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Abstract   

Gene copy number variations are associated with many disorders characterized by high 
phenotypic heterogeneity. Disease penetrance differs even in genetically identical twins. Can 
such heterogeneity arise, in part, from increased expression variability of one dose genes? 
While increased variability in the context of single cell gene expression is well recognized, our 
computational simulations indicated that in a multicellular organism intrinsic single cell level 
noise should cancel out and thus the impact of gene copy reduction on organismal level 
expression variability must be due to something else. To systematically examine the impact of 
gene dose reduction on expression variability in a multi-cellular organism, we performed 
experimental gene expression measurements in Drosophila DrosDel autosomal deficiency lines.  
Genome-wide analysis revealed that autosomal one dose genes have higher gene expression 
variability relative to two dose genes. In flies, gene dose reduction is often accompanied by 
dosage compensation at the gene expression level. Surprisingly, expression noise was increased 
by compensation. This increased compensation-dependent variability was found to be a 
property of one dose autosomal genes but not X-liked genes in males despite the fact that they 
too are dosage compensated, suggesting that sex chromosome dosage compensation also 
results in noise reduction. Previous studies attributed autosomal dosage compensation to 
feedback loops in interaction networks. Our results suggest that these feedback loops are not 
optimized to deliver consistent responses to gene deletion events and thus gene deletions can 
lead to heterogeneous responses even in the context of an identical genetic background. 
Additionally, we show that expression variation associated with reduced dose of transcription 
factors propagate through the gene interaction network, impacting a large number of 
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downstream genes. These properties of gene deletions could contribute to the phenotypic 
heterogeneity of diseases associated with haploinsufficiency. 

 

Author Summary 

Gene copy number variations are associated with many human disorders characterized by high 
phenotypic heterogeneity and understanding the effects of gene copy alterations is essential if 
we wish to understand factors influencing disease heterogeneity. While heterogeneous 
responses to reductions in gene dosage can be attributed in part to genetic background 
differences, we found that responses to dosage reduction vary, even in identical genetic 
backgrounds. Heterogeneities are not restricted to reduced dosage genes, but propagate 
through gene networks to affect downstream genes with normal copy number. We also found 
that reduction in gene dosage is associated with the introduction of expression variation or 
noise. Expression noise was also observed to propagate across the gene network, further 
contributing to the heterogeneous response to gene deletion. Through the use of 
computational simulation, we showed that the majority of the increased noise we observed is 
most likely due to extrinsic rather than intrinsic sources. Irrespective of the source of the 
observed noise, we propose that the presence of expression noise and its propagation through 
gene networks is likely to contribute to the heterogeneity of disease phenotypes observed in 
humans. 

 

Introduction 

Gene expression is a multi-step process that is stochastic in nature, with apparently isogenic 
cells displaying cell-to-cell differences in gene expression: a phenomenon commonly referred to 
as expression noise [1-3]. Following pioneering work at the single cell level [4] and the first 
mathematical models of the process [5], we typically distinguish two major sources of 
stochastic gene expression variation. An intrinsic contribution resulting from stochasticity of 
biochemical processes, including factors such as transcriptional bursting and gene copy number; 
and an extrinsic component, which arises from subtle environmental differences, cell-cell 
communication, or randomness within cell populations, including cell size and cell-cycle phase.  

Gene dose change is an important genomic structural alteration that can influence gene 
expression and organismal phenotype. For example, in diploid budding yeast an estimated 3% 
of the genome is revealed to be haploinsufficient when assayed by growth of deletion mutants 
in standard rich medium, and much of this effect is due to reduced expression from one copy 
genes [6]. Mathematical models of single cell expression noise indicate that a reduction in gene 
copy number increases intrinsic noise [7,8]. Intuitively, starting with the assumption that in 
eukaryotic organisms gene expression occurs in bursts [9,10], expression from two gene copies 
regulated by independent promoters leads to smaller expression noise relative to doubled 
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expression from one promoter. It has been proposed that the observed fitness advantage that 
diploid yeasts have over haploids results from the reduction of expression noise by genome 
doubling [11].  

