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Abstract 1

The distribution of a phenotype on a phylogenetic tree is often a quantity of interest. 2

Many phenotypes have imperfect heritability, so that a measurement of the phenotype for 3

an individual can be thought of as a single realisation from the phenotype distribution of 4

that individual. If all individuals in a phylogeny had the same phenotype distribution, 5

measured phenotypes would be randomly distributed on the tree leaves. This is however 6

often not the case, implying that the phenotype distribution evolves over time. Here 7

we propose a new model based on this principle of evolving phenotype distribution on 8

the branches of a phylogeny, which is different from ancestral state reconstruction where 9

the phenotype itself is assumed to evolve. We develop an efficient Bayesian inference 10

method to estimate the parameters of our model and to test the evidence for changes in 11

the phenotype distribution. We use multiple simulated datasets to show that our algorithm 12

has good sensitivity and specificity properties. Since our method identifies branches on the 13

tree on which the phenotype distribution has changed, it is able to break down a tree into 14

components for which this distribution is unique and constant. We present two applications 15

of our method, one investigating the association between HIV genetic variation and human 16

leukocyte antigen, and the other studying host range distribution in a lineage of Salmonella 17

enterica, and we discuss many other potential applications. All the methods described 18

in this paper are implemented in a software package called TreeBreaker which is freely 19

available for download at https://github.com/ansariazim/TreeBreaker 20
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Introduction 21

Understanding phenotypic variations and their relative association with genotypic 22

variations is one of the central aims of molecular biology. The expression of a phenotype is 23

usually dependent on both genetic and environmental factors, with heritability measuring 24

their relative importance [1]. When the heritability is non-zero, genetically similar 25

individuals are more likely to have similar phenotypes, and this is especially relevant for 26

species that reproduce clonally, so that closely related individuals are virtually identical 27

genetically. However, genotype-phenotype maps are usually complex and phenotypic 28

plasticity means that phenotype expression can differ even for genetically identical 29

individuals due to dependency on environmental factors [2, 3]. Conversely, observing closely 30

related individuals with the same phenotype does not necessarily imply a low importance of 31

environmental factors, since close relatives are also likely to live in the same environmental 32

conditions [1]. The same effect also occurs in sexually reproducing species as evolutionary 33

forces such as spatial population structure, environmental pressures and inbreeding result 34

in groups within which individuals are more genetically homologous, and therefore more 35

phenotypically similar, than individuals from different groups [4, 5]. 36

To understand the relationship between a phenotype and a genotype, it is necessary to 37

investigate how the phenotype is distributed according to genotypic values. This requires 38

to quantify how the genotypes are related to each other which is often achieved using 39

phylogenetic trees [6]. For clonal organisms, the tree may represent the clonal genealogy of 40

how individuals are related with one another for non-recombinant regions [7, 8]. For sexual 41

organisms, the phylogenies may be built for individual genomic loci, resulting in so-called 42

gene trees by contrast with the species tree which contains them [9]. Visual inspection 43

of a phylogenetic tree with tips annotated by phenotypes gives a first impression of their 44
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relationship, and this type of figure features heavily in the molecular biology literature of 45

both clonal and sexual organisms. A more quantitative approach is however needed if the 46

tree is too large to be shown, the interesting patterns too subtle to be seen, or to estimate 47

evolutionary parameters and test competing hypotheses. 48

Phylogenetic comparative methods can be used, for example to test the phylogenetic 49

signal in a phenotype [10, 11] or to compare the association between two phenotypes 50

given the phylogeny [12], but do not provide a complete description of the phenotype 51

distribution on a tree. Ancestral state reconstruction of the phenotype given the tree 52

[13, 14] is often used for this and can provide quantitative insights, for example an 53

estimate of the phenotypic evolutionary rate. The maximum likelihood approach to 54

ancestral state reconstruction [15] has been extended in many ways by refining the model 55

of phenotypic evolution on the tree, for example allowing to detect branches where the 56

phenotypic evolutionary rate changes [16, 17]. However, ancestral state reconstruction is 57

problematic for any phenotype with imperfect heritability: identical genotypes can then 58

have different phenotypic values, implying an infinitely high rate of phenotypic evolution 59

between them which is not biologically meaningful. Other difficulties arise if the phylogeny 60

is imperfectly reconstructed or the phenotype inaccurately measured, which is always a 61

possibility. Consequently, ancestral state reconstruction does not always provide reliable 62

