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Abstract

Nod-like Receptors (NLRs) are Nucleotide-binding domain and Leucine rich Repeats (NB-

LRR)-containing proteins that are important in plant resistance signaling. Many of the 

known pathogen Resistance (R)-genes in plants are NLRs and they can recognise directly 

or indirectly pathogen molecules. As such, divergence and copy number variants at these 

genes is found to be high between species. Within populations, positive and balancing 

selection are to be expected if plants coevolve with their pathogens. In order to understand

the complexity of R-gene coevolution in wild non-model species, it is necessary to identify 

the full range of NLRs and infer their evolutionary history.

Here we investigate and reveal polymorphism occurring at 220 NLR genes within one 

population of the partially selfing wild tomato species S. pennellii.  We use a combination 

of enrichment sequencing and pooling of ten individuals, to specifically sequence NLR 

genes in a resource and cost-effective manner. We focus on the effects which different of 

mapping and SNP calling software and settings have on calling polymorphisms in 

customized pooled samples. Our results are accurately verified using Sanger sequencing 

of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 

220, have maintained polymorphism within our S. pennellii population. These genes show 

a wide range of πN/ πs ratios and differing site frequency spectra. We compare our 

observed rate of heterozygosity to expectations for this selfing and bottlenecked 

population. We conclude that our method enables us to pinpoint NLR genes which have 

experienced natural selection in their habitat.
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Introduction

Resistance genes are important players in the interaction between plants and pathogens.

They  are  involved  in  direct  and  indirect  recognition  of  effector  molecules  from  the

pathogen and are hence thought to be under constant evolutionary pressure.

Most resistance genes (hereafter R-genes) including the best characterised ones belong

to the NLR (Nod-like receptors) or NB-LRR (Nucleotide Binding site and Leucine Rich

Repeat  containing)  type  (Caplan et  al.  2008).   These include important  R-genes from

many food crops like Bs2 in pepper (Tai et al. 1999), R3a in potato (Huang et al. 2004) and

Mi  in  tomato  (Rossi  et  al.  1998).  All  NLR  genes  code  for  receptor  proteins  with  a

Nucleotide Binding Site (NB) and C-terminal Leucine Rich Repeats (LRR). Generally these

NB-LRRs can be divided into two groups, based on the sequence of their NB-ARC domain

and their N-terminal domains. One group has N-terminal domains related to the Toll and

Interleukin Receptors (TIR), whereas the second non-TIR group often contains a Coiled

Coil (CC) domain (McHale et al. 2006). 

Resistance conferred by R-genes was thought to predominantly come from direct gene-

for-gene interaction between the  R-gene and pathogen avirulence effectors  (avr)  (Flor

1971).  This  recognition  results  in  a  strong defence response,  called  effector  triggered

immunity (ETI), which in place results in the production of reactive oxygen species or a

hypersensitive response in the plant. This reaction leads to localised cell death and thus

stops the spread of the pathogen (Morel & Dangl 1997). Several indirect modes of action

have also been described. In these cases, NLRs detect the modification of a (guarded)

target protein which triggers a similar defence response (Van der Biezen & Jones 1998;

McHale et al. 2006). Several examples exist that confirm direct interactions (e.g Dodds et

al. 2006), even though few known sites for direct interaction are known.

R-gene effector interaction might also be more complex. In wheat Lr10 and RGA, both
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NLRs, need to be present simultaneously to confer leaf rust resistance (Loutre et al. 2009).

In  tomato  NRC  proteins  are  required  for  resistance  conferred  by  several  other  NLR

(Gabriels et al. 2007; Wu et al. 2015). When over-expressed in planta, individual domains

of Rx, a tobacco virus NLR, interact with each other (Moffett et al. 2002) rice multiple NLRs

and their various combinations have been linked to highly redundant resistance profiles

(Zhang et al. 2015).

 

The effector-NLR interactions are crucial to determine the outcome of infection. NLRs are

therefore expected to show variations and evidence of selective pressures. In this light,

NLRs are often found as large gene families and consequently  annotation,  origin  and

evolution of NLRs in plants (and animals) is an important field of study (Jacob et al. 2013;

Maekawa et al. 2011). The numbers of identified NLR differ greatly within and between

plant families, but also based on annotation methods. In the  Arabidopsis thaliana about

150 NLR genes have been identified  (Meyers et al. 2003). In Solaneceous species like

tomato and potato this number rises to about 355 and 438 respectively (Jupe et al. 2012;

Andolfo et al. 2014). In rice so far 466 NLRs have been annotated (Li et al. 2010). No clear

correlations  seem to  exist  between  age,  genome  size  and  number  of  NLR since  for

example in the brassica family  Brassica rapa which has a similar sized genome to  A.

thaliana, has only 80 known NLRs (Mun et al. 2009).

In  Arabidopsis thaliana, NLR genes are located clusterwise on the genome and due to

their hypervariable nature a model of a rapid birth and death process was suggested to

explain expansion and diversification of the gene family (Michelmore & Meyers 1998). The

150 NLRs identified in Arabidopsis thaliana are very divergent, but it is possible to cluster

many of them together in groups by sequence similarity, while some remain orphan. Of the
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22 groups, 10 groups show genes with positively selected positions. The number of sites

however varies from 1 to 26 and whereas the majority of selected sites occur in the LRR

region, still 33 out of 116 are located in the NBS domain or other regions  (Mondragón-

Palomino  et  al.  2002).  Studies  of  worldwide  within-species  variability  of  NLRs

demonstrated  the  strong pervasive  selection  pressure.  NLRs are  thus likely  to  evolve

under neutrality or purifying selection, and few under balancing selection  (Bakker et al.

2006; Stahl et al. 1999). A study including sequence data from both  A. thaliana and  A.

lyrata, showed similar results using divergence estimates, and indicated that the genes

unique  to  a  species,  e.g.  lacking  homologues,  appeared  to  show  weaker  selective

pressure and less copy number variation (Guo et al. 2011). 

