serves to enhance

sensory processing by increasing inhibition. Increases in acetylcholine (ACh) and norepinephrine (NE)

have been observed during wakefulness and arousal [Berridge and Waterhouse, 2003, Jones, 2008], and

during periods of cortical desynchronization in which slow fluctuations in the LFP are suppressed [Goard

and Dan, 2009, Chen et al., 2015, Castro-Alamancos and Gulati, 2014]. Stimulation of the basal forebrain

has been shown to produce ACh-mediated increases in the activity of FS neurons and decrease the vari-

ability of evoked responses in cortex [Sakata, 2016, Castro-Alamancos and Gulati, 2014, Goard and Dan,

2009]. In addition, optogenetic activation of cholinergic projections to cortex resulted in increased firing of

SOM+ inhibitory neurons and reduced slow fluctuations [Chen et al., 2015]. The release of NE in cortex

through microdialysis had similar effects, increasing fast-spiking activity and reducing spontaneous spike

rates [Castro-Alamancos and Gulati, 2014], while blocking NE receptors strengthened slow fluctuations in

membrane potential [Constantinople and Bruno, 2011]. More studies are needed to tease apart the ef-

fects of different neurotransmitters on pyramidal neurons and interneurons [Castro-Alamancos and Gulati,

2014, Chen et al., 2015, Sakata, 2016], but most of the existing evidence is consistent with our results in

suggesting that neuromodulators can suppress intrinsic fluctuations and enhance sensory processing in

cortical networks by increasing inhibition.
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FIGURE LEGENDS

Figure 1. Cortical networks exhibit a wide variety of intrinsic dynamics

(A) Multi-neuron raster plots showing examples of a short segment of spontaneous activity from each of our

recording types. Each row in each plot represents the spiking of one single unit. Note that recordings made

under urethane were separated into two different recording types, synchronized (sync) and desynchronized

(desync), as described in the Methods.

(B) The autocorrelation function of the multi-unit activity (MUA, the summed spiking of all neurons in the

population in 15 ms time bins) for each example recording. The timescale of the autocorrelation function

(the autocorr decay) was measured by fitting an exponential function to its envelope as indicated.

(C) The values of the MUA across time bins sorted in ascending order. The percentage of time bins with

zero spikes (the % silence) is indicated.

(D) Scatter plots showing all possible pairwise combinations of the summary statistics for each recording.

Each point represents the values for one recording. Colors correspond to recording types as in A. The

recordings shown in A are denoted by open circles. The best fit line and the fraction of the variance that it

explained are indicated on each plot.

(E) The percent of the variance in the summary statistics across recordings that is explained by each prin-

cipal component of the values.

Figure 2. A deterministic spiking network model of cortical activity

(A) A schematic diagram of our deterministic spiking network model. An example of a short segment of the

intracellular voltage of a model neuron is also shown, along with the corresponding excitatory, inhibitory and

adaptation currents.
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(B) An example of macroscopic variability in cortical recordings and network simulations. The top two multi-

neuron raster plots show spontaneous activity generated by the model. By adding a very small perturbation,

in this case one spike added to a single neuron, the subsequent activity patterns of the network can change

dramatically. The middle traces show the intracellular voltage of the model neuron to which the spike was

added. The bottom two raster plots show a similar phenomenon observed in vivo. Two segments of ac-

tivity extracted from different periods during the same recording were similar for three seconds, but then

immediately diverged.

(C) The autocorrelation function of the MUA measured from network simulations with different model pa-

rameter values. Each column shows the changes in the autocorrelation function as the value of one model

parameter is changed while all others are held fixed. The fixed values used were wI = 0.22, wA = 0.80,

wE = 4.50, b1 = 0.03, b0 = 0.013.

(D) The summary statistics measured from network simulations with different model parameter values. Each

line shows the changes in the indicated summary statistic as one model parameter is changed while all

others are held fixed. Fixed values were as in C.

Figure 3. Deterministic spiking networks reproduce the dynamics observed in vivo

(A) A schematic diagram illustrating how the parameters of the network model were fit to individual multi-

neuron recordings.

(B) Examples of spontaneous activity from different recordings, along with spontaneous activity generated

by the model fit to each recording.