In contrast to work with single cell organisms, the impact of gene dosage on expression 
variability in metazoans is less well studied. However, a full understanding of the effect of gene 
copy deletions is fundamental for better understanding of diseases that originate from gene 
copy number changes. In humans, reduction in gene dosage for many transcription factors 
leads to haploinsufficient developmental disorders [12]. Thus it is likely that genomic responses 
to alterations in gene copy number are important drivers of some human diseases and 
understanding these effects may have important therapeutic implications. 

Based on single cell simulations, it was hypothesized that disease susceptibility could be 
enhanced by haploinsufficiency [8]. In a subsequent study, it was also demonstrated that 
haploinsufficiency for the tumor-suppressor gene Neurofibromin 1 (NF1) increased variation of 
dendrite formation in neurofibromatosis type 1 patients [13]. Yet, it was also observed that in 
mammals, expression variability of X linked genes (single copy in males and a single active copy 
in females as a result of X-inactivation) is not different from that of autosomal genes [14]. Thus, 
it is not clear to what extend the results from single cell experiments can be applied to 
understanding expression variability in multicellular organisms.   

To systematically examine the impact of gene dose reduction on expression variability in a 
multi-cell organism, we combined experimental gene expression measurements in Drosophila 

melanogaster autosomal deficiency lines from the DrosDel collection [15,16] and 
computational modeling. The DrosDel collection consists of fly lines from a common genetic 
background that harbor engineered deletions of different chromosomal regions, leaving a few 
genes in each line as one copy rather than two. In the companion paper (Lee et.al) we analyze 
the general effect of Df(2L)s on the transcriptome, including expression level of one-copy genes, 
properties of gene dosage compensation, relationship to chromatin domains, and impact on 
the expression of network neighbors. Here, analyzing gene expression differences across the 
genome between biological replicated RNA-seq experiments, we focus on the effect of these 
deletions on gene expression variability. We found that one dose genes have higher gene 
expression variability relative to two dose genes. Since organismal level gene expression 
measurements average expression over millions of cells, we asked if it was possible that the 
observed differences in variability were caused by intrinsic gene expression noise. In contrast to 
previous assumptions [14], our simulations indicate that expression variation between 
biological replicates cannot be attributed to intrinsic gene expression noise and thus has to be a 
result of a factor(s) extrinsic to individual genes and impacting expression across the whole cell 
population.   

In flies, gene dose reduction is often accompanied by dosage compensation at the gene 
expression level. In particular, the male-specific lethal (MSL) complex associates with, X linked 
genes in males to increase expression two-fold relative the level of each of the two X 
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chromosomes in females, thus matching gene dosage between the heterogametic (XY) and 
homogametic (XX) sexes relative to autosomes [17-19]. In addition, reduction of autosomal 
gene copy number is often, but not always, accompanied by partial dosage compensation. We 
have previously shown [20] and subsequently confirmed in a significantly larger study (Lee et al., 
companion paper), that gene dosage compensation is generally locus-specific, suggesting that 
feedback provided through biochemical processes and regulatory circuits account for most 
autosomal dosage compensation. Interestingly, we found a relationship between autosomal 
dosage compensation and expression variation suggesting that, in the context of gene dosage 
change, such feedback is noisy. However, we did not observe increased expression noise for X 
linked genes in males despite the fact that these genes are normally fully compensated. Thus 
MSL-dependent dosage compensation suppresses regulatory noise in addition to boosts 
expression levels without increasing noise.  

Complex diseases are best understood from the perspective of disregulated pathways rather 
than individual genes. We show that expression variation associated with reduced transcription 
factor gene copy number propagates through the interaction network and affects expression 
variability of downstream genes, thus contributing to the extrinsic noise downstream of their 
targets.  

Overall, this study for the first time demonstrates a link between gene expression variation in 
one dose autosomal genes, dosage compensation and propagation of expression variation 
associated with transcription factor gene dosage through gene interaction networks. This 
property of gene deletion could contribute to differences in the penetrance of disease 
phenotypes associated with gene deletions and haploinsufficiency in humans and suggests a 
novel function for X chromosome dosage compensation. 