Other studies focused on comparing the NLR complement between multiple species, and

2,363 NLRs were  identified  in  12 eudicot  plants,  including six  crop species.  Of  these

genes, 50% show tandem duplications associated with strong positive selection (the ratio

of non-synonymous to synonymous substitutions, Ka/Ks > 1.5). However, a small set of

NLRs appears to be conserved for over 100 MY in most eudicot genomes (Hofberger et al.

2014). In monocots the divergence between species appears to be large, as numbers of

NLRs differ greatly between maize, sorghum, brachypodium and rice (Li et al. 2010). NLR

clusters build from phylogenetic methods can exhibit a wide range of Ka/Ks ratios (0.5 –

3.3) (Yang et al. 2013). Since between species comparisons have lower statistical power

to detect selection if divergence is high (Gharib & Robinson-Rechavi 2013), and they do

not allow detecting the occurrence of balancing selection, we investigate within population

variation to understand short-term evolution of NLRs.

Wild Solanum species provide the optimal model organisms for such studies. During its

domestication S. lycopersicum has suffered significant from a reduction in genetic diversity
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(The 100 Tomato Genome Sequencing Consortium et al. 2014; Lin et al. 2014). Hence,

wild  tomato  species  regularly  serve  as  germplasm  source  in  current  breeding

programmes, making them economically interesting to study  (Bai & Lindhout 2007).  In

addition, genomic resources are already available for a selection of wild and cultivated

tomato. 

In  this  study we make use of S.  pennellii.  This wild  species contains several  disease

resistance loci, including canonical NLRs, against Oomycete pathogen P infestans, (Smart

et al.  2007). It  is the source for the I-1 and I-3 genes which confer resistance against

Fusarium wilt (Sarfatti et al. 1991; Scott et al. 2004). It also contains other resistance loci,

like RXopJ4, a bacterial spot Resistance locus (Sharlach et al. 2012) and has thus large

value for plant breeders. S pennellii, LA0716 has been used to develop introgression lines

with  S. lycopersicum cultivar M82, which have been instrumental in understanding yield

parameters and generating increased yields (Eshed & Zamir 1994; Eshed et al. 1996; Gur

& Zamir 2004). S. pennelli is a self-compatible species which is expected to show low

levels of within-population diversity.  The recent sequencing of one plant of  S. pennellii

LA0716 yielded a high quality reference genome and led to the identification a number of

abiotic stress associated genes (Bolger, Scossa, et al. 2014).

The costs of  generating NGS data is  constantly  dropping,  however,  for  complex plant

species with large genomes, sequencing costs and also computation time for mapping or

assembly are still considerable. R-gene enrichment sequencing can be used to reduce the

complexity of the DNA sample, by enriching the R-gene component and thus reducing

overall  sequence complexity  before sample  submission.  To this  purpose RENSeq has

successfully used to identify the NLR complement of both cultivated tomato and potato

(Andolfo  et  al.  2014;  Jupe et  al.  2013).  Nevertheless,  for  population  genetics studies,
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ideally large numbers of individuals per population as well as large numbers of populations

are desired to allow inference of short time scale selective pressures, and thus driving up

in  return  the  sequencing  costs.  Recently  several  studies  have  shown  that  pooled

sequencing can dramatically  reduce the  sequencing costs,  as  well  as  time and costs

associated  with  sample  preparation  (Schlötterer  et  al.  2014).  Note  that  with  pooled

sequencing it is not possible to assign sequences to a single individual, but population

genetics statistics can be successfully computed  (Ferretti  et al. 2013) including for and

sampling uncertainties can be accounted for (Lynch et al. 2014; Kofler et al. 2011). Pooled

sequencing has been successfully used to study population evolution in, for example, quail

(Boitard et al. 2013), drosophila (Zhu et al. 2012) arabidopsis (Fracassetti et al. 2015) and

the wild tomato species S. chilense (Böndel et al. 2015). Here we show proof of principle

that pooled RENSeq can be used to identify R-genes of interest within a single population. 

Our main aim is to identify R-genes that maintain polymorphisms within wild populations.

We provide proof-of-principle in S. pennellii. Due to its limited genetic diversity, S. pennellii

is particularly suited to test the statistical power of various population genetics methods on

pooled data. We accurately identify a large set of NLR genes in the species and provide

robust analysis to identify SNPs and calculate population genetics statistics. With this, we

show that a small subset of R-genes maintains particular high diversity within S. pennellii.
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Methods

NLR identification, analysis and probe design

To  identify,  high  confidence  NLR  genes,  we  used  the  published  Solanum  pennelli

sequence data and NLRParser as recommended by the authors (Steuernagel et al. 2015)

We ran MAST (Bailey et al. 2009)(e=10>-6) using previously described NLR-associated

motifs  (Jupe  et  al.  2012).  Matching  sequences  were  extracted  and  submitted  to

NLRParser for annotation. The output was used to extract gene sequences and gff files

with predicted protein annotations, to be used in follow-up analysis. A phylogenetic tree

based on protein alignment was constructed using the extracted NBARC domains of the

identified NLR. All domains were aligned with MUSCLE (Edgar 2004). Manual curation and

removal  of  the  biggest  gaps  was  done  in  jalview  (Waterhouse  et  al.  2009) before

construction of the tree with PhyML (Guindon et al. 2010) (WAG model, BioNJ starting tree

and NNI tree searching, 100 bootstraps).

Probes (S_File 2) were designed using Agilent's SureSelect Software with the predicted

NLR for S. pennellii and published NLR for S. lycopersicum, S. tuberosum and A. thaliana.

