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Abstract

Cellular decision making is based on regulatory circuits that associate signal thresholds to

specific physiological actions. This transmission of information is subjected to molecular

noise what can decrease its fidelity. Here, we show instead how such intrinsic noise

enhances information transfer in the presence of multiple circuit copies. The result is due

to the contribution of noise to the generation of autonomous responses by each copy, which

are altogether associated with a common decision. Moreover, factors that correlate the

responses of the redundant units (extrinsic noise or regulatory cross-talk) contribute to

reduce fidelity, while those that further uncouple them (heterogeneity within the copies)

can lead to stronger information gain. Overall, our study emphasizes how the interplay

of signal thresholding, redundancy, and noise influences the accuracy of cellular decision

making. Understanding this interplay provides a basis to explain collective cell signaling

mechanisms, and to engineer robust decisions with noisy genetic circuits.
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INTRODUCTION

The biochemistry of cells determines the operation of biological circuits. This biochem-

istry is inevitable noisy (McAdams and Arkin, 1997; Elowitz et al., 2002; Lestas et al.,

2010) what immediately suggests a limitation to the reliable function of these circuits,

and thus many early studies examined how the problem of achieving correct operation

could nevertheless be solved. Mechanisms such as kinetic proofreading (Hopfield, 1974),

or integral feedback control (Yi et al., 2000) emerged then as some fundamental solutions.

One might ask, on the other hand, to what extent noise could indirectly represent an ad-

vantage. An example is found when cell populations, in which noise leads to phenotypic

variability, display heterogeneity in stress responses that represent a crucial element for

survival, e.g., (Bishop et al., 2007).

In a more direct situation, noise can turn into a indispensable ingredient to facilitate

new classes of behaviors not achievable otherwise (Balaban et al., 2004; Süel et al., 2006;

Acar et al., 2008; Turcotte et al., 2008; Raj et al., 2010). These valuable behaviors are

typically related to cellular decisions, which essentially involve changes in the expression

phenotype. Specific biological circuits were consequently shown to employ noise to induce

the expression of transient phenotypes (Süel et al., 2006), or to switch among distinct sta-

ble states (Acar et al., 2008). That many of these probabilistic dynamics relate to systems

whose actions are susceptible to limiting signal values (Feinerman et al., 2008) emphasizes

the connection between noise, cellular decisions, and threshold response circuits.

The beneficial aspect of noise also forces us to revisit some of the early arguments

on the relationship between stochasticity and the structure of biological systems (Lerner,

1954; McAdams and Arkin, 1999). In particular, the existence of genetic redundancies

was typically interpreted as a mean to enhance reliability of operation (i.e., noise as a
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disruptive element). This role appeared in consequence as a plausible rationale for the

evolutionary maintenance of several copies of a gene or circuit (Nowak et al., 1997).

Instead, we focus here on redundancy as a genetic architecture that, when coupled to

the e↵ect of noise in threshold response circuits, enables unique information-processing

functions.

We examined this issue within the precise framework of information theory. Biolog-

ical circuits are in this way interpreted as communication channels, in which an input

signal (x) originates –as a result of a cellular decision– an expression output (y), with a

given probability (Fig. 1A). The uncertainty on the input signal is then reduced by the

decision process, whose set of outcomes tells us about the input distribution (Levchenko

and Nemenman, 2014; Bowsher and Swain, 2014). This association is properly quan-

tified by the mutual information (MI), an information-theoretic measure describing the

correlation between the input signal and the output phenotype (Fig. 1A). Notably, this

framework was recently exploited to quantify the functionality of transcriptional regula-

tory elements (Tkacik et al., 2008; Libby et al., 2007; Yu et al., 2008), the accuracy of cell

location during developmental processes (Dubuis et al., 2013), and the maximal informa-

tion transmission capacity of noisy signaling pathways (Cheong et al., 2011; Hansen and

O’Shea, 2015). The relevance of redundancies was already manifested in some of these

results.

Here, we first illustrate how intrinsic noise (from stochastic biochemical reactions) can

help to gain information. We then show that information transfer can be amplified, if the

combined response of multiple genetic units is considered. The reported amplification is

shown to rely on the presence of di↵erent factors that contribute to generate variability

in the individual response of each unit, like intrinsic noise or genetic heterogeneity (i.e.,

di↵erences in the biochemical properties). This variability helps to enlarge the capacity
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of the global output to represent the input distribution. In contrast, we also discuss

how factors reducing variability in the responses, like a noise source common to all units

(extrinsic noise) or regulatory cross-talk, eventually mitigate the gain.