 

Results 

Reduction in autosomal gene dosage leads to increased expression variability 

To assess the impact of reductions in gene dose on population level expression variability, we 
used 99 DrosDel deficiency lines that carry different deletions on the left arm of chromosome 2 
(2L). Each deletion line was outcrossed to the w1118 progenitor line [15,16] and we collected 
both female and male hemizygous adults. We performed RNA-Seq analysis of two biological 
replicates from each line and expression differences between the replicates was considered as 
expression variability. For the analysis, we only considered genes that were expressed above 
our defined technical noise level in both replicates (Lee et al., companion paper). Expression 
variability was quantified using G, defined as absolute differences in FPKM (fragments per 
kilobase per million reads) values between two replicates normalized by the average of these 
two values (Materials and methods). This relative difference is linearly related to the coefficient 
of variation and is more natural to use when only two values are compared. Interestingly, 
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unlike the situation observed in single cell expression noise experiments, we found no 
statistically significant negative correlation between G and expression level (Fig S1). Therefore, 
to examine quantitatively the effect of gene dose reduction on expression variability, we 
pooled G values for all hemizygous genes in the entire set of deficiencies and compared the 
median of G values for one dose genes with the distribution of median G values for the same 
number of two dose genes that were randomly sampled from each line (Fig 1A). For both sexes, 
we observed that one dose genes had significantly higher expression variability than two dose 
genes (P < 0.001). Interestingly, the difference was larger in males than females, mostly due to 
larger expression variability of two dose genes in females. However, there are also other 
differences in response to gene deletion between the sexes as we describe in the 
accompanying paper (Lee et al., companion paper). We also performed a chromosome-wide 
comparison where we considered two dose genes on the same chromosome arm (2L), other 
autosomal arms (2R, 3L, 3R, and 4), and genes on the X chromosome (Fig 1B). As expected, we 
confirmed that expression variability was significantly enhanced by reductions in gene dose for 
all pairwise comparisons (P < 0.01 or P < 0.001, Wilcoxon rank sum test). We also found that, 
while there are only one dose genes on the male X chromosome, the median of G values is the 
lowest we observed. This suggests that expression variation is reduced by X chromosome 
dosage compensation. Finally, a comparison with variations in control spike-in measures (Fig 1B) 
confirms that the observed variability is biological rather than technical. We confirm this 
observation below in analyses that correlate differences in expression variability with biological 
factors. However, before examining this relationship further, it was necessary to identify the 
nature of expression variation (intrinsic versus extrinsic) caused by reductions in gene dose. 

Fig 1. Expression variation of one dose genes. (A) The median of G values for all one dose genes 
(arrow) pooled from female (above) and male (below) lines are compared with the distribution 
of median of G values for the same number of two dose genes randomly sampled from each 
line 1000 times. (B) Boxplots show medians (bar), 95% confidence intervals (notch), 25 to 75 
percentiles (box), and 1.5 u interquartile ranges (whisker) of the distribution of G values for 
different copy number classes on chromosome arm 2L, other autosomal arms, the X 
chromosome, and ERCC spike-ins for each sex (outliers are excluded). P-values were obtained 
from one-sided Wilcoxon rank sum tests to check whether the median of G of one dose genes 
on 2L is greater than that of two dose genes on 2L, two dose genes on other autosomal arms, 
and genes on the X, respectively. 

 

Expression variation in multi-cell organisms is extrinsic in nature  

In the context of single cell expression noise, theoretical models predict that if two genes are 
expressed at the same level but one has a larger gene copy number than the other, then the 
expression of the gene with the smaller number of copies is expected to be more noisy [8]. We 
first asked whether the increase in expression variability of one dose genes observed in the 
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context of a multi-cell organism meets this prediction. To address this we performed stochastic 
simulations of gene expression in cell populations (Materials and methods). We simulated two 
equal cell populations to model two biological replicates. For each cell in each population, we 
simulated gene expression using a stochastic gene expression model (Materials and methods) 
and averaged the results over the cells in the population. We performed such simulations for 
increasing numbers of cells (Fig 2A). Our simulations indicate that if a population consists of a 
small number of cells, intrinsic gene expression noise can lead to very large variations in the 
population as measured by the G value. However, single cell intrinsic expression noise quickly 
averages out for larger populations demonstrating that, at the multi-cell organism level, 
variability in the G value is likely a result of extrinsic rather than intrinsic noise. 