We also included a set of 22 control genes used in previous evolutionary studies of potato

or tomato (S_File 3). These included five resistance signaling associated genes (Pto, Fen,

Rin4,  Prf  and  Pfi)  (Rose et  al.  2011), three  proteases (Rcr3,  C14  and PIP1)  and 14

metabolism related genes, the so-called reference genes in Böndel et al. (2015). We used

BLAST and  a  second  run  of  NLRParser  to  confirm that  all  targeted  sequences  were

indeed  putative  NLR  genes.  Several  probes  gave  false  positive  hits  (targeting  LRR-

containing, but non NLR genes). Those probes were manually removed. In total 12,331

probes were selected to use with the SureSelect platform.
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Plants, DNA extraction and RENSeq

Ten S. pennellii plants (LA0716) were grown in our glasshouse under 16 hr light conditions

and  a  minimum  temperature  of  18  °C.  The  seeds  were  obtained  from  Wageningen

University CGN. DNA was extracted using a CTAB method. The DNA was quantified using

Life Technologies' Qubit and quality confirmed with Agilent Bioanalyzer 2100. DNA for 10

plants was pooled and NLR enrichment was performed according to Agilents SureSelect

XT protocol with minor modifications: DNA was sheared on a Covaris S220 to 800 bp, size

selection and cleaning was done using AMPure XP beads (Beckman Coulter) in two steps

using 1.9:1 and 3.6:2 fragment DNA to beads ratio. The quality was assessed using a

Bioanalyzer 2100 (Agilent). End repair, adenylation and adaptor ligation were preformed

as described by Agilent. Pre-capture amplification was done using Q5 high fidelity PCR

mixes. The amplified library was quality checked on a Bioanalyzer 2100. Hybridisation was

performed as  suggested  for  libraries  <3  Mb.  The  library  was  indexed  with  8bp  index

primers using Q5 PCR mix and quality was assessed using the Bioanalyzer 2100 and

quantified using Qubit. Our library was pooled with seven other samples in equal DNA

amounts  and  the  resulting  pool  was  quantified  by  qPCR  using  the  NGSLibrary

quantification  kit  for  Illumina  (Quanta  biosciences)  and  diluted  down  to  a  final

concentration of 20 nM. Illumina MiSeq was run twice on the same library following the

manufacturers instructions for MiSeq v3. chemistry.

Data Analysis

Our  SNP  detection  methods  are  outlined  in  detail  in  Figure  S1.  FASTA  files  with

sequencing data were quality  controlled (QC) using trimmomatic  (Bolger,  Lohse,  et  al.

2014)(HEADCROP:3  SLIDINGWINDOW:4:30  TRAILING:30  MINLEN:40)  and  mapping
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was performed with trimmed reads using Stampy (Lunter & Goodson 2011) and BWA (Li &

Durbin  2009)(default  settings).  Figure  S2  shows  the  quality  scores  before  and  after

trimming. Low quality mappings and duplicated reads were removed using Picard Tools

(http://broadinstitute.github.io/picard/),  before  SNP  calling.  SNP  calling  was  performed

using Popoolation (Kofler et al. 2011), using the authors recommended settings, min-cov

was varied from 3 to 9 (Figure S3A) and the expected allele count set to 20. We tried

several sub-sampling methods. Figure S3B shows that sub-sampling in general appears to

reduce the number of called SNPs and does not improve the quality.  In addition, we used

GATK  Haplotypecaller  and  SelectVariants  (McKenna  et  al.  2010).  GATK  allows  for

advanced filtering options, hence we used filters based on our Sanger sequenced data as

outlined in S_File 5. For completeness we used two more popular SNP callers Varscan2

(Koboldt  et  al.  2012) and  BCFTools  (http://www.htslib.org/)  using  default  settings  for

polyploid organisms. 

The classic population genetics statistic π (Tajima 1983), was computed based on the 

estimated minor allele frequencies using SNPGenie (Nelson et al. 2015). The folded Site-

Frequency Spectrum (SFS) estimations were done using several methods. Pool-HMM 

(Boitard et al. 2013) was run to calculate the allele frequency in our data (option 

-spectrum) directly from the alignment file. This data was fed back into Pool-HMM (option 

-estim) to estimate absolute allele frequency and summarised into folded spectrum. 

Secondly, a SFS was calculated from GATK output (generated using HaplotypeCaller with 

-ploidy 20), by parsing expected allele frequencies from the filtered output VCF, folding and

summarising them. Lastly, we used filtered Popoolation outputs and deduced SFS from 

the observed allele frequencies. We computed the ratio of non-synonymous to 

synonymous diversity πN/πs using SNPGenie which uses an estimator based on the 

method of Nei and Gojobori (Nei & Gojobori 1986). Possible homologues for all the SNP 
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containing genes were identified using BLAST against the curated swissprot database, to 

allow identification of homologues of evidence based NLR. Only NLR with >30% sequence

identity and over 70% coverage with the original NLR were reported.  

Sanger sequencing

Primers were designed to anneal around at least one exonic region of the following genes:

Sopen02g021920, Sopen12g030570, Sopen11g028610 and Sopen12g032710 (S File 6).

Genes were amplified from DNA extracted from each of the individual plants used in our

pool  with  Q5 polymerase (NEB),  using  the  manufacturers recommendations.  Amplified

gene-fragments were purified (Qiaprep Qiagen) and sequenced directly, or ligated into the

pENTR-TOPO2.1  vector  (Life  technologies)  and transformed into  E.  coli  TOP10 cells.

Positive colonies were selected and plasmid DNA was extracted using Qiagen Qiaprep. 

To identify all SNPs at each gene segment, we sequenced at least two plasmids per plant.

We used CodonCode Aligner (CodonCode Inc) to check the sequence quality and align

the plasmid sequenced with the reference genes. Up to 21 SNPs were manually annotated

for each gene section.

Visualisation

Visualisation of reads, annotations, motifs and SNPs was done using IGV (available from

Broad Institute). Mapped reads were shown on the reference sequence and bedtools was

used to generate custom tracks for the different NLR motifs, gene annotations and SNPs.

Graphs were made in R (R Foundation for Statistical Computing, Vienna, Austria), using

the package ggplot.