RESULTS

Intrinsic noise can amplify information transfer

We first analyzed a minimal regulatory circuit implemented by a gene (whose expression

we denote as y) autoactivating transcriptionally its own production (Wall et al., 2004).

This is a genetic implementation of a threshold device that, by acting deterministically,

becomes activated only if the input signal x crosses a particular limit (Fig. 1B). When

the signal is stochastic, the response depends of course on the relationship between this

threshold and the mean (and variance) of the underlying distribution P (x) (considered

for simplicity as a uniform distribution; Fig. 1B). A symmetric distribution centered on

the threshold would thus originate equally likely the two output values (OFF/ON) (i.e.,

one bit of information); while the same distribution centered above/below the threshold

would produce biased responses (i.e., less than one bit of information).

However, the previous behavior can be a↵ected by the extensive noise sources act-

ing on biological circuits (McAdams and Arkin, 1997; Elowitz et al., 2002; Lestas et al.,

2010). One could ask then to what extent the circuit is reliably representing the signal.

To quantify how much information the response conveys about the input, we made use of

MI (Levchenko and Nemenman, 2014; Bowsher and Swain, 2014) (Fig. 1A). We thus com-

puted the response to a number of signals drawn from a fixed distribution and strength

of intrinsic noise (black dots in subpanels of Fig. 1C), which allowed us to quantify the

value of MI. This value changes with noise [main plot in Fig. 1C; the mean of P (x) is
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above the threshold, red distribution in Fig. 1B]. For weak noise levels, the circuit works

essentially as a deterministic switch, it is always y = ON as x > threshold. For strong noise

levels, the device cannot distinguish signal fluctuations, then its behavior is essentially

random. In both cases, the information that the gene processes is limited (subpanels of

Fig. 1C, red curves denote the averaged stimulus-response profiles). But MI presents a

maximum for an intermediate noise level. In this regime, the circuit can express its two

possible states due to noise (i.e., low values of x can cross the threshold) (Gammaitoni,

1995), what precisely contributes to a better representation of the input signal (see also

Fig. S1); a characteristic behavior of noisy nonlinear systems known as stochastic reso-

nance (SR) (Gammaitoni et al., 1998).

Moreover, SR disappears when the mean of P (x) is close to the threshold, as stochas-

ticity is now not required to reach the two possible states. In this case, noise always

reduces information transfer (Fig. 1D, curves for N = 1). Note here how MI does exhibit

an upper limit of 1 bit when the mean of P (x) exactly matches the threshold, and the

circuit is noiseless. MI decreases with noise because signal values above/below the thresh-

old originate in some cases stochastic crossings (e.g., y = ON when x < threshold), and

the information content in absence of noise is already high (note in contrast that, in the

scenario of SR, MI was very low in absence of noise). Additionally, Figure 1D displays a

situation in which a maximum in MI is nevertheless observed (curves for N = 2). This is

obtained by increasing the number of devices processing the same input, with y represent-

ing in this case the sum of all individual outputs; a phenomenon called suprathreshold

SR (Stocks, 2000). What is apparent here is that redundancy boosts information transfer,

given a fixed noise level.
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Genetic redundancy enhances information transfer

The addition of extra copies of the threshold device, i.e., genetic redundancy, appears then

as a potential mechanism to increase the transmission of information in the presence of

intrinsic noise. Consider, for instance, a situation in which two devices read in parallel the

same input signal, assuming again two possible values of gene expression for each unit.

The overall output alphabet (Shannon, 1948) consists of three letters: {0 (both copies

OFF), 1 (one OFF the other ON), 2 (both ON)}. The new alphabet is linked, of course, to

the action of independent (intrinsic) noise sources acting on the two genes, which allows

each device to produce an autonomous response (with noise-induced threshold crossings).

The sum of individual responses would give, accordingly, a global output distribution

P (y) constituted by three peaks. The extended alphabet helps therefore to enlarge the

capacity of the output to represent the input variability; in other words, it contributes to

linearize the averaged stimulus-response profile (Fig. 2A, see also Fig. S2).