results, for example when applied to phylogeography [18]. 63

When heritability is not complete, a phenotypic measurement can be seen as just one 64

realisation from the phenotypic distribution of a given individual, with this distribution 65

being what evolves on the tree rather than the phenotypic measurement itself. Based 66

on this idea, here we present a novel Bayesian statistical method which takes as input a 67

phylogenetic tree and discrete tip phenotype measurements, and identifies the branches 68
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on which the phenotype distribution has changed. The tree is therefore divided into 69

monophyletic and paraphyletic groups that have unique distributions over the phenotype 70

space. We also perform Bayesian hypothesis testing [19] to assess whether there is evidence 71

for different parts of the tree having distinct phenotype distributions. We build a stochastic 72

model in which changepoints occur on a phylogenetic tree [20], each of which affects the 73

distribution of observed phenotype for the descendent leaves. Careful parametrisation 74

enables the use of a fixed-dimension Monte-Carlo Markov Chain (MCMC) algorithm [21] 75

to sample from the posterior distribution of the model parameters, and we reserve reversible 76

jumps [22] to compare the model with a model without any changepoint. In the following 77

sections we present our model, inference procedure and the results of simulation studies to 78

measure the sensitivity and specificity of our method. Finally we present the application 79

of our method to two real datasets in HIV evasion and bacterial ecology. 80
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Model and Methods 81

Description of the model 82

We consider that changepoints happen as a Poisson process with rate λ on the branches 83

of the input tree. For a phenotype with K categories, we model each changepoint event 84

as a new probability mass function q = (q1, . . . , qK) which specifies the probability of 85

having each of the K phenotypes for the individuals affected by the changepoint. Figure 86

1 illustrates the model for K = 2. The observed phenotype of each individual is shown on 87

the tips of the tree which are coloured as black and red. Changepoints have happened on 88

three branches which divided the tree into four sections (white, blue, green and yellow). 89

All individuals in the same section have the same distribution q over the phenotype space. 90

Let N and B denote the number of tips and branches in the tree, respectively (if the tree is 91

bifurcating thenB = 2N−2). We define b = (b1, . . . , bB) as a binary vector withB elements 92

which represent the branches of the tree. If branch i holds at least one changepoint, then 93

bi = 1 else bi = 0. Let m denote the number of sections of the tree divided according to b 94

(Figure 1), the likelihood of the observed phenotypes of the individuals D is given by: 95

p(D|q1, . . . , qm, b) =

K
∏

j=1

q
x1j

1j · · ·
K
∏

j=1

q
xmj

mj (1)

where qi = (qi1, · · · , qiK) and qij gives the probability that an individual in section i 96

expresses phenotype j, so that
∑K

j=1
qij = 1 for i = 1, . . . ,m. We also define xi = 97

(xi1, . . . , xiK) where xij is the number of observed individuals in section i which have 98
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expressed phenotype j, so that
∑m

i=1

∑K
j=1

xij = N . 99

The prior probabilities of branch i of length li having no or at least one changepoint are 100

respectively equal to Pr(bi = 0|λ) = e−λli and Pr(bi = 1|λ) = 1− e−λli , so that: 101

Pr(b|λ) =
B
∏

i=1

(e−λli)1−bi(1− e−λli)bi (2)

We consider a flat Dirichlet prior for all qi such that p(qi) = Γ(K), and an exponential 102

prior on λ with parameter 1/T where T =
∑B

i=1
li is the sum of the branch lengths of the 103

tree. This implies a parsimonious prior expectation of one for the number of changepoints 104

on the tree. 105

We are now in a position to describe the posterior distribution of the model parameters 106

qi, . . . , qm, b and λ: 107

p(q1, . . . , qm, b, λ|D) = p(D|q1, . . . , qm, b, λ)p(q1, . . . , qm, b, λ)/p(D)

∝ p(D|q1, . . . , qm, b)p(q1) . . . p(qm)p(b|λ)p(λ)

∝ (Γ(K))m
m
∏

i=1

K
∏

j=1

q
xij

ij

B
∏

s=1

(e−λls)1−bs(1− e−λls)bsTe−Tλ (3)