We next used simulation to test whether organismal level expression variability that can arise 
from intrinsic noise is influenced by gene copy number reduction. To address this question, we 
compared the results of simulation for one and two copy genes in each cell, where mean gene 
expression was the same for both genes: that is, gene expression was fully compensated. As 
before, we performed the simulation for increasing numbers of cells and observed that the 
differences in expression variability due to the intrinsic component of gene copy number also 
disappeared in larger populations of cells (Fig 2B). These simulations demonstrated that 
organismal level expression variability could not be attributed to intrinsic noise, but rather must 
be due to extrinsic factors resulting from a more global response at the tissue-, organ-, or 
organism-level response.  

 

Fig 2. Intrinsic noise in a simulated gene expression model dissolves with increasing size of 

cell population. (A) Boxplots represent distribution of simulated expression variation measured 
by G values for increasing size of cell population (number of simulation) per replica in a 
stochastic gene model. (B) Comparison of simulated variability between one dose genes (white) 
and two dose genes (gray) for increasing sizes of cell population. Mean gene expression is the 
same for both genes (full compensation). Simulations were performed using stochastic kinetic 
simulation of biochemical processes with the Gillespie algorithm.  

 

Relationship between expression variation and dosage compensation 

Since our simulations indicated that observed expression variations of one dose genes in flies 
were extrinsic by nature, and since gene copy number reduction is often accompanied by some 
level of dosage compensation, we next asked if there was a relationship between expression 
variation and dosage compensation. In the case of autosomal genes, the response to reductions 
in gene dose is a heterogeneous gene-specific response due to gene regulatory interactions 
such as feedback [20]. When considering genes on the male X chromosome, we found that they 
had the smallest expression variation (Fig 1B). Similar observations have previously been made 
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in mammals [14], although the genes examined in these cases have monoallelic expression in 
both males and females. This implies that MSL complex-dependent X chromosome dosage 
compensation is employed in a way that minimizes potentially harmful expression variation of 
X-linked genes in males. Indeed, using data from gene expression in female heads in the X 
chromosome deficiency lines surveyed in [21] we confirmed that the expression variation 
accompanying X chromosome deletions in females shows, similar to autosomal deletions, 
higher expression variability as compared to two dose genes (Fig S2). This indicates that the 
reduced noise is due to male-specific dosage compensation, not the particular genes found on 
the X chromosome. Thus the MSL mechanism ensures that compensation of X-liked genes is 
precise in both compensation level and expression consistency.   

To test for a possible relation between autosomal dosage compensation and expression 
variation, we first simply grouped one dose genes according to the fold change in their 
expression relative to a single dosage reference (Materials and methods), then compared 
expression variation in each group. In the case of no compensation, we expect a two-fold 
expression reduction upon deletion of one copy of a gene. This is our one copy expression 
baseline and we refer to the variation from this baseline in any direction as a deletion response, 
with a positive response corresponding to dosage compensation and negative response to anti-
compensation. We found that higher deletion responses (gene dosage expression 
compensation or larger than expected expression reduction) correspond to higher expression 
variations, suggesting that observed expression variation is related to the gene dosage 
response mediated by gene regulatory networks (Fig 3). 

Fig 3. Dosage compensation vs. expression variation. Mean (dot) and standard deviation 
(dashed line) of G and fold change in expression are shown for each group of one dose genes 
classified according to compensation levels. One copy expression baseline corresponds to log2 
fold change equal to -1. 