11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2016. ; https://doi.org/10.1101/040998doi: bioRxiv preprint 

https://doi.org/10.1101/040998
http://creativecommons.org/licenses/by-nc/4.0/


Results

S. pennellii contains 220 high confidence NLRs

The  automated  gene  annotation  for  Solanum  pennellii (Bolger,  Scossa,  et  al.  2014)

contains 486 proteins that contain domains associated with canonical  NLRs.  However,

annotations are rather incomplete and describe only individual domains (214 NB-ARC, 259

Leucine Rich  Repeats,  13  CC,  TIR  or  other  domains).  As  individual  NB-ARC or  LRR

domains can also be part of other signaling proteins, like Receptor-like Protease (RLPs),

careful  re-annotation  was  required.  We  reannotated  S.  pennellii proteins  and  inferred

whether  they were  putative complete  or  partial  NLRs.  We ran NLRParser  against  the

predicted proteins for S. pennellii V2. This yielded 220 putative NLRs, of which 93 were

complete  (S File 1). We found 164 members of the CNL class, 39 of the TNL class, 16

lacking their N-terminus. As in previous RENSeq studies (Andolfo et al. 2014; Jupe et al.

2013), manual inspection showed that some putative NLRs might be wrongly annotated in

the S. pennelli V2 genome. Some of our reads aligned well outside the annotated genes.

As we were not yet able to accurately predict coding regions laying within these reads,

which will be required for calculation of population genetics statistics, these reads were

ignored and we focused only on those NLRs for which coding region data was available.

To show that our dataset is likely to be a good representation of the NLRs to be found in

S.  pennelli,  we constructed a  phylogenetic  tree based on the NB-ARC domain  of  the

identified NLR. Figure 1 shows that our tree contains the main NLR classes that can be

found  in  other  tomato  species  and  close  homologues  of  known NLRs from unrelated

species, similarly to those described for S. lycopersicum and S. pimpenellifolium.
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Sequencing, QC and mapping statistics 

We used sequence data of the 220 predicted NLR together with previously annotated NLR

from tomato  (S.  Lycopersium),  potato (S.  tuberosum) and previously  described known

NLR sequences (Jupe et al. 2012) to design NLR specific probes (S File2). DNA samples

were sequenced as part of a larger pool. Two runs were done for our pool, which resulted

in 805,122 and 2,147,039 reads. We performed basic quality control with Trimmomatic and

trimmed all parts of the reads with quality lower than 30. Unpaired and low quality read

pairs were removed and finally we retained 669,869 and 1,283,203 high quality paired

reads. We were able to map 642,331 and 1,230,551 of the read pairs to the reference

using Stampy for  run1 and run2 respectively and 494,012 and 986,210 read pairs using

BWA. Downstream analysis revealed that the BWA alignment, gave better results for the

SNP calling, hence we thereafter report the values obtained with the BWA mapped reads

only. 

RENSeq provides deep coverage in targeted regions

To assess the success of our enrichment sequencing, we plotted the depth of coverage

per site against the fraction of the targeted region with the given coverage. Our probes

were designed using exon data only, this reduces the coverage in intronic regions, but

assures high read depth in coding regions. Figure 2 shows that close to 80% of the exonic

target regions for the 22 control genes has a coverage of at least 130 reads, and 50%  a

coverage of at least 269 reads. For the NLRs, 80% of the predicted target region has a

coverage of 245 or higher, and 50% a coverage of more than 408. As our initial mapping

might contain misaligned or duplicated reads and mapping over introns, we performed an

additional  series  of  quality  controls  and  filtering  before  identification  of  SNPs  in  both
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control  and NLR datasets.  Figure  1  shows the  coverage plot  after  de-duplication  and

filtering. The coverage at the first quartiles (e.g. 75% of the regions with higher coverage)

is 112, 172 and 251 x in respectively run1, run2 and both runs combined, whereas the

median coverage was 163, 243 and 346 x respectively. 

GATK and Popoolation show highly congruent SNP calls in our population

Next we set out to identify SNPs in all  exons of the NLR and control genes within our

sequenced population. We ran Popoolation using different cut-off values to establish the

maximum sensitivity while minimising the number of false positives. SNPs were called for

run1,  run2  and  both  runs  combined,  with  minimum  coverage  set  at  20,  30  and  40.

Assuming equal amounts of DNA per plant and an average coverage near 120 in the run

with the lowest coverage, we would expect a singleton allele frequency of 1/20. Minor

singleton alleles should thus be readily picked up in the majority of cases with a minimum

SNP count of five or six. Figure S3 shows that with low minor allele count (3-5) very large

numbers of SNPs are detected, and that indeed after the count of six the detection curves

flatten off. Importantly, differences between separate runs (and thus read depth) as well as

the minimum overall depth tend to have a negligible effect on SNP calls (with mincount 5-

9) (Figure S3). However, at higher stringency we observe a loss of sensitivity (mincount >

10). To guarantee high quality SNPs, we decided to keep the minimum depth for follow-up

analysis at 30. This way, minor alleles occurring in frequency 4/20 can still be found with

the minimum SNP count  set at  six.  Lowering the minimum count  could increase false

positive rates in highly covered regions due to possible PCR bias. We also calculated the

average coverage for all exons of each predicted gene to assure no correlation between

SNP and coverage. Sub-sampling strategies implemented by Popoolation appear to have

detrimental effect on the SNP calling (Figure S3B) and were not used. Using the setting
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described, in total 249 SNPs were identified in the NLRs.

Next we used GATK as a second method to verify the previously called SNPs by

Popoolation.  Using  GATK we could  predict  222 SNPs.  We compared GATK predicted

SNPs with our popoolation data. We found that 185 SNPs in 12 genes overlap between

both datasets (Table 1). We manually inspected all SNPs called uniquely for GATK and

found that 20 were called because they showed difference from the reference genome, but

did not show polymorphism within the sample, three were called in low coverage (<30)

regions and seven were called with by GATK with fewer than six occurrences of the SNPs.

The final six are close to indel regions. To avoid false SNP calling, we excluded those

regions in Popoolation. We also analysed all SNPs called only with Popoolation, and 28

appear to be on locations where also low quality reads can be found and four are near too

high coverage regions (likely PCR bias). We could not observe any oddities for the other

32. 

We further tested Varscan and Bcftools to call SNPs in our dataset, however both

these  callers  seem  to  under-perform  with  172  and  130  SNPs  respectively.  Possible

reasons might be that contrary to Popoolation and GATK, the versions we used have not

been optimised for multiploid (>2) specimens or pooled data. Figure 3A shows a Venn

Diagram with the number SNPs called for each software. Popoolation and GATK together

call the highest numbers of SNPs and also have the highest overlap. 