The dimensionality of the model parameters changes with b. If b divides the tree into two 108

sections then there are four parameters (q1, q2, b, λ) in the model whereas if b divides the 109

tree into three sections then there are five parameters (q1, q2, q3, b, λ) in the model. This 110

could potentially be addressed using reversible jumps [22]. Instead we marginalise all the 111
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qi which results in a fixed dimension model. The marginal posterior density for b and λ is 112

given by: 113

p(b, λ|D) =

∫

q1

· · ·

∫

qm

p(D|q1, . . . , qm, b)p(q1) · · · p(qm)dq1 · · · dqmp(b|λ)p(λ)/p(D)

∝ (Γ(K))m
m
∏

i=1

K
∏

j=1

∫

1

0

q
xij

ij dqij Te−Tλ

B
∏

s=1

(e−λls)1−bs(1− e−λls)bs

∝ (Γ(K))m
m
∏

i=1

∏K
j=1

Γ(xij + 1)

Γ(K +
∑K

j=1
xij)

Te−Tλ

B
∏

s=1

(e−λls)1−bs(1− e−λls)bs (4)

Inference 114

We use a MCMC [21] to sample from the posterior distribution of b and λ. We use a 115

symmetric proposal for b where the proposed value b⋆ is the same as b except for one 116

randomly chosen branch i for which b⋆i = 1− bi. Therefore if the randomly chosen branch i 117

holds a changepoint in b, it does not hold a changepoint in b⋆ and vice versa. To update λ 118

we propose from a normal density with mean equal to the current value of λ and variance 119

equal to 0.1, i.e. λ⋆|λ ∼ N (λ, 0.1). When the proposed λ⋆ is lower than zero, the move is 120

rejected and the chain stays at λ. The calculation of the Metropolis-Hastings acceptance 121

ratios are given in the supplementary material. 122

Model selection 123

We want to assess whether there is any evidence for differential distribution of phenotype 124

on different parts of the tree. We compare our model (indexed 1) against the null model 125
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(indexed 0) of no changepoints on the tree, which is equivalent to λ = 0, by calculating 126

the Bayes factor [19] for the two models. To do this we use reversible jump moves [22] 127

to sample from the joint distribution p((j,θj)|D) where j is the index of the model and 128

θj is the parameters of model j. For a move from null to alternative (0 to 1) model, to 129

match dimensions we generate two random variables u and v and map them such that 130

(λ⋆, b⋆) = (u,v). In addition we set the proposal distribution for u and v, q(u,v) in model 131

0 to be the same as the prior distribution on λ and b in model 1. Thus for a proposed 132

move from model 0 to 1 we have: 133

q(u,v) = q(u)q(v|u) = Te−Tu

B
∏

i=1

(e−uli)1−vi(1− e−uli)vi (5)

The probability of acceptance of this move is given by: 134

h ((0) → (1, (λ⋆, b⋆))) = 1 ∧
p(1, (λ⋆, b⋆)|D)p(1 → 0)

p(0|D)p(0 → 1)q((u,v)|0)

∣

∣

∣

∣

∂(λ⋆, b⋆)

∂(u,v)

∣

∣

∣

∣

= 1 ∧
p(1, (u,v)|D)p(1 → 0)

p(0|D)p(0 → 1)q((u,v)|0)
× 1

= 1 ∧
p(D|(u,v), 1)p((u,v)|1)p(1)p(1 → 0)

p(D|0)p(0)p(0 → 1)q((u,v)|0)

= 1 ∧
p(D|(u,v), 1)p(1 → 0)

p(D|0)p(0 → 1)
(6)

A move from model 1 with parameters (λ, b) to model 0 is made deterministically and is 135

accepted with probability: 136
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h((1, (λ, b)) → (0)) = 1 ∧
p(D|0)p(0 → 1)

p(D|(λ, b), 1)p(1 → 0)
(7)

We set p(1 → 0) = 0.05 and p(0 → 1) = 0.5 and we assume the prior probabilities of the 137

two models are equal p(0) = p(1) = 0.5. 138

Simulation studies 139

To investigate the performance of our method, we performed two simulation studies each 140

of which involved repetition over many simulated datasets. In all of these simulations for 141

simplicity we used a binary phenotype and sampled from the posterior distribution of the 142

model parameters using 107 iterations of our MCMC algorithm. All of these simulations 143

were implemented for a single genealogy simulated using the coalescent model [23] with 144

1000 leaves shown in Figure S1. First we tested how the number of individuals affected 145

by a changepoint and the magnitude of the change in phenotype distribution affects the 146

statistical power to detect a changepoint. Secondly we tested the model selection procedure 147

and the relationship between the posterior expectation of number of changepoints against 148

the true numbers of changepoints. Thirdly we quantified the effect of threshold on the 149

point estimate of b. 150
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Results 151