Both the number of units and the type of nonlinearity influence the increment of

information transfer. In Figure 2B, we introduced three di↵erent threshold devices (Wall

et al., 2004) to show how MI increases with redundancy. For each type, MI relative to the

case of no redundancy (i.e., a single unit) was plotted. Specifically, we examined a simple

regulated unit, a bistable expression system implemented through a positive feedback (the

architecture that we discussed before), and an excitable device constituted by interlinked

positive and negative feedbacks [implemented as the one linked to transient di↵erentiation

in Bacillus subtilis (Süel et al., 2006)]. The output of all these devices is given by a

continuous variable representing gene expression (note that the response was previously

regarded as OFF/ON). This allowed identifying discrepancies in terms of MI among di↵erent

gene regulatory circuits. In particular, the largest amplification of information content

corresponds to those devices whose actions ultimately rely on discontinuous transitions

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2016. ; https://doi.org/10.1101/040931doi: bioRxiv preprint 

https://doi.org/10.1101/040931
http://creativecommons.org/licenses/by/4.0/


(i.e., the bistable and excitable systems). Out of these two systems, the excitable one

presents comparatively larger amplification, although only observed for relatively large

arrays. This is associated to the fact that, in this system, the response is entirely binary

even in presence of noise: either the signal triggers a response or not (Fig. S3). Moreover,

the gain in information transfer is much lower for the simple regulated system. In this case,

the stimulus-response profile is continuous (i.e., no discontinuous transition is produced)

what entails that one unit already has the capacity to reach a relatively large output

alphabet. The contribution of redundancy is therefore always much higher in analog-to-

digital than in analog-to-analog signaling circuits (and provided they are noisy).

Input signal distribution shapes information transfer

The specific distribution of the signal impinging on the genetic circuits can encode specific

environmental or genetic conditions (Sharpe et al., 2001), which can further modulate the

enhancement of information transfer. We first analyzed the e↵ect of the shape of P (x).

We considered three di↵erent signals acting on the array of threshold devices. A normal

distribution contributes in higher extent to increase MI with genetic redundancy (Fig. 3A).

For this distribution, the mass of x values is closer to the threshold, existing more chances

to subvert the deterministic decision of the device due to noise. We then analyzed the

e↵ect of the relationship between the threshold and the signal mean. When the mean

of P (x) is equal to the threshold, a higher increase of MI with genetic redundancy is

observed (Fig. 3B). Arguably, if the mass of x values is equally distributed above/below

the threshold, there exists again more chances for noise-induced threshold crossings. Fine-

tuning of the parameters characterizing P (x) contributes thus to a better representation

of the input signal by the global output response.
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Extrinsic noise and cross-talk limit information transfer

The most important constraint for the gain in information associated to the previous

redundant systems is the independence between the noise sources. When these are cor-

related, P (y) becomes more sharply peaked around a small subset of possible responses

(i.e., the output alphabet is more limited; Fig. 4A). This applies to biological circuits that,

in addition to intrinsic noise, also integrate the e↵ect of extrinsic fluctuations (Elowitz

et al., 2002; Swain et al., 2002). This type of noise a↵ects all genetic devices in the same

manner what eventually correlates individual outputs. Figure 4B shows how (relative)

MI decreases with the strength of extrinsic noise in an array of five bistable units. Note

however that this redundant architecture still exhibits, for di↵erent extrinsic noise levels,

a larger MI with respect to the nonredundant case (inset of Fig. 4B).

Despite the independence of the noise sources, the presence of cross-talks between

devices can similarly lead to correlations in the individual gene responses. In a genetic

context, one could imagine two independent transcription factors sharing recognition do-

mains (Masquilier and Sassone-Corsi, 1992). One could also imagine a second unit recently

emerged by duplication, and that no process of neofunctionalization yet occurred (Hit-

tinger and Carroll, 2007). Figure 4C indeed shows a decay in (relative) MI for a system of

two units when cross-talk between them increases (simulations done without accounting

for extrinsic noise). In this case, the activation of one unit drags the activation of the

other, biasing again the output alphabet (inset of Fig. 4C). Of note, the decay profile in

MI is qualitatively di↵erent in the two scenarios. Addition of extrinsic noise contributes

to limit information transfer in a progressive manner since it increasingly coordinates re-

sponses. In the second scenario, outputs are correlated once a relatively specific cross-talk

range is reached what is reflected in a more abrubt decay.
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Heterogeneity also contributes to enhance information transfer

A complementary source of individuality in information processing could be linked to the

heterogeneity within the collection of threshold devices. In the context of genetic circuits,

this corresponds to the variability in promoter strengths, ribosome-binding sites, proteins

half-lives, or protein-DNA binding a�nities; all factors that in e↵ect modify threshold

values or output responses. Adjusting for each device the values of the biochemical pa-

rameters of the model can capture this variation (Mayo et al., 2006). We specifically

explored the implication of threshold heterogeneity in the array of five bistable units.

Notably, we observed again a resonance in information transfer, but this time as a

function of the degree of heterogeneity (Fig. 5). While moderate levels of heterogeneity

allows regulatory circuits to encode complementary aspects of the input signal, hence en-

hancing information transfer, larger levels of variation originates noise-induced threshold

crossings over the whole input range, which is detrimental to represent P (x) with P (y)

(note that these crossings occur in a narrower range when less variation is considered).