(C) The left column shows the autocorrelation function of the MUA for each recording, plotted as in Figure

1. The black lines show the autocorrelation function measured from spontaneous activity generated by the

model fit to each recording. The middle column shows the sorted MUA for each recording along with the

corresponding model fit. The right column shows the mean pairwise correlations between the spiking activity
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of all pairs of neurons in each recording (after binning activity in 15 ms bins). The colored circles show the

correlations measured from the recordings and the black open circles show the correlations measured from

from spontaneous activity generated by the model fit to each recording.

Figure 4. Deterministic spiking networks reproduce the noise correlations observed in vivo

(A) Multi-neuron raster plots and PSTHs showing examples of evoked responses from each of our recording

types. Each row in each raster plot represents the spiking of one single unit. Each raster plot for each record-

ing type shows the response on a single trial. The PSTH shows the MUA averaged across all presentations

of the stimulus. Different stimuli were used for different recording types (see Methods).

(B) A scatter plot showing the mean spike rates and mean pairwise noise correlations (after binning the

evoked responses in 15 ms bins) for each recording. Each point represents the values for one recording.

Colors correspond to recording types as in A. The recordings shown in A are denoted by open circles.

Values are only shown for the 38 of 59 recordings that contained both spontaneous activity and evoked

responses.

(C) A schematic diagram illustrating the modelling of evoked responses. We constructed the external input

using recordings of responses from more than 500 neurons in the inferior colliculus (IC), the primary relay

nucleus of the auditory midbrain that provides the main input to the thalamocortical circuit. We have shown

previously that the Fano factors of the responses of IC neurons are close to 1 and the noise correlations

between neurons are extremely weak [Garcia-Lazaro et al., 2013], suggesting that the spiking activity of

a population of IC neurons can be well described by series of independent, inhomogeneous Poisson pro-

cesses. To generate the responses of each model network to the external input, we averaged the activity of

each IC neuron across trials, grouped the IC neurons by their preferred frequency, and selected a randomly

chosen subset of 10 neurons from the same frequency group to drive each cortical neuron.

(D) The top left plot shows the sound waveform presented in the IC recordings used as input to the model

31

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/041103doi: bioRxiv preprint 

https://doi.org/10.1101/041103


cortical network. The top right plot shows PSTHs formed by averaging IC responses across trials and

across all IC neurons in each preferred frequency group. The raster plots show the recorded responses of

two cortical populations on successive trials, along with the activity generated by the network model fit to

each recording when driven by IC responses to the same sounds.

(E) A scatter plot showing the noise correlations of responses measured from the actual recordings and from

simulations of the network model fit to each recording when driven by IC responses to the same sounds.

Figure 5. Strong inhibition suppresses noise correlations, enhances selectivity, and enables accu-

rate decoding

(A) Scatter plots showing the mean pairwise noise correlations measured from simulations of the network

model fit to each recording when driven by external input versus the value of the different model parameters.

Colors correspond to recording types as in Figure 4. The recordings shown in Figure 4D are denoted by

open circles.

(B) The mean pairwise noise correlations measured from network simulations with different values of the

inhibition parameter wI . The values of all other parameters were held fixed at those fit to each recording.

Each line corresponds to one recording. Colors correspond to recording types as in Figure 4.

(C,E) Scatter plots showing tuning width and decoding error, plotted as in A.

(D,F) The tuning width and decoding error measured from network simulations with different values of the

inhibition parameter wI , plotted as in B.
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Figure 6. Fast-spiking neurons are more active during periods of cortical desynchronization with

weak noise correlations

(A) The cortical synchrony at different points during two recordings from V1 of awake mice, measured as

the log of the ratio of low-frequency (3 -10 Hz) LFP power to high-frequency (11 - 96 Hz). The distribution of

synchrony values across each recording is also shown. The lines indicate the median of each distribution.

(B) A scatter plot showing the noise correlations measured during trials in which the cortex was in either a

relatively synchronized (sync) or desynchronized (desync) state for each recording. Each point indicates the

mean pairwise correlations between the spiking activity of all pairs of neurons in one recording (after binning

the activity in 15 ms bins). Trials with the highest 50% of synchrony values were classified as sync and trials

with the lowest 50% of synchrony values were classified as desync. Values for 13 different recordings are

shown.