Simulation study of statistical power 152

This simulation study was designed to assess the power of the method to detect 153

changepoints on the branches of the tree. The power depends on two factors: the magnitude 154

of the change in the distribution over the phenotype categories which we refer to as p and the 155

number of individuals affected by the changepoint which we refer to as n. The probability 156

of each phenotype is 0.5 before the changepoint, and after the changepoint the probability 157

of one phenotype increases by p whereas the probability of the other phenotype decreases 158

by p. Changepoints with small p are difficult to detect as they result in small changes 159

to the observed pattern of distribution of phenotype that are likely to happen by chance 160

alone. Changepoints with small n are also difficult to distinguish as lack of data makes 161

the inference more uncertain. We expect that changepoints with large p and large n to be 162

easier to detect. 163

The space of n × p was divided into a grid where n = (10, 30, 60, 130, 330, 500) and p = 164

(0.1, 0.2, 0.3, 0.4, 0.5). For each node of the grid (pi, nj) an appropriate branch of the tree 165

shown in Figure S1 was chosen to hold a changepoint, with the remaining branches being 166

left free of changepoints. For each node of the grid we simulated 50 datasets each with a 167

single changepoint. Figure 2 shows for each node of the grid the mean marginal posterior 168

probability of having a changepoint for the branch with the changepoint. A changepoint 169

that causes large changes to the distribution of the phenotype categories and affects a large 170

number of individuals is inferred with a high posterior probability. Changepoints that cause 171

small changes in the distribution or affect few individuals or both result in small posterior 172

probability of having a changepoint. 173
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Simulation study of model and parameter inference 174

This simulation study was designed to assess our model selection procedure, the effect of 175

number of changepoints on the inference and the effect of cutoff threshold on the point 176

estimate of b. We simulated 100 datasets for each case of 0, 1, . . . , 10 changing branches 177

in the tree. The distribution over the phenotypes was uniformly sampled in each case. For 178

each simulated dataset the Bayes factor of our model against null model was estimated 179

(Figure 3A). For the 100 datasets with no changepoint on the tree, all the estimated Bayes 180

factors indicated no significant evidence against the null model (no changepoint on the 181

tree) for any of datasets. Changepoints that result in small changes in the distribution or 182

affect small number of individuals will not be detected. Therefore for some of datasets with 183

a single changing branch there is no significant evidence against the null model, but for 184

some there is strong evidence against the null model. As the number of changing branches 185

on the tree increases, the number of datasets with significant evidence for the alternative 186

model increases. Overall, our method is conservative and should not result in significant 187

evidence for the existence of changepoints unless there is substantial data to support it. 188

Next, we used the simulations to gauge the relationship between the true number of 189

simulated changing branches and its posterior expectation, estimated using Bayesian model 190

averaging [24]. Figure 3B illustrates the results. In the absence of any changepoint, the 191

mean of posterior expectation of number of changing branches is always close to zero. When 192

there are changing branches on the tree, the posterior expectation is downward biased 193

compared to the real value. This is expected as our method cannot detect a changepoint 194

that results in small changes in the distribution or affects few individuals or both. As a 195

result our method is conservative in estimating the number of changepoints on the tree. 196
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In addition we used the simulation results to assess the effect of a cutoff threshold on 197

the point estimate of b. For each of the datasets we inferred a point estimate for b by 198

applying a threshold to the consensus representation of b (marginal posterior probability 199

of having a changepoint for each branch of the tree). The threshold was changed from 0 200

to 1 with increments of 0.01. For each threshold value, the false positive rate and the true 201

positive rate across all of our 1100 simulations was calculated. Figure 3C shows the true 202

positive rate as a function of the false positive rate. This so-called ROC curve has a high 203

area under the curve of 0.891, indicative of good performance of the algorithm [25]. The 204

choice of the cutoff threshold is a trade off between minimising the number of incorrectly 205

inferred changepoints and maximising the number of correctly inferred changepoints. This 206

choice depends on the application and the weight given to sensitivity and specificity in the 207

application. 208

Detecting HIV escape mutations from cytotoxic T-lymphocytes 209

Human leukocyte antigen (HLA) type I genes encode proteins that are present on the 210