We also used Popoolation  and GATK to identify  polymorphisms in  our  control  genes.

Overall  12 SNPs were called in the control  gene-set by both softwares, using settings

previously described. One SNP was called by GATK only because it  differed from the

reference genome, but it did not show polymorphisms within our sample. Thus highlighting

the importance of noting how SNP callers treat a reference sequence. As we are only
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interested in variation within our population (and not with the reference genome), such

SNPs will be omitted in the remainder of this manuscript.

All SNPs can be verified using Sanger sequencing

To verify our SNP calling using Sanger sequencing we designed primers annealing around

one  or  more  exons  of  two  non-NLR  genes,  Sopen02g021920  (Rcr3)  and

Sopen12g030570 (C14) and two NLRs, Sopen11g028610 and Sopen12g032710 (S File

3).  Our  Sanger  sequencing  data  confirm that  Sopen02g021920 does not  contain  any

polymorphisms (S File 6). For simple genomic regions, like those in Sopen12g030570 and

Sopen12g032710, both GATK and Popoolation identified all Sanger sequenced SNPs. In

complex regions, like part of Sopen11g028610, both GATK and Popoolation seem to call

several, non-overlapping false positive SNPs (Figure 3B). Due to its more flexible filtering

we are better able to approach the true SNP set using GATK, yet no filtering method keeps

in  all  positives  and  filters  out  all  false  negatives.  Again,  Varscan  and  BCFTools,

significantly  under-perform  in  this  gene.  To  assure  high  quality  SNPs  to  calculate

population genetics statistics, we will use SNPs as called by both GATK and Popoolation

(Table 1). This overlapping set shows lower false positive (3,6%) and false negative rates

(6,4%) compared to the Sanger data than the individual SNP sets and also removes SNPs

picked up because they only differ from the reference (see previous paragraph).

Low sequence diversity was already evident in the original population 

Since we pick up low number of SNPs in our populations, we wanted to infer how the

maintenance of the plants in various collections affected genomic diversity in the NLRs. S.

pennellii  is a facultative selfing plant, some loss of diversity can be expected. However,
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both the TGRC (UC Davis, USA) and CGN (Wageningen University,  Netherlands) who

maintained  this  population,  confirm  that  since  acquisition  (by  TGRC  in  1958  and

Wageningen from 1985) no more than 5-10 reproductive rounds have taken place and

multiple  plants were used in the process of multiplication.  This  reasoning is based on

information provided by TGRC (R. Chetelat, pers. com.) and Wageningen University (W. v.

Dooijeweert, pers. com.). We can therefore reconstruct the following population model. We

assume an initial heterozygosity H0 which is defined here as the probability to sample two

alleles which are different in a population (Charlesworth & Charlesworth 2010) at the time

of sampling.  If  one plant  was initially  sampled,  the first  generation of multiplication by

selfing decreases heterozygosity by half to a value of H1 =0.5H0. If two or more plants were

sampled, and crossed to produce F1, a proportion 0.5s of heterozygosity is lost due to the

selfing rate s, yielding H1 =(1-0.5s)H0.  Subsequently, between eight and 12 diploid plants

were  produced  every  generation  and  crossed  randomly  in  TGRC  and  CGN.  In  such

randomly mixing population of size 2N=16 or 2N=24 chromosomes, the expectation for the

decrease of heterozygosity between two consecutive generations (t and t+1) is H t+1=(1-

1/2N)Ht. At the time point of our sample, the number of NLR genes showing heterozygosity

is Hsample = 13/220. Applying these formulae, we can estimate the initial heterozygosity after

t rounds of mutliplication as H0=Hsample/[H1(1-1/2N)t]. The initial proportion of heterozygote

NLR loci in the initial wild population of S. pennellii would therefore be between H0=[0.17,

0.21]  for  s=1,  and  H0=  [0.12,  0.14]  for  s=0.5,  when  assuming  t=10  generations  of

multiplication.  For  convenience  heterozygosity  equates  here  with  the  proportion  of

polymorphic loci  in  our  220 NLRs with  the population sample of  10 diploid plants (20

chromosomes). Increasing the number of initial  plants,  would lower the expected initial

heterozygosity even more. Hence, we can conclude that  S. pennellii  LA0716 must have

had very low original diversity with more than 75% of the NLR showing no polymorphims. 
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Different site frequency spectrum estimators yield comparable results

We used different methods to estimate the site frequency spectrum of our NLR data. Pool-

HMM (Boitard et al. 2013) calculates an allele frequency spectrum (SFS) directly from the

mapped reads and uses this as a prior to estimate SNP frequency at a given location. We

used GATK to infer allele frequency in HaplotypeCaller (using -ploidy 20), expected allele

frequencies were then extracted after filtering. Lastly, we estimated allele frequency from

the Popoolation output data on minor alleles in our dataset. All individual SNP frequencies

were summed and turned into a folded SFS of the population. Figure 4A shows that in

absolute values, Pool-HMM shows many more singletons and overall SNPs in the data,

but this is likely due to the absence of the necessary filtering options. The relative  SFS

calculated from Pool-HMM and GATK derived data show very strong congruence (Pearson

correlation = 0.98).

Interestingly, our folded SFS shows an increase for class five to seven. Inspection

of SFS per gene, reveals that, due to the low number of SNPs in our data, single genes

with outlying SFS can be responsible for this pattern. Individual patterns for some R-genes

show that indeed the genes seem to have differing spectra (Figure 4B).  Sopen12g022450

shows an expected spectrum with high singleton count and flattening tail. Sopen07g01710

shows an increase in  SNPs with intermediate frequency (greater  than eight),  whereas

Sopen12g032710 shows an odd pattern with many SNPs occurring five to seven times,

hence causing this intermediate frequency increase in the global SFS.