Moreover, since both intrinsic noise and heterogeneity contribute to increase the trans-

mission of information, we also explored to what extent these two sources of individuality

work independently (Hunsberger et al., 2014). We found that intrinsic noise mitigates

the increase in MI due to threshold variability (inset of Fig. 5). Intuitively, higher noise

levels make indistinguishable those regulatory variations in terms of gene expression.

DISCUSSION

Binary decisions implemented by means of threshold devices appear in many engineering

and physical systems, and have been extensively studied in relation to the detection and

transmission of signals. While noise was commonly considered harmful in many of these
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scenarios, some work alternatively identified circumstances in which its presence enhances

performance (Gammaitoni et al., 1998; McDonnell and Ward, 2011). In Biology, both

the stochastic nature of biochemical reactions and the typical occurrence of thresholds –

linked, for instance, to cell fate determination– also anticipates the possibility of beneficial

e↵ects. This specifically applies to the case of gene regulatory circuits, in which molecular

stochasticity acts in many cases as a core determinant of function (Eldar and Elowitz,

2010).

In this work we discussed in detail the benefits of intrinsic molecular noise when

multiple threshold regulatory circuits process a common signal. This system exhibits a

resonance phenomenon known as suprathreshold SR (Stocks, 2000). The e↵ect establishes

the benefit of the noise-induced uncoupling of the action of each unit. This advantage

is manifested as well in a more linear relation between stimulus and response, a type of

dose-response alignment that could be important in how precise extracellular conditions

determine cell responses, and that was previously associated to negative feedbacks (Yu

et al., 2008). Our functional analysis therefore reveals redundancies not only as a genetic

architecture contributing to robustness (Kafri et al., 2006; Keane et al., 2014), or to the

adaptation to novel environments through the increase of gene expression levels (Riehle

et al., 2001; Gresham et al., 2008), but also as a mechanism increasing the capacity to

transmit reliable information (Fig. 6). We suggest that this aspect could selectively con-

tribute to the evolutionary maintenance of genetic redundancy. That multiple signaling

pathways in Saccharomyces cerevisiae overlap supports this hypothesis (van Wageningen

et al., 2010).

The balance of intrinsic/extrinsic noise also plays an important part to condition the

amount of information transferred (Fig. 6). Cells implementing regulatory circuits with

few representative molecules or living in rich environments would shift this balance to-
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wards intrinsic noise (Volfson et al., 2006). Beyond this genetic/environmental tuning,

cellular systems could avoid the loss of information, due to extrinsic noise, when the signal

operates dynamically rather than statically (Selimkhanov et al., 2014). Note that here

we considered a static operation. Our results further emphasize how heterogeneity and

cross-talk among redundant copies play opposite roles in the maintenance of information

content (Fig. 6). One could thus interpret the action of several parallel signaling path-

ways, each conveying approximately 1 bit of information, as heterogeneous copies of an

e↵ective threshold device what enhances information transmission, e.g., this was observed

in pathways for the growth factor-mediated gene expression (Uda et al., 2013).

That a global response –the sum of individual responses, in this case– implemented

by parallel processing units could lead to better performance than that of the individual

components was proposed in early models of computing, and can indeed be observed at

di↵erent levels of biological organization: from genes (this work), to living cells (Cheong

et al., 2011), to social organisms (Conradt and Roper, 2005). In addition, ideas on redun-

dancy and heterogeneity when mounting unreliable components were already present in

the initial development of fault-tolerant computation and communication (von Neumann,

1956; Moore and Shannon, 1956), and also permeate to many biological scenarios. Our

work substantiates the implications of these notions in cellular decision making by natu-

ral (van Wageningen et al., 2010) and synthetic (Dueber et al., 2007) molecular circuits,

and contributes to exemplify how the application of concepts from information theory

could lead to a more precise and quantitative understanding of cellular systems.
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THEORETICAL PROCEDURES

Modeling noisy regulatory systems

We considered a redundant system consisting of N di↵erent transcriptional units, each of

them activated by the input signal (x). The model for the i-th unit reads

dy

i

dt

= f(y
i

, x) + q

i

(y
i

, x)⇠
i

(t), (1)

where expression (y
i

) and time are appropriately rescaled to have a dimensionless model.

To model di↵erent regulatory systems (simple, bistable or excitable), we modified the

function f (see the Supplement for details of functional forms and parameter values). ⇠

i

is a stochastic process that has mean 0 and is �-correlated. Noise amplitude is given by

the square root of the sum of propensities.