(C) A scatter plot showing noise correlations versus the mean synchrony for trials with the highest and lowest

50% of synchrony values for each recording. Colors indicate different recordings.

(D) Spectrograms showing the average LFP power during trials with the highest (sync) and lowest (desync)

20% of synchrony values across all recordings. The values shown are the deviation from the average

spectrogram computed over all trials.

(E) The average PSTHs of FS and RS neurons measured from evoked responses during trials with the

highest (sync) and lowest (desync) 20% of synchrony values across all recordings. The lines show the

mean across all neurons, and the error bars indicate +/-1 SEM.

(F) The average spike rate of FS and RS neurons during the period from 0 to 500 ms following stimulus

onset, averaged across trials in each synchrony quintile. The lines show the mean across all neurons, and

the error bars indicate +/-1 SEM.

(G) The cortical synchrony at different points during a urethane recording, plotted as in A. The line indicates
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the value used to classify trials as synchronized (sync) or desynchronized (desync).

(H) A scatter plot showing the noise correlations measured during trials in which the cortex was in either a

synchronized (sync) or desynchronized (desync) state. Values for two different recordings are shown. Each

point for each recording shows the noise correlations measured from responses to a different sound.

(I) Spectrograms showing the average LFP power during synchronized and desynchronized trials, plotted

as in D.

(J) The average PSTHs of FS and RS neurons during synchronized and desynchronized trials, plotted as in

E.

(K) The average spike rate of FS and regular-spiking RS neurons during the period from 0 to 500 ms

following stimulus onset during synchronized and desynchronized trials. The bars show the mean across all

neurons, and the error bars indicate +/-1 SEM.

Figure 7. Many fast-spiking neurons are silent under ketamine/xylazine anesthesia

(A) The noise correlations measured from recordings of responses to speech in gerbil A1 under ketamine/xylazine

(KX) and fentanyl/medetomidine/midazolam (FMM). Each point indicates the mean pairwise correlations be-

tween the spiking activity of all pairs of neurons in one recording (after binning the activity in 15 ms bins).

Recordings were sorted in order of increasing noise correlations.

(B) The average PSTHs of FS and RS neurons under FMM or KX, plotted as in Figure 6.

(C) The average number of FS and RS neurons in recordings under FMM and KX. The bars show the mean

across all recordings, and the error bars indicate +/-1 SEM.

(D) Histograms of the average spike rate of FS neurons during the period from 0 to 500 ms following stimulus

onset in recordings under FMM or KX. The arrows indicate the median values.
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(E) The summed PSTHs of FS and RS neurons under FMM or KX, plotted as in Figure 6.

(F) The ratio of the total number of spikes from FS and RS neurons during the period from 0 to 500 ms

following stimulus onset. Each point shows the value for one recording.

METHODS

All of the recordings analyzed in this study have been described previously. Only a brief summary of the

relevant experimental details are provided here.

Mouse V1

The experimental details for the mouse V1 recordings have been previously described [Okun et al., 2015].

Briefly, mice were implanted with head plates under anaesthesia, and after a few days of recovery were

accustomed to having their head fixed while sitting or standing in a custom built tube. On the day of the

recording, the mice were briefly anaesthetised with isoflurane, and a small craniectomy above V1 was made.

Recordings were performed at least 1.5h after the animals recovered from the anaesthesia. Buzsaki32 or

A4x8 silicon probes were used to record the spiking activity of populations of neurons in the infragranular

layers of V1.

Visual stimuli were presented on two of the three available LCD monitors, positioned 25 cm from the animal

and covering a field of view of 120 60, extending in front and to the right of the animal. Visual stimuli

consisted of multiple presentations of natural movie video clips. For recordings of spontaneous activity, the

monitors showed a uniform grey background.

Rat A1

The experimental procedures for the rat A1 recordings have been previously described [Luczak et al., 2009].