NLR show differential evolutionary patterns

None of our 14 house-keeping control genes show any polymorphisms. For the pathogen
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related control genes, only one out of 8 (Sopen12g030570) had a significant number of

SNPs within our population and a Ts/Tv ratio of 2.33. We identified 235 SNPs in our NLR

data, with an average Ts/Tv ratio of 1.13. These SNPs were concentrated in only 13 NLRs.

Strikingly the numbers of SNPs per gene range from 1 to 66 and are not correlated to

gene length or average coverage depth (r=0,42 and 0.16). All genes meet the minimum

coverage criteria in over 88 %. Nucleotide diversity is measured within the population as π

per site and per gene (Table 2). Variation in π per gene ranges in two orders of magnitude

between the different NLRs. 

The assumptions that make Ka/Ks ratio a reliable estimator for selective pressure

on  R-genes  between  species,  are  not  met  when  analysing  data  within  populations

(Kryazhimskiy & Plotkin 2008). To assess potential selective pressures we calculated πN/

πs for all R-genes. (Table 2). In our set, overall, partial NLR genes show higher values for

πN/ πs, however, many complete and partial NLR did not show any polymorphisms at all.

Two NLRs (Sopen05g032510 and Sopen10g02490) show high (>1)  πN/  πs  values and

three others (Sopen05g032480, Sopen06g023160, Sopen07g017170) contain several non

-synonymous,  but  no  synonymous  mutations,  both  cases  are  indicative  of  positive

selection. 

Table 2 also shows that the identified SNPs are not limited to certain regions of the

genes. Some NLR have SNPs in their C-terminus, other only in the NB-ARC domain or

LRR domains, and in some cases SNPs are in all  domains.  Finally,  we looked at the

homology  of  our  identified  NLR  with  previously  annotated  NLRs  from  well  known

pathosystems.  As expected with  a highly  divergent  gene family,  only  five  NLRs show

resemblance with previously verified NLRs. These are one homologue of R1A from potato,

one of Arabidopsis RPP8 and three of Arabidopsis RPP13. 
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Discussion

We annotated NLR genes in a wild tomato species and show proof of principle that pooled

MiSeq sequence data (250 bp reads) can be used to infer population genetics statistics to

determine variation of R-genes within one small population of S. pennellii. Moreover, we

show that even in populations with reduced diversity, large numbers of polymorphisms are

maintained in certain R-genes. 

Identification of NLRs

We predicted 220 NLR genes in  S. pennelli, which is an improvement over the previous

annotation. This number is smaller than in cultivated tomato  S. lycopersicum  (326) and

another wild relative S. pimpenellifolium (355) (Andolfo et al. 2014). Distribution amongst

CNL and TNL classes is similar compared to both tomato species. Using current data, we

find 93 NLR (43%) to be putatively full length genes. In cultivated tomato this number is

about 70%. 

Aforementioned studies on tomato, showed that so far only by manual curation and 

comparison with RENSeq sequence data one is able to identify all possible NLR-like 

regions on the genome. Unfortunately this comparison will not allow accurate annotation of

open reading frames and we consider it outside the scope of this paper to perform and 

optimise such annotations. Moreover, increased NLR number in tomato and potato mainly 

result in additional partial genes and increases the number of complete NLRs by 17% only 

(Andolfo et al. 2014).

Hence, our results indicate that in S. pennellii fewer NLRs are present. The phylogenetic 
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reconstruction of the NLR family shows that our set of NLR genes covers the breath of 

NLR families observed in other Solanum spp. and we are confident that we have not 

missed any known NLR family. Therefore, the difference in NLR numbers could be caused 

by the habitat of S. pennellii, which is relatively arid and where one could assume a lower 

pathogen pressure than for exampel for S. pimpenellifolium (Caicedo & Schaal 2004). 

Successful deep sequencing using few resources

We showed that using RENSeq, we can cost and resource effectively, get a sufficient 

coverage over our target region using only 1/8th of an Illumina MiSeq lane. Köffler et al. 

(2012) suggested that for accurate pooled data processing very large numbers (>100) of 

individuals are needed to accurately capture all polymorphisms in the data set. They 

assume that in these cases on average each individual will be sequenced once or twice, 

with the high number of individuals making up for eventual bias due to sample preparation.

This approach might be recommended for species where many individuals can be easily 

obtained like Drosophila, but is less feasible for larger species, or wild specimens, where 

collected samples might not contain that many individuals. We show that an alternative 

approach, using fewer samples, but assuring high coverage (on average >30 per diploid 

individual) can be as successful in identification of polymorphisms in a population. To 

assure the quality of the identified polymorphisms, we extensively tested four SNP calling 

packages and compared our data with selected genomic regions that were subjected to 

Sanger sequencing. The software Popoolation has been specifically designed for SNP 

calling in pooled samples of many individuals. We find that on our dataset Popoolation 

(Kofler et al. 2011) slightly overestimates the number of SNPs present in the data, possibly

due to lack of filtering options to remove biases in read composition introduced as an 

artifact of library preparation. GATK (McKenna et al. 2010) allows for more stringent 
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filtering, however no filtering thresholds could be identified so that GATK alone had the 

best result. This could be due to the nature of our data, which comes from enrichment 

sequencing and thus has very unequal coverage, big differences between introns end 

exons and hence various biases that we could not fully capture with the available filters. 

Two other SNP callers significantly underperformed on our data, possibly because these 

were not optimised for pooled or mutliploid samples. In the end, we obtained the best 

results by merging the results and accepting only those SNPs that were called by both 

GATK and Popoolation. This strongly reduced the number of false positive calls, but might 

mean that in some low coverage regions minor alleles will not be counted. Validation using

Sanger sequencing on selected regions showed however that in those regions 93,6% of all

SNPs have been positively identified and also that only 3,6% of the SNPs were not 

identified in cases where they should have been. Overall, this shows that by combining 

callers, we are able to get both high sensitivity as high accuracy.