To account for extrinsic noise, we introduced a new stochastic process (⇠
ex

), common

to all units, in Eq. (1) as

dy

i

dt

= f(y
i

, x) + q

i

(y
i

, x)⇠
i

(t) + q

ex

⇠

ex

(t). (2)

The correlation time of extrinsic noise is of the order of the cell cycle (the mean is also 0).

For simplicity, we here supposed a system implemented with short-lived proteins, so we

can assume that ⇠
ex

is constant within the time window that the system needs to reach

its steady state upon receiving the perturbation x.

To account for certain cross-talk between the di↵erent units of the system, we followed
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a perturbative approach to obtain

dy

i

dt

= f(y
i

, x) + q

i

(y
i

, x)⇠
i

(t) + "

NX

j=1,j 6=i

y

j

, (3)

where " quantifies the degree of cross-talk. For simplicity, we assumed q

i

not to be

dependent on y

j

for j 6= i.

To account for heterogeneity, we included variations in the threshold values of the

di↵erent units of the system. This was modeled by introducing a Gaussian random number

! of mean 1, being its standard deviation the degree of heterogeneity [f(y
i

, x,!

i

) for the

i-th unit, where !

i

is a realization; see details in the Supplement]. When accounting for

cross-talk or heterogeneity, only the intrinsic noise was considered.

Input and output variables

Here, we contemplated that the regulatory system is initially in a steady state in which

there is no input signal (i.e., x = 0 for t < 0). We then considered that x becomes activated

(at t = 0); as a step function in the case of the simple and bistable systems, or as a pulse

function (for one unit of normalized time) in the case of the excitable system. The value

of x for t > 0 was modeled as a random number following a given probability distribution.

This models an input signal whose value can fluctuate according to upstream processes,

environmental changes or molecular noise. We also regarded that the array of genes is

able to perceive this signal to change the individual expression levels (y
i

) accordingly. The

output was calculated at steady state. We assumed that the signal fluctuations occur at

a frequency that allows the genetic circuit to respond against the current signal value.

The change in gene expression due to signaling was defined by �y

i

= y

i

(x)�y

i

(x = 0).

The total di↵erential gene expression of the redundant system can be written as �y =
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P
N

i=1

�y

i

. In case of the excitable system, because the response is transient, we considered

a Boolean function operating on y

i

, setting 1 if the unit was excited or 0 if not. In the

first section of the paper (Fig. 1), the gene expression level (y
i

) was treated as a Boolean

variable (OFF/ON). In the subsequent sections (Figs. 2 – 5), it was treated as a continuous

variable.

In addition, we studied di↵erent distributions of x. We mainly included a uniform

distribution covering two orders of magnitude. In Figs. 1 and 3B, we analyzed the e↵ect

of the mean of the distribution, and the values were 0.001 (equal to the threshold value),

0.005 and 0.01. In Fig. 2, the mean was fixed to the threshold value, i.e., 0.001 in the case

of the bistable system, 1 in the simple regulated unit, and 0.9 in the excitable system.

In Figs. 4 and 5, concerning to the bistable system, the mean of the distribution of x

was 0.005. We additionally considered di↵erent forms of the distribution. In Fig. 3A, we

analyzed the e↵ect a normal or beta distributions in log scale, with the mean equal to the

threshold value.

Quantification of information transfer

We used mutual information (I) as a quantitative metric to describe how the global

output response of a single cell is sensitive to di↵erent concentrations of the input signal.

This extends the quantification by the averaged stimulus-response profile. To calculate

I, we performed 104 realizations of the pair (x, y) and then we solved numerically the

following integral

I = �
Z

+1

�1
P

�y

(s) log
2

P

�y

(s)ds+

Z
+1

�1
P

log x

(r)

⇥
Z

+1

�1
P

�y| log x(s) log
2

P

�y| log x(s)dsdr, (4)
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where we considered log x as input and �y as output variables. By using the Fokker-

Planck equation, we calculated the probability that a unit has a given gene expression

level (see more details in the Supplement).
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Figure Legends

Figure 1

Intrinsic noise can increase or decrease information transfer in threshold ge-

netic systems. (A) A noisy channel is characterized by the mutual information (MI) I

of the output (y) given an input (x). MI quantifies the dependence between input and

output distributions, P (x) and P (y) respectively. This could be estimated by a correla-

tion coe�cient, but this measure cannot discriminate some associations better captured

by MI. In the cartoon we show two cases with the same correlation (whose value we rep-

resented here by the eccentricity of the ellipses) but di↵erent MI. (B) The channel can

describe a gene autoactivating its own expression (y) in a bistable OFF/ON manner what

represents a simple example of threshold regulatory circuit. Information transfer depends

on the relationship between x and the threshold value of activation (x and y are presented

in arbitrary units). Three instances of P (x) are shown (uniform distributions with dif-

ferent means; the blue one corresponds to a mean equal to the threshold value). When

the signal is always beyond the threshold (red distribution) the circuit exhibit a nonzero