Briefly, head posts were implanted on the skull of Sprague Dawley rats (300500 g) under ketaminexylazine

anesthesia, and a hole was drilled above the auditory cortex and covered with wax and dental acrylic. After
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recovery, each animal was trained for 68 d to remain motionless in the restraining apparatus for increasing

periods (target, 12 h). On the day of the recording, each animal was briefly anesthetized with isoflurane

and the dura resected; after a 1 h recovery period, recording began. The recordings were made from

infragranular layers of auditory cortex with 32-channel silicon multi-tetrode arrays.

Sounds were delivered through a free-field speaker. As stimuli we used pure tones (3, 7, 12, 20, or 30 kHz

at 60 dB). Each stimulus had duration of 1s followed by 1s of silence.

Gerbil A1

The gerbil A1 recordings have been described in detail previously [Pachitariu et al., 2015]. Briefly, adult male

gerbils (70-90 g, P60-120) were anesthetized with one of three different anesthetics: ketamine/xylazine (KX),

fentanyl/medetomidine/midazolam (FMM), or urethane. A small metal rod was mounted on the skull and

used to secure the head of the animal in a stereotaxic device in a sound-attenuated chamber. A craniotomy

was made over the primary auditory cortex, an incision was made in the dura mater, and a 32-channel

silicon multi-tetrode array was inserted into the brain. Only recordings from A1 were analyzed. Recordings

were made between 1 and 1.5 mm from the cortical surface (most likely in layer V).

Sounds were delivered to speakers coupled to tubes inserted into both ear canals for diotic sound presen-

tation along with microphones for calibration. Repeated presentations of a 2.5 s segment of human speech

were presented at a peak intensity of 75 dB SPL. For analyses of responses to different speech tokens,

seven 0.25 s segments were extracted from the responses to each 2.5 s segment.

Gerbil IC

The gerbil IC recordings have been described in detail previously [Garcia-Lazaro et al., 2013]. Recordings

were made under ketamine/xylazine anesthesia using a multi-tetrode array placed in the low-frequency

laminae of the central nucleus of the IC. Experimental details were otherwise identical to those for gerbil A1.

In addition to the human speech presented during the A1 recordings, tones with a duration of 75 ms and

frequencies between 256 Hz and 8192 Hz were presented at intensities between 55 and 85 dB SPL with a

36

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/041103doi: bioRxiv preprint 

https://doi.org/10.1101/041103


75 ms pause between each presentation.

Spiking network model

We developed a network model using conductance-based quadratic integrate and fire neurons. There are

three currents in the model: an excitatory, an inhibitory and an adaptation current. The subthreshold mem-

brane potential for a single neuron i obeys the equation

τm
dVi
dt

= −(Vi − EL) ∗ (Vi − Vth)− gEi
(Vi − EE)− gIi(Vi − EI)− gAi

(Vi − EA).

When V > Vth, a spike is recorded in the neuron and the neuron’s voltage is reset to Vreset = 0.9Vth. For

simplicity, we set Vth = 1 and the leak voltage EL = 0. The excitatory voltage EE = 2Vth and EI = EA =

−0.5Vth. Each of the conductances has a representative differential equation which is dependent on the

spiking of the neurons in the network at the previous time step, st−1. The excitatory conductance obeys

τE
dgE
dt

= −gE + Jst−1 + b.

where J is the matrix of excitatory connectivity and b is the vector of tonic inputs to the neurons. The matrix

of connectivity is random with a probability of 5% for the network of 512 neurons and their connectivities

are randomly chosen from a uniform distribution between 0 and wE . The tonic inputs b have a minimum

value b0, which we call the tonic input baseline added to a random draw from an exponential distribution with

mean b1, which we call the tonic input spread, such that for neuron i, b(i) = b0 + exprnd(b1). The inhibitory

conductance obeys

τI
dgI
dt

= −gI + wI ∗ (exp(
∑

st−1 ∗ c)− 1).

where c controls the gain of the inhibitory conductance.
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The adaptation conductance obeys

τA
dgA
dt

= −gA + wAst−1.