Propagation of expression variation through gene networks 

The results described above imply compensation level dependent extrinsic expression variation 
of one dose genes. We postulated that we should observe propagation of this extrinsic noise 
through the regulatory network, similar to what has been demonstrated for propagation of 
intrinsic noise [22,23]. That is, genes regulated by extrinsically noisy transcription factors are 
more likely to show extrinsic noise as well. In addition, we have previously observed that 
dosage compensation is, in part, mediated by interactions with other genes [20]. Therefore, we 
tested if the expression variation of one dose genes was propagated through the gene network. 
If extrinsic noise in regulators drives variation in large populations of cells, then noisy 
expression of regulators would propagate noise downstream. To explore this, we examined 
expression variation patterns through two separate paths in the gene network: one starting 
from one dose transcription factors (TFs) and the other from one dose non-TFs. 
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After projecting G values onto a pre-existing network model [24], we examined expression 
variations of two dose neighbors at different network distances (Fig 4A). We found that 
expression variation of two dose genes gradually decreased as network distance from one dose 
TFs increased. In contrast, expression variations of two dose network neighbors of non-TF one 
dose genes were similar regardless of distance in the network model. It is also worth noting 
that expression variations caused by one dose TFs remain higher than expression variations 
unrelated to deletions in the TF, even in distant neighbors. This indicates that dose reductions 
in TF genes causes more genome-wide expression variation, while dose reduction of non-TF 
genes does not, on average, contribute significantly to global expression variance. An example 
of such a difference in two particular DrosDel lines is shown in Fig 4B. Males heterozygous for 
Df(2L)ED1231 have one dose of two TFs (brat and CG17568), and show much higher global gene 
expression variance than males heterozygous for Df(2L)ED279, which uncovers no TF encoding 
genes. Both deletions uncover 33 genes and are of similar size (305Kb and 249Kb). These 
findings indicate that variability in expression of TFs is the main source of expression variation 
in downstream genes in the same pathway. This is consistent with the expectation that 
expression variability in transcription factors contribute to extrinsic noise of downstream genes.  
Taken together, our results show that that gene dosage related expression variability of key 
regulators can propagate through the network potentially contributing to the heterogeneity of 
phenotypic consequences that reductions in gene dosage can have on human development and 
physiology as revealed through haploinsufficiency-associated diseases [25,26]. 

Fig 4. Propagation of expression variation through a network. (A) Boxplots show medians (bar), 
95% confidence intervals (notch), 25 to 75 percentiles (box), and 1.5 u interquartile ranges 
(whisker) of the distribution of delta values for one-dose TFs (white) and non-TFs (gray), and 
their two dose neighbors in the functional network. Outliers are omitted. (B) Scatterplots show 
FPKM values for all expressed genes in two illustrative lines. The main difference between two 
lines is that two TFs (brat and CG17568) are located in Df(2L)ED1231 deficiency (left), but all 
one dose genes are non-TFs in Df(2L)ED279 (right). Both deletions uncover 33 genes and are 
approximately the same size (305kb and 249kb respectively). Color map represents G values. 

 

Discussion 

Gene expression is subject to intrinsic and extrinsic noise. Computational models indicate that a 
reduction in gene copy number increases intrinsic expression noise, however, the effect of one 
copy genes on extrinsic expression variability in diploid metazoans has not been clear. 
Measuring gene expression in a set of DrosDel lines carrying heterozygous deletions in a 
common genetic background, we found that in Drosophila melanogaster one dose genes show 
elevated levels of expression variability relative to two dose genes at the organismal level. 
Using simulations, we demonstrated that this increased variability cannot simply be attributed 
to intrinsic noise as has been previously suggested [14]. Organismal level expression variability 
is typically attributed to differences in genetic background, however, in our experiments the 
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same genetic background was maintained. In the absence of genetic variations, such extrinsic 
signal could have originated from intrinsic single cell noise during development or cell-to-cell 
communication. Indeed, adult tissues are derived from a very small founder population.  It is 
thus possible that intrinsic noise in founder cells impacts early development and, subsequently, 
causes extrinsic gene expression in progeny cells. 

 