MI only when it works stochastically (note the two di↵erent output distributions). Here

we considered a binary response (OFF if y < 1, ON otherwise). (C) Resonance in MI as a

function of the strength of intrinsic noise (see Theoretical Procedures) for the red P (x)

in (B). Each subplot displays the responses of the device to 104 signal values drawn from

the described distribution (black dots), and the corresponding averaged stimulus-response

profile (red curve), for three explicit noise levels. The maximum in MI occurs when the

averaged stimulus-response profile is more linear (Fig. S1). (D) Other signal distributions,

in which intrinsic noise always reduces MI, can nevertheless exhibit a resonance when the

combined response of several units is considered (we show here the case of duplicated

threshold devices; N = 2). Colors correspond to those distributions shown in (B).
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Figure 2

Genetic redundancy amplifies information transfer in threshold genetic sys-

tems. (A) Input/output distributions depicting information transfer. The input distri-

bution (in yellow) is assumed to be uniform. Output distributions (in gray) illustrate the

processing of the signal x, either through a single copy of the threshold device (left) or

an array of multiple redundant copies (right). In the latter case, each unit of the array

receives the same signal and the output y is the sum of all the individual responses. Re-

dundancy e↵ectively enlarges the alphabet of the response. This is reflected in the output

distribution, and also in the linearization of the averaged stimulus-response profile (black

curve). (B) (Left) Array of N threshold devices whose constituent units correspond to

(1) a simple regulated unit, (2) a bistable circuit implemented with a positive feedback,

and (3) an excitable circuit constituted by two interlinked positive and negative feedback

loops. (Right) Dependence of mutual information (MI) with the number of units (N) for

each of these systems. MI relative to the case N = 1. A uniform signal distribution with

mean equal to the threshold value was considered. In the case of noiseless units, MI does

not increase with extra copies (independently of the type of unit; dashed line). See the

Supplement for details of the model of each circuit.
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Figure 3

The distribution of the signal modulates the increase of information transfer

due to genetic redundancy. (A) E↵ect of the form of the distribution on MI: (1)

uniform (covering two orders of magnitude), (2) lognormal (with standard deviation equal

to 2/3), and (3) beta in log scale (with the two shape parameters equal to 1/3). In all

cases, the mean of the distribution is equal to the threshold value. (B) E↵ect of the

mean of the distribution (here uniform) on MI: (1) equal to the threshold value, (2) and

(3) deviated from the threshold value. We considered as threshold device a bistable unit

implemented with a positive feedback in all plots (see Theoretical Procedures).
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Figure 4

Extrinsic noise and cross-talk among redundant copies limit information trans-

fer. (A) Input/output distributions depicting information transfer. In this case, corre-

lation among individual gene responses due to extrinsic noise or cross-talk reduces the

response alphabet, and generates a less linear averaged stimulus-response profile (black

curve, see Fig. 2A for comparison). (B) Dependence of mutual information (MI) with the

strength of extrinsic noise (see Theoretical Procedures). Relative MI is with respect to

absence of extrinsic noise. For this plot, we considered a system of N = 5 bistable units

implemented with positive feedback. The inset shows a direct comparison between N = 1

and N = 5, emphasizing that MI increases with N . (C) Dependence of MI with the

degree of cross-talk for the same regulatory system, but now constituted by N = 2 units.

Relative MI is with respect to the situation without cross-talk. The inset presents the

marginal probability distribution of gene expression of one unit (y
1

) in the absence and

presence of cross-talk (parameterized by "=0 and "=0.01, respectively; see Theoretical

Procedures) for the mean value of the input signal (x). Note that when the units are

coupled, gene expression becomes unimodal (dashed curve).
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Figure 5

Genetic heterogeneity among redundant copies leading to functional variabil-

ity improves information transfer. Variation in the biochemical features of the con-

stituent threshold devices (here bistable units, N = 5; see Theoretical Procedures) leads

to a maximum in mutual information (MI). The inset indicates the peak di↵erential MI

(i.e., the di↵erence between the largest value of MI with heterogeneity and the value of

MI without it) for varying noise levels. This reveals how a situation of stronger intrinsic

noise contributes to reduce the improving e↵ect on MI of heterogeneous units (the main

plot corresponds to an intrinsic noise amplitude equal to 0.16).
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Figure 6