The simulations are numerically computed using Eulers method with a time-step of 0.75 ms (this was the

lock-out window used for spike-sorting the in vivo recordings and allowed for fast simulations). To avoid

numerical instabilities at low voltages, we rectified the voltages at the activation potential of the inhibitory

conductance. Each parameter set was simulated for 900 seconds. The timescales are set to τm = 20 ms,

τE = 5.10 ms, τI = 3.75 ms, τA = 375 ms, and the inhibitory non-linearity controlled by c = 0.25. The

remaining five parameters (wI , wA, wE , b1, and b0) were fit to the spontaneous activity from multi-neuron

recordings using the techniques described below. Their ranges were (0.01-0.4), (0.4-1.45), (2.50-5.00),

(0.005-0.10), and (0.0001-0.05) respectively.

To illustrate the ability of the network to generate activity patterns with macroscopic variability, we simulated

spontaneous activity with a parameter set that produces up and down state dynamics. Figure 2A shows the

membrane potential of a single neuron in this simulation and its conductances at each time step. Figure

2B shows the model run twice with the same set of initial conditions and parameters, but with an additional

single spike inserted into the network on the second run (circled in green).

Parameter sweep analysis

Figure 2C and D summarize the effects of changing each parameter on the structure of the spontaneous

activity patterns generated by the model. We held the values for all but one parameter fixed and swept the

other parameter across a wide range of values. The fixed parameter values were set to approximately the

median values obtained from fits to all in vivo recordings. Figure 5 B, D, and F and Figure S4 show the

results of similar parameter sweep analyses for stimulus-driven activity with the external input to the network

derived from IC activity as described below. For these analyses, the values of the parameters that were not

swept were fixed at those fit to each individual recording.
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GPU implementation

We accelerated the network simulations by programming them on graphics processing units (GPUs) such

that we were able to run them at 650x real time with 15 networks running concurrently on the same GPU.

We were thus able to simulate ≈10000 seconds of simulation time in 1 second of real time. To achieve this

acceleration, we took advantage of the large memory bandwidth of the GPUs. For networks of 512 neurons,

the state of the network (spikes, conductances and membrane potentials) can be stored in the very fast

shared memory available on each multiprocessor inside a GPU. A separate network was simulated on each

of the 8 or 15 multiprocesssors available (video cards were GTX 690 or Titan Black). Low-level CUDA code

was interfaced with Matlab via mex routines.

Summary statistics

Several statistics of spikes were used to summarize the activity patterns observed in the in vivo recordings

and in the network simulations. Because there were on the order of 50 neurons in each recording, all of

the statistics below were influenced by small sample effects. To replicate this bias in the analysis of network

simulations, we subsampled 50 neurons from the network randomly and computed the same statistics we

computed from the in vivo recordings.

The noise correlations between each pair of neurons in each recording were measured from responses to

speech. The response of each neuron to each trial was represented as a binary vector with 15 ms time

bins. The total correlation for each pair of neurons was obtained by computing the correlation coefficient

between the actual responses. The signal correlation was computed after shuffling the order of repeated

trials for each time bin. The noise correlation was obtained by subtracting the signal correlation from the

total correlation.

The multi-unit activity (MUA) was computed as the sum of spikes in all neurons in bins of 15 ms.
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The autocorrelation function of the MUA at time-lag τ was computed from the formula

ACF(τ) =
1

Nsamples

∑
MUA(t) ∗MUA(t+ τ)

To measure the autocorrelation timescale, we fit one side of the ACF with a parametric function

ACF(τ) ∼ a exp(−τ/T ) · cos(τ/(2πtperiod))

where a is an overall amplitude, T is a decay timescale and tperiod is the oscillation period of the autocor-

relation function. There was not always a significant oscillatory component in the ACF, but the timescale of

decay accurately captured the duration over which the MUA was significantly correlated.

Parameter searches

To find the best fit parameters for each individual recording, we tried to find the set of model parameters for

which the in vivo activity and the network simulations had the same statistics. We measured goodness of fit

for each of the three statistics: pairwise correlations, the MUA distribution, the MUA ACF. Each statistic was

normalized appropriately to order 1, and the three numbers obtained were averaged to obtain an overall

goodness of fit.

The distance measure Dc between the mean correlations cθ obtained from a set of parameters θ and the

mean correlations cn in recording n was simply the squared error Dc(cn, cθ) = (cn − cθ)2. This was normal-

ized by the variance of the mean correlations across recordings to obtain the normalized correlation cost

Costc, where 〈xn〉n is used to denote the average of a variable x over recordings indexed by n.