surface of almost all human cells. When a cell is infected with a virus, the viral protein 211

is cleaved and small segments of it called epitopes are presented on the cell surface by 212

the HLA encoded proteins. These proteins have a certain amount of affinity and thus 213

in people with the same HLA allele, the same epitope will be recognised and presented 214

on the cell surface. Cytotoxic T lymphocytes (CTLs) are part of the adaptive immune 215

response and recognise these epitopes before destroying the infected cell. A mutation in 216

one of these epitopes can result in no or weak binding of the peptide to the HLA encoded 217

protein or result in lack of recognition by the T cell receptor. Such mutations lead to the 218

virus escaping the immune response of the host. As these mutations can have a fitness cost 219
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on transmission to a host with different HLA repertoire, they may revert back to the wild 220

type [26]. Thus the escape mutations on the virus genome are correlated with the host’s 221

HLA alleles. 222

However to detect these associations one has to account for the possible geographical 223

structuring that could be present in the data. For instance different HCV genotypes are 224

endemic in different parts of the world and HLA allele profiles are also distinct in different 225

populations across the world. When sampling is across different countries or ethnic groups, 226

it is possible that HLA alleles will be associated with specific clusters of the virus simply 227

because of geographical structuring. Several methods have been suggested to account for 228

the non random distribution of HLA alleles on the tips of the phylogenetic tree [27, 28, 29]. 229

We propose that using our algorithm, one can determine if host HLA alleles are randomly 230

distributed on the tips of the virus phylogenetic tree or whether there are clades where 231

the distributions are distinct from each other. The result can then be used to perform 232

stratified association studies conditioned on the clades with distinct HLA distribution. 233

We used previously published data [30] on a cohort of 261 South Africans to detect 234

HLA-driven evolution of HIV. In this study whole genome viral sequences were aligned 235

and then divided into ten fragments of 1000 nucleotides overlapping by 50 nucleotides. 236

Each partition was then used to produce a maximum likelihood phylogenetic tree. The 237

HLA alleles of the patients were also typed. We used the ten phylogenetic trees from this 238

dataset and the HLA information of the patients as the inputs of our algorithm, considering 239

the presence and absence of each HLA type separately. This resulted in 1197 runs of our 240

software. Figure S2 shows the histogram of the Bayes factors estimated by each run. Only 241

the HLA allele B57 and the tree of the first region of the HIV genome had a Bayes factor 242

conclusively rejecting the null model of no association. Figure 4 shows the distribution of 243
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the B57 HLA allele on the tips of the first virus phylogeny. There is a clade of twelve viral 244

individuals where ten of the hosts have the B57 allele, whereas across the rest of the tree 245

there are only seven other hosts with B57 HLA alleles. This clear non random distribution 246

of the HLA B57 could be due to transmission of the virus between closely related people. 247

However we do not detect the same association between the other nine trees from the rest 248

of the genome and HLA B57. An alternative explanation may be that HLA B57 has a 249

significant effect on the evolution of the first 1000 nucleotide of the virus, since HLA B57 250

is associated with slow progression to disease following HIV infection [31, 32]. 251

Inferring host range within a lineage of Salmonella enterica 252

Salmonella enterica is a bacterial pathogen made of multiple lineages with different host 253

ranges [33, 34, 35]. Many lineages can infect a wide range of animals, whereas some are 254

mostly found in specific hosts and yet others have become restricted to a single host type, 255

for example the Typhi and Paratyphi A lineages which evolved in convergence towards 256

infecting only humans [36]. The Typhimurium DT104 lineage has been responsible for 257

a global multidrug resistant epidemic since the 1990s in both humans and farm animals 258

[37, 38, 39]. Typhimurium DT104 can infect both animals and humans, but it is unclear if 259

there are sublineages within DT104 that infect one host type more than the other, and to 260

what extent the epidemics in animals and humans are associated. Traditional molecular 261

typing techniques do not provide enough genetic resolution to answer this question. A 262

recent study sequenced the whole genomes of 142 human strains and 120 animal strains 263

isolated in Scotland between 1990 and 2011 [40]. A maximum-likelihood tree was computed 264

based on the non-recombinant core genome using RAxML [41] and here we applied our 265

algorithm to this tree, using animal versus human source as the phenotype. 266
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The null model of random distribution of hosts around the tree was decisively rejected 267

in favour of the changepoint model, with the reversible jump MCMC never exploring the 268

null model after initial burnin. The posterior mean number of changing branches was 269