Model of information transfer in gene regulatory circuits. Intrinsic noise, genetic

redundancy, and heterogeneity increase the transmission of information (by strengthening

the capacity of the global output to represent the input variability), whilst extrinsic

noise and cross-talk among redundant units become limiting factors (by correlating the

individual outputs of the units).
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Supplementary Material

Methods

Model of a simple regulated system

As a simple regulatory model, we considered a redundant system consisting of N different transcrip-
tional units each of them activated by the input signal (x). The model for the i-th unit reads

dy

i

dt

= ↵

0

+

↵x(t)

n

1 + x(t)

n

� y

i

+ q

i

(y

i

, x)⇠

i

(t), (1)

where expression and time are appropriately rescaled to have a dimensionless model. The parameter
values are ↵

0

= 0.01, ↵ = 2.5, and n = 2. In addition, the statistics of ⇠

i

are h⇠
i

(t)i = 0 and

h⇠
i

(t

0

)⇠

i

(t

0

+ t)i = �(t). Noise amplitude is given by q
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(y

i

, x) =

s
1
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✓
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0

+

↵x

n

1 + x

n

+ y

i

◆
. The

parameter K is proportional to the effective dissociation constant between the transcription factor
and the promoter, and determines the number of molecules of the system and then intrinsic noise [1].
Otherwise specified, we considered K = 100.

Model of a bistable system

We considered that each of the N units of the system is a gene activating transcriptionally its own
expression. This corresponds to a minimal implementation of a bistable system. The model for the
i-th unit reads

dy

i

dt

= ↵

0

+

↵y

n

i

1 + y

n

i

� y

i

+ x(t) + q

i

(y

i

)⇠

i

(t), (2)

where expression and time are appropriately rescaled to have a dimensionless model. Now, the input
signal (x) is introduced as a small perturbation. The parameter values are the same as before, as well

as the statistics of ⇠
i

. Noise amplitude is given by q

i

(y

i

) =

s
1

K

✓
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0

+

↵y

n

i

1 + y

n

i

+ y

i

◆
, having neglected

the effect of x.
To account for extrinsic noise, we introduced a new stochastic process (⇠

ex

), common to all units,
in Eq. (2) as

dy

i

dt

= ↵

0

+

↵y

n

i

1 + y

n

i

� y

i

+ x(t) + q

i
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(t) + q

ex
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ex

(t). (3)

The correlation time of extrinsic noise is of the order of the cell cycle [2] (the mean is also 0). For
simplicity, we here considered a system implemented with short-lived proteins, so we can assume that
⇠

ex

is constant within the time window that the system needs to reach its steady state upon receiving
the perturbation x.

To account for heterogeneity in the different units of the system, we followed

dy
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dt
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where the standard deviation of !
i

(a Gaussian random number with mean 1) quantifies the degree of
heterogeneity.

To account for certain cross-talk between the different units of the system, we followed a pertur-
bative approach on Eq. (2) to obtain
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where " quantifies the degree of cross-talk. For simplicity, we assumed q

i

(y

i

) not to be dependent on
y

j

for j 6= i.
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Model of an excitable system

We considered the model proposed to explain competence in Bacillus subtilis, associated with the
capability for DNA uptake from the environment, by which the cell can reach transient differentiation
[3]. Each of the N units of the system consists of two transcriptional units (y

i

and z

i

) that implement,
in an effective way, interlinked positive and negative feedback loops. The model for the i-th unit reads

dy

i

dt

= ↵
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+
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i
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n
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i
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n
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i
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(6)

where expression and time are appropriately rescaled to have a dimensionless model. The parameter
values are ↵

0

= 0.004, ↵ = 0.07, � = 0.826, � = 5, n = 2, and m = 5. Here, noise amplitude is
approached as a constant (q =

p
(� + 1)/K, with K = 500), and ⇠

i

follows the same statistics as
before.

Input and output variables

The input signal (x) is a random number given by x = hxi10u, where u corresponds to a random
number uniformly distributed in [�1,+1], unless otherwise specified. In case of the simple regulated
system, we took hxi = 1; in case of the bistable system, hxi = 0.001 in Fig. 2, and hxi = 0.005

in Figs. 4-5; and in case of the excitable system, hxi = 0.9. We considered log x as input variable
to compute information transfer. In addition, x is a step function (at t = 0) in case of the simple
regulated and bistable systems, and a pulse function for one unit of normalized time (at t = 0) in case
of the excitable device.

As output, we established the steady state of the system response upon induction with the input
signal. Initially (t = 0), we assumed x = 0. Thus, we defined �y

i

= y

i

(x) � y

i

(x = 0). The total

differential gene expression of the redundant system can be written as �y =

NX

i=1

�y

i

. In case of the

excitable system, because the response is transient, we considered a Boolean function operating on y

i

,
setting 1 if the unit was excited or 0 if not.