Costc =
Dc(cn, cθ)

〈Dc(cn, 〈cn〉)〉

The distance measure Dm for the MUA distribution was the squared difference summed over the order
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rank bins k of the distribution Dm(MUAn,MUAθ) =
∑
k

(MUAn(k)−MUAθ(k))2. This was normalized by the

distance between the data MUA and the mean data MUA. In other words, the cost measures how much

closer the simulation is to the data distribution than the average of all data distributions.

Costm =
Dm(MUAn,MUAθ)
Dm(MUAn, 〈MUAn〉)

Finally, the distance measure Da for the autocorrelation function of the MUA was the squared difference

summed over time lag bins t of the distribution Da(ACFn,ACFθ) =
∑
t

(ACFn(t) − ACFθ(t))2. This was

normalized by the distance between the data ACF and the mean data ACF.

Costa =
Da(ACFn,ACFθ)
Da(ACFn, 〈ACFn〉)

The total cost of parameters θ on recording n is therefore Cost(n, θ) = Costc+Costm+Costa. Approximately

two million networks were simulated on a grid of parameters for 600 seconds each of spontaneous activity,

and their summary statistics (cθ,MUAθ and ACFθ) were retained. The Cost was smoothed for each recording

by averaging with the nearest 10 other simulations on the grid. This ensured that some of the sampling noise

was removed and parameters were estimated more robustly. The best fit set of parameters was chosen as

the minimizer of this smoothed cost function, on a recording by recording basis.

Stimulus-driven activity

Once the simulated networks were fit to the spontaneous neuronal activity, we drove them with an external

input to study their evoked responses. The stimulus was either human speech (as presented during our

gerbil A1 recordings) or pure tones. The external input to the network was constructed using recordings

from 563 neurons from the inferior colliculus (IC). For all recordings in the IC the mean pairwise noise

correlations were near-zero and the Fano Factors of individual neurons were close to 1 [Garcia-Lazaro

et al., 2013], suggesting that responses of IC neurons on a trial-by-trial basis are fully determined by the
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stimulus alone, up to Poisson-like variability. Thus, we averaged the responses of IC neurons over trials

and drove the cortical network with this trial-averaged IC activity. We binned IC neurons by their preferred

frequency in response to pure tones, and drove each model cortical neuron with a randomly chosen subset

of 10 neurons from the same preferred-frequency bin. We rescaled the IC activity so that the input to the

network had a mean value of 0.06 and a maximum value of 0.32, which was three times greater than the

average tonic input.

We kept the model parameters fixed at the values fit to spontaneous activity and drove the network with 330

repeated presentations of the stimulus. We then calculated the statistics of the evoked activity. Noise cor-

relations were measured in 15-ms bins as the residual correlations left after subtracting the mean response

of each neuron to the stimulus across trials:

cij =
1

Nsamples

∑
t

(si(t)− < si(t) >)(sj(t)− < sj(t) >)

where si(t) is the summed spikes of neuron i in a 15-ms bin and < si(t) > is the mean response of neuron

i to the stimulus. The noise correlation value given for each recording is the mean of cij .

Tuning width

To determine tuning width to sound frequency, we used responses of IC neurons to single tones as inputs to

the model network. The connections from IC to the network were the same as described in the previous sec-

tion. Because the connectivity was tonotopic and IC responses are strongly frequency tuned, the neurons

in the model network inherited the frequency tuning. We did not model the degree of tonotopic fan-out of

connections from IC to cortex and, as a result, the tuning curves of the model neurons were narrow relative

to those observed in cortical recordings [Pachitariu et al., 2015]. We chose the full width of the tuning curve

at half-max as a standard measure of tuning width.