Interestingly, there is a relationship between dosage compensation and expression variability. 
We previously observed that Drosophila melanogaster displays a marked heterogeneous 
response to copy number reduction of autosomal genes [20,21]. Many one copy genes show 
some dosage compensation via increased gene expression, however, levels of compensation 
vary drastically for individual genes. This variation can potentially be related to the differences 
in the need for compensation and the ability of cell circuitry (i.e., gene regulation) to deliver 
corresponding compensation. In contrast, X-linked genes in males are precisely compensated 
using an MSL-complex dependent mechanism [17-19]. The low extrinsic noise of one copy X-
linked genes in males relative to those same one copy genes in XX females, or XX sex 
transformed flies, suggests that the MSL mechanism ensures that compensation of X-liked 
genes is precise in both compensation level and expression consistency. In stark contrast, for 
autosomal gene deletions we observed the smallest expression variation in genes that are not 
compensated and highly compensated genes showed increased expression variation. Thus, our 
results suggest that when autosomal dosage compensation is present, regulatory circuitry is 
unable to provide a consistent compensation. This inability to provide a consistent expression 
response might be related to a lack of evolutionary pressure tuning the feedback mechanism to 
provide precise responses to relatively rare evolutionary events such as gene deletion.  

Gene dosage compensation has to be considered in the context of gene networks [20,27]. 
Analysis of intrinsic noise demonstrated that expression noise can propagate through the gene 
network and certain network topologies can modulate noise levels [22,23,28-31]. In particular, 
it has been demonstrated that negative autoregulation has the ability to reduce gene 
expression noise [29,32,33] and can linearize the dose–response before saturation [34]. 
Another recently discovered noise-reducing mechanism includes miRNA regulation [35,36]. 
However, such noise regulation, if indeed acting on a given gene, is most likely tuned by 
evolutionary forces [37-39] to buffer expression variation within a normal cell and not a cell 
altered by gene copy number reduction. This might explain why gene dosage compensation is 
not only incomplete but also noisy.  

 

 A recent study in humans [40] modeling the link between copy number variantions and 
haploinsufficieny found that genes predicted to exhibit phenotypes when present in one copy 
were enriched for TFs and that the best predictor of haploinsufficieny of a gene is its proximity 
in probabilistic gene networks to haploinsufficient genes. Our results show the success of such 
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predictor can be explained by the fact that gene dosage reduction in TF encoding genes is 
associated with a marked increase in gene expression variability propagating through the gene 
network.  

In humans, copy number variations are associated with several complex disorders [41,42] 
including a variety of neuropsychiatric disorders such as autism [43,44]. Such disorders are 
phenotypically heterogeneous and are assumed to be caused by a combination of genetic and 
environmental factors. The identification of genetic causes in complex diseases is particularly 
challenging since genetic factors in affected individuals are often different. In recent years, 
network based approaches showed that these different causes are not unrelated but rather 
dysregulate the same component of the cellular system (reviewed in [45]). While these 
approaches help to explain why different perturbations cause the same phenotype, they do not 
explain why seemingly the same perturbations can show different phenotypes.  

Here we show that the extrinsic expression noise in one dose TFs readily propagate across the 
regulatory network, affecting expression variation of connected two dose genes, and thus have 
the potential to affect entire cellular pathways and consequently the phenotype of an organism. 
Thus, the response to autosomal gene deletion introduces a perturbation that may influence 
gene network neighbors, not only through reduced expression level, but also through an 
increase in expression variation. These variations have the potential to differentially perturb 
gene subnetworks in different individuals. Thus, some of the phenotypic heterogeneity in 
diseases associated with gene deletions may be related to extrinsic variation in gene expression 
of one dose gene(s).  

 