Calculation of mutual information

To calculate mutual information, we solved numerically the following integral

I = �
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(s) log
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where we considered log x as input and �y as output variables.
By using the Fokker-Planck equation, we calculated the probability that a unit has a given expres-

sion level, P
i

(y

i

|x) [4]. The effective stochastic potential (�
i

) associated to Eq. (2) [and also to Eq.
(1)] is
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having defined f

i

as the right-hand side (without the stochastic process). Thus, P
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|x) = Ce
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,x),

where C is a normalization constant so that
Z 1

0
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(s|x)ds = 1. In addition, when considering extrinsic

noise (for the bistable system), we got
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where ⇣ is a Gaussian random number with mean 0 and standard deviation q

ex

. In case of cross-talk,
we got
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In case of the excitable system, we calculated P

i

(y

i

, z

i

|x) numerically.

Calculation of distance to linear response

To calculate distance to linear response (d
lin

) [5], we averaged all realizations of y
i

for a given x to
obtain an average response (h�y

i

(x)i, taking into account the initial conditions). Note that x varies
uniformly between x

min

and x

max

. In case of the bistable system, the two output values in the
deterministic regime are approximately ↵

0

and (↵+

p
↵

2 � 4)/2. Then, we considered the ideal linear

response as y
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. And the calculation of the distance reads
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Supplementary Figures

Figure S1

Dependence of distance of the average response to the ideal linear response with the intrinsic noise
amplitude. Given the deterministic steady states of the system, we computed the ideal linear response;
y, the gene expression level of the device (and then �y, the difference with respect to the initial state),
as a function of x, the magnitude of the signal. This plot corresponds to the bistable unit (N = 1). It
shows a minimum in distance for certain amount of noise. Here, the distribution of the input signal
values is a uniform with a mean of 0.005 and a variance that allows covering two orders of magnitude.
Distributions of �y versus x are shown for different points. They display the responses of the device
to 10

4 signal values drawn from the described distribution (black dots). The real average response of
the system (averaging all possible responses �y due to noise for a given value of x) together with the
ideal linear response are shown.
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Figure S2

(A) Dependence of mutual information with the feedback strength (or also intrinsic noise amplitude,
parameterized by 1/K) of the bistable unit. The inset shows the effective stochastic potential (�)
for K = 100 and K = 1000 (with N = 2). Certainly, it shows two potential wells (i.e., two stable
steady states), and the threshold of the system is within (note that intrinsic noise is multiplicative,
i.e., the amplitude of the stochastic fluctuations depends on the particular gene expression level). In
case of higher noise (K = 100), the potential barrier is very low, indicating that it is very easy to
have stochastic threshold crossings. However, in case of lower noise (K = 1000), the potential barrier
is high, moderating the number of stochastic threshold crossings. The observed trend of information
transfer versus intrinsic noise (higher the noise, higher the information transfer) is explained because the
stochastic threshold crossings (for a continuous output variable, and to some extent) is the mechanism
underlying the linearization of the response and the increase of communication fidelity. (B) Dependence
of mutual information with the number of units (N) of the system. Relative mutual information is with
respect to N = 1 for different intrinsic noise levels (modulated by K). This shows how the higher the
intrinsic noise level, the stronger the amplification of information transfer due to genetic redundancy.
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Figure S3

Dependence of mutual information with the number of units (N) for an excitable system. On top, in-
put/output distributions depicting information transfer. The input distribution (in yellow) is assumed
to be uniform (with a mean of 0.9 and a variance that allows covering two orders of magnitude).
Output distributions (in gray) illustrate the processing of the signal x, either through a single copy of
the threshold device (left) or an array of multiple redundant copies (right). Note that the output is
Boolean, setting if the unit is excited or 0 if not. In the latter case, each unit of the array receives the
same signal and the output y is the sum of all the individual responses. Redundancy effectively enlarges
the alphabet of the response. This is reflected in the output distribution, and also in the linearization
of the averaged stimulus-response profile (black curve). On bottom, relative mutual information is
with respect to N = 1. For this plot, we considered a system of N excitable units implemented with
interlinked positive and negative feedbacks. According to the same input level, each unit can decide,
in presence of molecular noise, to either perform an excursion over the phase space (excitation) or not.
The inset shows the phase space where the nullclines (black lines) determine the possible trajectories
of the system (gray lines, deterministic regime). The arrows indicate direction. The point corresponds
to the stable steady state. Note that a perturbation (in gene z) provokes the excitation of the system
provided its magnitude (x) is large enough, otherwise the system falls down to the steady state as it
is within the basin of attraction.
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