Decoding tasks
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We computed decoding error for a classification task in which the single-trial activity of all model neurons

was used to infer which of seven different speech tokens was presented. The classifier was built on training

data using a linear discriminant formulation in which the Gaussian noise term was replaced by Poisson

likelihoods. Specifically, the activity of a neuron for each 15-ms bin during the response to each token was

fit as a Poisson distribution with the empirically-observed mean. To decode the response to a test trial, the

likelihood of each candidate token was computed and the token with the highest likelihood was assigned as

the decoded class. This classifier was chosen because it is very fast and can be used to model Poisson-like

variables, but we also verified that it produced decoding performance as good as or better than classical

high-performance classifiers like support vector machines.

Classifying FS and RS neurons

We classified fast-spiking and regular-spiking neurons based on their spike shape [Okun et al., 2015]. We

determined the trough-to-peak time of the mean spike waveform after smoothing with a gaussian kernel of

σ = 0.5 samples. The distribution of the trough-to-peak time τ was clearly bimodal in all types of recordings.

Following [Okun et al., 2015] we classified FS neurons in the awake data with τ < 0.6ms and RS neurons

with τ > 0.8ms. The distributions of τ in the anesthetized data, although bimodal, did not have a clear

separation point, so we conservatively required τ < 0.4ms to classify an FS cell in these recordings and

τ > 0.65ms to classify RS neurons (see Figure S5). The rest of the neurons were not considered for the

plots in Figures 7 and 8 and are shown in gray on the histogram in Figure S5.

Local field potential

The low-frequency potential (LFP) was computed by low-pass filtering the raw signal with a cutoff of 300 Hz.

Spectrograms with adaptive time-frequency resolution were obtained by filtering the LFP with Hamming-

windowed sine and cosine waves and the spectral power was estimated as the sum of their squared ampli-

tudes. The length of the Hamming-window was designed to include two full periods of the sine and cosine

function at the respective frequency, except for frequencies of 1 Hz and above 30 Hz, where the window
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length was clipped to a single period of the sine function at 1 Hz and two periods of the sine function at 30

Hz respectively. The synchrony level was measured as the log of the ratio of the low to high frequency power

(respective bands: 3-10 Hz and 11-96 Hz, excluding 45-55 Hz to avoid the line noise). We did not observe

significant gamma power peaks except for the line noise, in either the awake or anesthetized recordings.

Dividing trials by synchrony

We computed a synchrony value for each trial in the 500-ms window following stimulus onset. For urethane

recordings, the values had a clear bimodal distribution and we separated the top and bottom of these

distributions into synchronized and desynchronized trials respectively. For awake recordings, the synchrony

index was not clearly bimodal, but varied across a continuum of relatively synchronized and desynchronized

states. To examine the effect of synchrony on noise correlations, we sorted all trials by their synchrony value,

classified the 50% of trials with the lowest values as desynchronized and the 50% of trials with the highest

values as synchronized, and computed the noise correlations for each set of trials for each recording. To

examine the effect of synchrony on FS and RS activity, we pooled all trials from all recordings, divided them

into quintiles by their synchrony value, and computed the average spike rates of FS and RS neurons for

each set of trials. For Figures 6 and 7, noise correlations were computed aligned to the stimulus onsets in

windows of 500ms, to match the window used for measuring FS and RS activity as well as LFP power.
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Figure 4
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Figure 5
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Figure 6
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SUPPLEMENTAL FIGURE LEGENDS10

Figure S1. Statistics for all fits. Related to Figures 1 and 311

We fit the model to three statistics: (1) the autocorrelation function of the multi-unit activity (MUA, the12

summed spiking of all neurons in the population in 15 ms time bins), (2) the values of the MUA across13

time bins sorted in ascending order, and (3) the mean pairwise correlations across all pairs of neurons (in14

15 ms time bins). The statistics for all 59 recordings are shown here in color. The model was fit to each of15

these recordings and the statistics of the activity generated by the model are shown in black.16

Figure S2. Costs and parameter fits. Related to Figures 3 and 517

(A) The three separate terms that combine into our cost function are shown for each recording. Open circles18

indicate datasets shown in Figure 3.19

(B) All parameter fits for each recording. Colors are used to indicate recordings of the same type. A small20

jitter was added to the horizontal location of each point. Black lines indicate median values for each recording21

type.22

(C) A three-dimensional principal component analysis shows that recordings generally cluster by type, but23

there is considerable variability both across and within recording types. The inset shows the 5-dimensional24