Materials and methods 

Flies and RNA-Seq 

The Drosophila deletion stocks were generated by DrosDel (http://www.drosdel.org.uk) as 
described in [15]. Flies were maintained at 25oC on standard yeast/cornmeal medium (Fly 
Facility, University of Cambridge, UK). We crossed males from DrosDel lines to w1118 virgin 
females to generate hemizygotes without balancer chromosomes. The w1118 line we used is the 
parental line for the DroDel project, so all flies are isogenic other than for the deleted region 
they carry. We prepared duplicates of 15-25 sexed Df/+ progeny (mean 21.65, standard 
deviation 7.4) 5 days post eclosion for RNA extraction. Flies were homogenized in 500 μl of 
RNAlater solution (Life Technologies, Grand Island, NY, USA) for 90 seconds in 96 deep well 
plates with 3 mm tungsten carbide beads (Qiagen, West Sussex, UK) using a Qiagen Tissue Lyser 
II (Qiagen, West Sussex, UK). Extraction of total RNA was performed using the RNeasy 96 kit 
(Qiagen, Valencia, CA, USA) based on the manufacturer's guide (Protocol for Isolation of Total 
RNA from animal cells using QIAvac96 vacuum manifold, Cat#19504). We made a minor 
modification to dilute the RNAlater solution, so instead of mixing 150 μl of RLT buffer (Qiagen, 
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Cat#79216) and 150 μl of 70% ethanol, we mixed 150 μl of RLT buffer, 120 μl of 100% ethanol, 
and 30 μl of lysate in RNAlater and applied this to the extraction columns. Libraries were 
prepared using Illumina's (San Diego, CA, USA) TruSeq RNA sample preparation kit v2 - set A 
and B (Cat # RS-122-200). RNA amount was quantified using RiboGreen kits (Life Technology, 
Grand Island, NY, USA). 100 ng of RNA was used as input to follow the 1/2 scaled protocol from 
the original manufacturer's High Sample Protocol (Illumina, Part# 15026495 Rev. C). We added 
10 pg (353 samples) or 500 pg (43 samples) of external RNAs as spike-in [46] during the 8 
minute RNA fragmentation step. The constructed libraries were sequenced with a HiSeq 2000 
(Illumina, San Diego, CA, USA). The sequencing was performed as unstranded single-end 
sequencing with 76 or 101 base pair read-length. 

RNA-Seq reads were aligned to the Drosophila genome assembly (Berkley Drosophila Genome 
Project Release 5, obtained from FlyBase. http://www.flybase.org) using TopHat 2.0.10 [47] 
with -g 1 and -G parameters. As a gene model for the -G parameter, we used an annotation file 
from FlyBase (5.57) where we removed genes from uncertain physical locations (e.g. chrU and 
chrUextra). From the alignment result, Fragments per Kilobase per Million mapped reads (FPKM) 
values were calculated using Cufflinks [48]. Sequencing reads from external spike-ins were not 
included in Cufflinks analysis to avoid their influence on FPKM measurements. Instead, FPKM 
values for the spike-ins were separately calculated based on the number of raw reads mapped 
to the spike-in sequences. We used -G, -b, and -u parameters in running Cufflinks. In describing 
gene expression fold changes, abundance of transcripts were measured as read counts using 
HTseq [49] with default options (-m union -t exon). To obtain gene expression fold differences, 
we compared one deficiency line to the all other deficiency lines but itself form the same sex. 
This process was performed using "voom" with the R limma software package [50]. The raw 
sequencing data as well as their count and FPKM values are available in Gene Expression 
Omnibus (GEO) with the accession number GSE61509. 

Measure of expression variability 

To evaluate expression variation, we used RNA-Seq data from the two biological replicates. 
Thus, for each gene we had two measurements of mRNA levels represented by FPKM values 
and we calculated the expression variation metric defined by absolute difference of two FPKM 
values divided by their mean: 

𝛿 =
2|𝐹𝑃𝐾𝑀1 − 𝐹𝑃𝐾𝑀2|
(𝐹𝑃𝐾𝑀1 + 𝐹𝑃𝐾𝑀2)

, 

where only expressed genes in both replicates (FPKM1 and FPKM2 t 0.6829118) were 
considered. This gene expression cutoff was made based on RNA-Seq signals from intergenic 
regions. We used the median value of the top 95 percentile of the intergenic signals as 
described in [21]. For just two measurements, G has a linear relationship with the coefficient of 
variation (CV), which has been widely used as a metric of cell-to-cell expression noise: 
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𝛿 = 2𝐶𝑉. 

For all expressed one dose genes in the 99 DrosDel lines, Fig S3 shows the discrepancy between 
two replicates using our expression variation metric. 

In silico simulation 

The simulation was based on a stochastic model of gene expression, in which formation and 
decay of single molecules occur in a random way [1]. In the model, genes function 
independently of each other and can switch spontaneously between repressed and active 
states with reaction rates kON (activation) and kOFF (repression). Active genes are transcribed to 
mRNA with a constant rate sA; once a gene is activated, mRNA accumulates until the gene is 
deactivated. The mRNA degradation rate is δM. All processes are represented by first-order 
kinetics reactions. Simulations were performed using STOCKS ver. 1.02 [46] software for the 
stochastic kinetic simulation of biochemical processes using the Gillespie algorithm [47]. All 
simulations started with one or two independent copies of each gene in the repressed state for 
one or two dose genes, respectively. The total number of mRNA copies was reported at each 
step of each simulation. Each independent simulation represented a time series of changes of 
mRNA abundance in a single cell generated from the stochastic model. Fluctuations of mRNA 
copies in single cells from such simulations are attributed only to intrinsic noise. 