9.7, with 95% credibility interval ranging from 5 to 16. Changes in the host range were 270

especially evident on four branches (Figure 5), corresponding to posterior probabilities of 271

99%, 95%, 90% and 72%, with two further branches with probability 54%, one with 39% 272

and all others below 20%. Amongst the four branches with highest support, the oldest 273

corresponds to an increase in the frequency of infection of animals for a large clade of 274

265 isolates within DT104. The other three branches all occurred within this clade, and 275

correspond to three separate further increase in the frequency of infection of animals for 276

three subclades containing 12, 15 and 59 isolates, respectively. These results confirm and 277

refine the original conclusions of the study in which the data was presented [40], that the 278

epidemic of DT104 in Scotland was not homogenous in humans and animals. Specifically, a 279

sublineage increasingly became restricted to infecting only animals and not humans, which 280

could be the result of either adaptation or niche segregation. 281
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Discussion 282

This study is based on the concept of phenotype distribution, which is the distribution 283

of phenotypes that a given genotype may express depending on environmental factors, as 284

a result of phenotypic plasticity [2, 3]. We presented a model in which the phenotype 285

distribution is allowed to change along the branches of a phylogenetic tree, and an efficient 286

Bayesian method to perform inference under this model. Given phenotype observations 287

for the leaves of a phylogeny, we showed that our method can be used to detect branches 288

on which the phenotype distribution changed significantly. Consequently, a phylogeny can 289

be demarcated into lineages with distinct phenotype distributions. 290

There are many ways in which our approach could be extended, for example to be applicable 291

to continuous rather than categorical phenotype measurements, or to allow the evolution of 292

the phenotype distribution to be more progressive, for example by making this distribution 293

after a changepoint correlated with, rather than independent from, the distribution before 294

the changepoint. We did not attempt to model the potential for error in either the 295

input phylogeny or input phenotype measurements. Uncertainty about the tree could be 296

accounted for by applying our method to a sample of trees from the posterior distribution of 297

the trees that are produced by Bayesian phylogenetic software such as MrBayes and BEAST 298

[42, 43]. However, we expect that a little inaccuracy in the tree would not drastically affect 299

the result of our method, and likewise for the phenotype measurement, because the results 300

depend on phenotype distributions which are themselves stochastic. This is unlike methods 301

that consider changes in the phenotype itself, such as ancestral state reconstructions [15], 302

for which a mistake in a single phenotype measurement implies an additional evolutionary 303

event for the phenotype. When considering phenotypes with imperfect heritability [1], 304

we argue that modelling the evolution of the phenotype distribution is more biologically 305
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relevant than modelling the evolution of the phenotype measurement. 306

There are many research areas in which the method we proposed could be useful, and 307

we presented two examples in HIV immunology and bacterial ecology. For example, our 308

approach could help provide a definition of microbial species. Detecting incipient speciation 309

requires to distinguish between ecologically distinct populations in the same community 310

[44, 45, 46]. In this case the phenotype would be ecological or pathogenicity measurements, 311

and the aim is to determine if different phylogenetic clades have distinct distributions 312

over the measurable ecological quantities [47, 48]. Another potential area of application is 313

genome wide association studies (GWAS) in organisms that reproduce clonally. Population 314

structure is a confounding effect in GWAS [49] and this is especially important for clonal 315

organisms [50]. One way to account for this population structure would be to use our 316

method to find the clades on the phylogenetic tree where the phenotype of interest is 317

uniquely distributed and perform GWAS stratified by those clusters. 318
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q=(0.9,0.1)

q=(0.4,0.6)

q=(0.1,0.9)

q=(0.7,0.3)

Figure 1. Illustration of the model. Changepoints occurred on three branches, which
divided the tree into four sections (white, blue, green and yellow), each of which has
different probabilities of the first (black) and second (red) phenotypes.
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Figure 2. Effect of number of strains and change in distribution. Contour plot of the
mean posterior probability of having a changepoint as a function of number n of affected
individuals and the magnitude p of the change in distribution. The space of n× p was
divided into a grid where n = (10, 30, 60, 130, 330, 500) and p = (0.1, 0.2, 0.3, 0.4, 0.5).
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Figure 3. Simulation study of model and parameter inference. (A) Bayes factor values
for the changepoint model versus the null model, as a function of the number of changing
branches used in the simulation. (B) Distribution of posterior mean number of changing
branches as a function of the true number of simulated changing branches. (C) ROC
curve: true positive rate as a function of the false positive rate.