PCs.25

Figure S3. Analysis of local minima. Related to Figures 3 and 526

Parameter identifiability has recently been raised as a potential problem in interpreting the results of network27

simulations. To mitigate this problem, we designed our model to have a very small number of parameters and28

we fit three different functions of the recordings, two of which varied as a function of time or rank. To confirm29

2
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that the analysis of parameter combinations other than those corresponding to the global minimum of the30

cost function for each recording would not lead to a different interpretation of our results, we also considered31

local minima in regions of parameter space that were distant from the global minimum. It is possible that32

such local minima correspond to parameter regimes that are qualitatively different from the global minimum,33

yet still capture the statistics of the recordings relatively well. We found the parameters corresponding to34

local minima did not consistently emphasize the role of any parameter other than inhibition; the strength of35

inhibitory feedback remained the dominant influence on noise correlations, even for local minima far removed36

from the global minimum.37

(A) A schematic diagram showing an example nonlinear cost function. Several different threshold values are38

indicated by the colored lines. All costs below threshold are considered and the parameter θ furthest away39

from the global minimum is chosen to plot in (B).40

(B) As the threshold value is increased from the global minimum, the distance of the θ with Cost(θ) <41

threshold that is furthest from the global minimum is plotted. Discontinuities are visible when the threshold42

surpasses values at local minima.43

(C) Same as B, but for the actual model fits to each recording. The values on the vertical axis are specified44

in terms of the grid spacing used for the Monte Carlo simulations. While some discontinuities are visible, the45

functions tend to increase gradually.46

(D) For each threshold value, we computed the r2 between the value of each of the five model parameters47

and noise correlations, as in Figure 5A. This analysis shows that considering local minima situated far48

from the global minimum serves only to diminish the relationship between inhibition and noise correlations,49

without revealing any strong relationships between noise correlations and any other parameter.50

3
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Figure S4. Parameter sweeps for responses to external input. Related to Figures 4 and 551

Parameter sweeps were performed for each recording and each parameter. Each line corresponds to the52

model fit to one of the 59 recordings. All parameters were fixed at the values fit to each recording, except for53

the parameter indicated on the horizontal axis, which was swept across a wide range. Activity was generated54

from the model with these parameters and driven by the IC-derived external input. The spike rate, noise55

correlations, tuning width and percent decoding error were computed as described for Figure 5.56

Figure S5. Classification of neuron types by spike width. Related to Figures 6 and 757

The spike widths of the classified spike waveforms are plotted as histograms for the different recording types.58

The cells classified as FS based on their width are colored in red and the RS in blue. These were the cells59

used to compute FS and RS spike rates in Figures 6 and 7. Cells that were not clearly part of either class,60

which were not included in the analyses in Figures 6 and 7, are shown in gray.61

4
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Table S1: Metadata for all recordings

Animals
Brain
region

State /
anesthesia

#
recordings

# animals
Spont

duration (s)
Stimulus

type
Trials x

duration (s)
# neurons Figures Comments

Rats A1 Awake 2 2 750 Tones ~750 x 1s 82 total 1,3,4,5
only cells
>0.5 Hz

Mice V1 Awake 13 8 300 Natural movie ~30 x 3s 72 FS, 722 RS 1,3,4,5,6
only cells
>0.5 Hz

Gerbils A1
Ketamine/
Xylazine

18 7 600 Speech ~256 x 2.5s 92 FS, 501 RS 1,3,4,5,7

Gerbils A1
Fentanyl/

Medetomdine/
Midazolam

15 8 600 Speech ~256 x 2.5s 204 FS, 381 RS 1,3,4,5,7

Gerbils A1
Urethane

synchronized
8 2 600 Speech ~256 x 2.5s 48 FS, 140 RS 1,3,4,5,6

Gerbils A1
Urethane

desynchronized
3 2 600 Speech ~256 x 2.5s 66 FS 220 RS 1,3,4,5,6
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Figure S1. Related to Figures 1 and 3
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Figure S2: Related to Figures 3 and 5
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Figure S3: Related to Figures 3 and 5
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Figure S4: Related to Figures 4 and 5
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Figure S5: Related to Figures 6 and 7
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