Identification of SNPs in samples with reduced diversity

Overall we identified very low numbers of SNP. This might be partly due to the stringency

of the SNP calling, however Sanger resequencing of a number of genes did not yield any

additional  polymorphisms.  The  more  likely  explanation  is  the  composition  of  the

population. The sequenced plants come from a facultative selfing population collected in

1958 (Atico, Peru) and has been propagated during five to ten rounds at the TGRC and

Wageningen University as small populations of eight to 12 plants (by pollen mixing and

crossing). It is possible that the original population consisted of very few closely related

specimens (maybe even one single plant) and that diversity has therefore been lost in the

sampling and propagation processes. Our calculations show that the original proportion of

genes with  heterozygosity  in  the  population  could  have been 10% or  lower.  With  the

22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2016. ; https://doi.org/10.1101/040998doi: bioRxiv preprint 

https://doi.org/10.1101/040998
http://creativecommons.org/licenses/by-nc/4.0/


current diversity found at 6% this shows that even though the multiplication and initial

sampling have decreased heterozygosity in our NLR genes, the initial population exhibited

very  low  genetic  diversity  to  start  with.  This  is  consistent  with  the  diversity  of  self

compatible  species  to  be  much  lower  than  that  of  self  incompatible  species.  This  is

exemplified by the fact that using AFLP markers more diversity (75% polymorphic sites)

was observed within  one accession of self  incompatible  S. peruvianum,  than between

multiple accessions of self compatible Solanum spp. like S. pimpenellifolium (7%) (Miller &

Tanksley 1990) Recent studies confirm such high levels of polymorphisms to occur only in

self incompatible species (Städler et al. 2008). 

We must note that the SFS will be strongly affected by genetic drift occurring during

the multiplication process. This was seen in our global and per gene SFS with an excess

of intermediate frequency variants. However, the genes we found to be polymorphic in our

sample,  will  have been diverse  in  the  initial  population  due to  possible  past  selective

events and provide an insight in the number and location of polymorphisms in different

genes.  

Maintained polymorphism in C14 and NLR genes. 

We can identify polymorphisms in our control gene, C14. C14 is a tomato protease 

targeted by multiple effectors from Phytophthora infestans. It has been shown to be under 

diversifying selection in wild potato (Kaschani et al. 2010). This does not seem to be the 

case in several wild tomato species (Shabab et al. 2008), which are thought not to be a 

natural host for P. infestans. Also in our population, C14 polymorphisms are predominantly 

synonymous and we detect no sign of diversifying selection. Interestingly, we did not 

identify any SNPs in another protease, Rcr3, which is under balancing selection in S. 

peruvianum (Hörger et al. 2012). Also, Pto, Fen, Rin4, Prf and Pfi do not show 
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polymorphism either, though they have been shown to be under selective pressure in S. 

peruvianum (Rose et al. 2007, 2011).

We identify after filtering 13 NLRs with one or more polymorphisms. Based on our

above  computations,  we  expect  that  heterozygosity  at  these  genes  reflects  ancestral

polymorphism in the initial population. These genes may thus show adaptation to different

selective pressures, that could be caused by absence of or presence of certain pathogens

on this specific population. Previous data from Arabidopsis suggests that when comparing

different  NLRs  within  a  given  genome,  heterozygosity  is  larger  in  LRR  regions

(Mondragón-Palomino et al. 2002). However, we find no evidence that within one NLR

polymorphisms between individuals are restricted to a certain region of the  gene. This

may be partly due to our current dataset containing too few SNPs in too few genes to

identify trends and link selection pressures on the genes to the place or domains where

the domains occur.

Five NLRs in our dataset show higher a higher πN than πs value, indicating possible

positive selection. Due to the low diversity of our sampled population, we acknowledge

that  a  high  πN/πs  ratio  however,  does  not  as  such  suggest  high  positive  selection

pressure.   As  such,  within  gene  diversity  could  be  a  better  indicator  for  evolutionary

pressure in this population, because this could be a sign of balancing selection. In terms of

polymorphisms,  certain  individual  genes indeed stand out.  One of  the genes that  has

maintained  the  highest  number  of  polymorphisms  within  our  population

(Sopen11g028610), is an ortholog of  Arabidopsis RPP13. RPP13 is known to maintain

extreme high numbers of polymorphisms in wild populations (Rose et al. 2004), which is

congruent with the highly polymorphic nature of its recognised effector Atr13 (Rentel et al.

2008; Sohn et al. 2007; Leonelli et al. 2011) and likely loss of fitness in the wild when one

or  multiple  allelic  variant  disappear  from  the  population.  The  highest  number  of
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polymorphisms  can  be  found  in  Sopen12g022450.  With  83  putative  SNPs  all  in  the

Leucine Rich Repeats of the gene. It must be noted that this gene has been annotated as

'partial'  gene and  might  not  be  functional.  As  with  the  previous  example,  it  would  be

interesting to know Sopen12g022450 has a function in resistance and if the variants of it

are maintained within different populations.  

Unraveling short-term NLR Evolution

A next step would be to test whether detected NLR variants show (partial) redundancies in

terms of recognition. In grasses a number of resistance genes from fast evolving classes

and classes with orthologues in 4 species have been cloned in rice and tested if they

conferred resistance to 12 rice blast pathogen Magnaporthe oryzae strains.  15 out of 60

genes appear functional and no correlation was found between resistance and class or

conservation  between  species  (Yang  et  al.  2013) Resistances  also  appeared  to  be

redundant between different pathogens, as observed in a larger study testing 132 NLR

genes from cultivated rice. In the latter study 43% of the R-genes confer resistance against

on average 2.4 of the 12 isolates tested  (Zhang et al. 2015; Yang et al. 2013). Recent

studies have shown how several  NLR are required to  work in pairs or  networks,  with

closely related proteins sometimes conferring different  functions  (Eitas & Dangl  2010).

Moreover, many NLR seem to be highly expressed also in susceptible interactions and

NLRs can even be contributed to quantitative resistance effects (Corwin et al. 2016). Thus,

analysis of long term evolutionary history using phylogeny would reveal only little about the

recent selective pressures, state and activity of the NLRs. 