28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2016. ; https://doi.org/10.1101/040980doi: bioRxiv preprint 

https://doi.org/10.1101/040980
http://creativecommons.org/licenses/by/4.0/


Not B57
Not B57Not B57Not B57B57Not B57Not B57Not B57Not B57Not B57B57Not B57Not B57Not B57Not B57Not B57Not B57

Not B57
Not B57Not B57Not B57

Not B
57

Not B
57

Not B
57

Not B
57B57

Not B
57Not B

57

Not B
57

Not B
57

Not B
57

Not 
B57

Not
 B

57

Not
 B

57

Not
 B

57

Not
 B

57Not
 B

57

Not
 B

57

Not
 B

57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57N

ot
 B

57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot B

57
N

ot B
57

N
ot B

57
N

ot B
57

N
ot B

57
N

ot B
57
N

ot B
57

N
ot B

57
N

ot B
57

N
ot B

57

N
ot B

57
N

ot B
57

B
57N

ot B
57

N
ot B

57
N

ot B
57

N
ot B

57

N
ot B

57N
ot B

57

N
ot B

57

N
ot B

57

N
ot B

57

N
ot B57

N
ot B57

N
ot B57

N
ot B57

N
ot B57

Not B57Not B57

Not B57Not B57

Not B57

Not B57

Not B57

Not B57Not B57

Not B57

Not B57
Not B57

Not B57Not B57

Not B57

Not B57Not B57
Not B57

Not B57

Not B57
Not B57

Not B57Not B57Not B57Not B57
Not B57Not B57
Not B57Not B57Not B57Not B57
Not B57Not B57Not B57Not B57Not B57Not B57Not B57
Not B57

Not B57
Not B57

Not B57
Not B57
Not B57
Not B57
Not B57
Not B57

Not B57

Not B57
Not B57

Not B57

Not B57

Not B57

Not B57

Not B57
Not B57

Not B57

Not B57

Not B57

Not B
57

Not B
57

Not B
57

Not B
57

Not B
57

Not B
57
Not B

57

Not B
57

Not B
57
Not B

57

Not 
B57

Not
 B

57

Not
 B

57Not
 B

57

Not
 B

57

Not
 B

57 Not
 B

57

Not
 B

57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

N
ot

 B
57

B
57

B
57

N
ot

 B
57 B
57 B

57 B
57

B
57

B
57

B
57

N
ot

 B
57 B
57 B

57
N

ot
 B

57
N

ot
 B

57
N

ot
 B

57
N

ot
 B

57
N

ot
 B

57
N

ot
 B

57
N

ot
 B

57
N

ot
 B

57
N

ot
 B

57
N

ot
 B

57

N
ot B

57
N

ot B
57 N

ot B
57

N
ot B

57
N

ot B
57

N
ot B

57
N

ot B
57

N
ot B

57
N

ot B
57 N

ot B
57

N
ot B

57
N

ot B
57 N

ot B
57

N
ot B

57 N
ot B

57
N

ot B
57

B
57

N
ot B

57
N

ot B
57

N
ot B

57
N

ot B
57

N
ot B

57

N
ot B57

N
ot B57

N
ot B57

N
ot B57

N
ot B57

Not B57

Not B57
Not B57

Not B57
Not B57

Not B57

Not B57

Not B57
Not B57

Not B57

Not B57

Not B57

Not B57 Not B57

Not B57
Not B57

Not B57

Not B57
B57Not B57

Not B57

Not B57
Not B57

Not B57

Not B57
Not B57

Not B57

Not B57
Not B57

Not B57
Not B57

Not B57
Not B57

Not B57
Not B57 B57

Not B57Not B57

Figure 4. Application to HIV immunology. Phylogenetic tree of 261 HIV infected
individuals from the first 1000 nucleotides with the tips coloured according to presence
and absence of HLA B57 in the host. The thickness and colour of the branches are
proportional to the posterior probability of having a changepoint.
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Figure 5. Application to Salmonella ecology. Maximum-likelihood phylogenetic tree
from a previous study of Typhimurium DT104 [40], with the color on the right indicating
the isolates came from either human (red) or animal (black) sources. The results of our
algorithm are shown by the thickness and redness of the branches, which are both
proportional to the posterior probability of host range change on the given branch.
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