To model the expression of a single gene from a population of cells, we ran a number of 
independent simulations (with the same parameters) and we computed an average number of 
mRNA copies for each time point over these simulations. An mRNA level variation measured by 
G value was computed based on two independent runs of such a computation. The 
computations were done for different cell population sizes.  All simulations were repeated to 
sample the distribution of G values for each cell population size (see Fig 2). 

The simulations of one copy (Fig 2) were performed for activation and repression rates kON = 
kOFF = 0.02/s (half-time: 35s), transcription rate sA = 0.02/s and degradation rate δM = 0.008/s 
(half-time: 14 min); in the simulation of two copy genes, we assumed sA = 0.01/s to get the 
same expression level as for a one copy gene. The dependence of expression variation, 
measured by G, from promoter rates, transcription rates and degradation rates is presented in 
Fig S4. 

Compensation 

To group the one dose genes with respect to their fold changes in expression relative to two 
dose reference (see Flies and RNA-Seq), we rounded fold changes to the nearest integer and 
defined five groups according to the integers: 

{round(log2 𝐹𝐶)| ≤ −3, −2,−1,0, ≥ 1}. 

For each group, we calculated means and standard deviations of fold changes and G values. 

Network analysis 
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As a network model, we used a genome-wide functional network [24] that combined various 
types of dataset, including genetic interactions, protein-protein interactions and microarray 
expression. For annotation consistency all gene IDs in the network were converted to FlyBase 
R5.57 [48]. To do this, we discarded genes that do not have physically defined models as well as 
genes that are not unequivocally identifiable in the newer annotation (e.g., gene models that 
have been split into multiple genes). After converting IDs we obtained a list of 613 potential TFs 
from the predictive regulatory model [49], 287 of which are included in the functional network. 
Using this TF list, for every DrosDel line, we divided one dose genes into two groups: TFs and 
non-TFs, then separately recorded the G values of their two dose neighbors according to 
geodesic distances along the functional network. 
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Supporting information captions 

Fig S1. Relationship between expression level and expression variability. For every one dose 
gene from 99 DrosDel lines in females and males, average expression level and δ are shown. 
Pearson’s correlation coefficient and p-values are also given. 

Fig S2. Expression variation accompanying X chromosome deletions in females. Based on data 
from [21], boxplots show the distribution of δ values for different copy number classes on the X 
chromosome and autosomes in females heads (outliers are excluded). P-values are obtained 
from Wilcoxon rank sum tests. 

Fig S3. Discrepancy between two replicates. All one dose genes expressed in both replicates are 
shown (block dots). Our expression variability metric (δ) values are represented by contour 
lines. 

Fig S4. Dependence of expression variation on promoter transition rates, transcription rates 
and degradation rates. Intrinsic noise in simulated gene expression model dissolves with 
increasing size of cell population – dependence of gene variation from parameters of stochastic 
model. Boxplots represent distribution of simulated expression variation as measured by δ 
value for increasing size of cell population (number of simulations) per replicate in a stochastic 
gene model. The reference simulation (white) was performed using activation and repression 
rates kON = kOFF = 0.02/s (half-time: 35s), transcription rate sA = 0.02/s and degradation rate δM = 
0.008/s (half-time: 14min). The comparison was done to show how the results depended on (A) 
an increase of promotor transition rates (kON = kOFF increased by 10 and 100 fold), (B) an increase 
of transcription rate (sA increased by 10 and 100 fold), and (C) a proportional increase of 
transcription and degradation rates (sA and δM proportionally increased by 10 and 100 fold). 
Simulations were performed using stochastic kinetic simulation of biochemical processes with 
the Gillespie algorithm as described in Materials and methods. 
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