As plants and pathogens are thought to adapt to one another within and between

populations, our method can be used to identify NLRs that are under acute evolutionary

pressure (see also  Rose et al. 2007; and theory in Tellier et al. 2014). This is illustrated
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here as the identification of S. pennellii genes that maintained polymorphisms in our low-

diversity  population,  including  an  RPP13  homolog. Follow-up  work  could  include

sequencing of multiple diverse populations, to help to identify functional R-genes from wild

species,  e.g  NLRs  under  selective  pressure.  These  methods  can  be  expanded  to

polymorphism pathogen data, which will provide tests for current coevolutionary models

(Tellier  & Brown 2007;  Tellier  et  al.  2014).  To understand R-gene variation within  and

between  populations  of  the  same  species,  might  help  understand  disease  resistance

ranges in crops and could solve questions on the molecular basis on non-host resistance

(Stam et al. 2014).  It will  help define the durability of certain resistance genes and will

hence be beneficial for future resistance breeding programmes. 
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Figure Legends

Figure 1 NLR genes in S. pennellii

Phylogenetic tree for the identified Solanum pennellii NLR genes generated using PhyML

(WAG)  with  100  bootstraps  after  alignment  of  all  NB-ARC using  MUSCLE.  TNLs  are

highlighted in yellow background. Collapsed triangles represent known NLR clusters with

high bootstrap values (>50). NLR families are indicated above the different clades and

several named resistance genes from other species have been included for references. 

Figure 2: Coverage of targeted region. 

The fraction of bases in the targeted area having a coverage of a certain depth (x-axis) or

deeper. The lines represent the individual runs and the combined data, separated for the

NLR regions and the set of control  (ctl)  genes. The plot represents the data after pre-

processing.

Figure 3: SNPs calls from four different callers. 

A) Overlap of called SNPs between different SNP-callers. Popoolation and GATK share

the most  common SNPs.  B)  SNPs called  for  a  region  of  NLR Sopen11g028610.  Top

shows the coverage (grey) and SNPs that appear directly from the .bam file (including

putative false positives). The blue lines in the lower parts of the figure show the SNPs as

identified by Sanger sequencing and four SNP-callers. Popoolation and GATK show the

best performance judging by overlap. 
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Figure 4: Site frequency spectra

Folded Site  Frequency  Spectra  for  the  SNPs detected  in  our  NLR set.  X-axis  shows

number  of  variants  per  site,  with  10  equals  a  frequency  of  0.5  in  our  population.  A)

absolute folded SFS; y-axis shows actual number of sites. B) Relative folded SFS, y-axis

shows the fraction of sites. C) Absolute folded SFS per gene.

Figure S1: Methods

Schematic overview of the methods used in this study. SNPs were called and curated after

read mapping with Stampy (1). Filters were optimised based on Sanger data (2), when still

large numbers of SNPs were not verified with Sanger sequence data, read mapping was

repeated (3) with BWA, filtering was once more optimised (4).

Figure S2: Data Quality

Quality scores for sequencing data as reported by FastQC, before and after read trimming.

Showing quality scores (y-axis) per read position (x-axis). Reads were trimmed to not get

quality scores below 30. 

Figure S3: SNP calling with Popoolation.

A) Total numbers of SNPs called (y-axis) against the stringency (minimum occurrences of

a  SNP before  calling  it).  Low stringency (<5)  gives  large between run (e.g.  coverage

dependent) variation.  B) Number of SNPs identified (y-axis) when subsampling to different

depths (x-axis) for both runs combined (red) and each run individually (green, blue). Each

graph represents a different sub-sampling method. 
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Sopen05g032500 0 6 0
Sopen05g032510 8 6 4
Sopen06g003570 2 1 0
Sopen06g023160 6 5 5
Sopen06g023290 0 1 0
Sopen07g001870 0 1 0
Sopen07g017170 6 6 0
Sopen08g003220 0 1 0
Sopen09g023290 0 6 0
Sopen09g035210 2 0 0
Sopen10g024970 5 5 5
Sopen10g024980 0 1 0
Sopen11g027060 0 2 0
Sopen11g028330 24 14 14
Sopen11g028360 22 16 15
Sopen11g028600 0 1 0
Sopen11g028600 0 1 0
Sopen11g028610 41 22 21
Sopen12g022450 96 88 83
Sopen12g032710 10 19 10
Sopen12g032720 9 9 9
Sopen12g032730 10 10 10
Sopen12g032810 1 1 1
Sopen12g032830 1 0 0
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Gene SNPs Pi (SNPGenie) Non_syn Syn PiN PiS PiN/PiS Annotated Homology SNPs in 

Sopen05g032480 2 0.0001786316 2 0 0.0002289264 0 NaN Complete Unknown NBARC

Sopen05g032510 4 9.72E-005 3 1 0.0001085309 5.66485640658735E-005 1.9158638541 Complete Unknown NBARC

Sopen06g023160 5 9.12E-004 5 0 0.0011671967 0 NaN Partial R1A NBARC

Sopen07g017170 6 0.0008469512 6 0 0.0010881145 0 NaN Partial Unknown all

Sopen10g024970 5 0.0006203176 4 1 0.0006462071 0.0005347765 1.2083684884 Partial Unknown Cterm

Sopen11g028330 14 0.0002492696 10 4 0.0002240754 0.0003385473 0.6618733024 Complete RPP13-like Nterm-Cterm

Sopen11g028360 15 0.0001765151 11 4 0.0001567454 0.0002452302 0.6391765649 Complete RPP13-like Nterm-Cterm

Sopen11g028610 21 0.0010662506 12 9 0.0009334889 0.0015292084 0.6104393173 Complete RPP13-like Nterm-Cterm

Sopen12g022450 83 0.0058609193 64 19 0.0053801886 0.0075481715 0.7127803787 Partial Unknown Cterm

Sopen12g032710 10 0.0036985297 5 5 0.0023764423 0.0085226755 0.278837594 Partial Unknown all

Sopen12g032720 9 0.0033756856 6 3 0.0028429797 0.0053552688 0.5308752642 Partial Unknown all

Sopen12g032730 10 0.0014863739 3 7 0.0005695963 0.0047512434 0.119883635 Complete RPP8 NBARC-Ctem

Sopen12g032810 1 0.0005091764 0 1 0 0.0024107449 0 Partial Unknown Cterm
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