ot Carited by pecr review) s e aRNGar: Wie S arae

27, The copyight holder for this preprint (which was
ﬂcgﬁf;ljs% 0 is‘p&ﬂﬂe preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Boiler: Lossy compression of RNA-seq alignments using

coverage vectors

Jacob Pritt 1'?*, Ben Langmead !:2*

IDepartment of Computer Science, Johns Hopkins University, Baltimore, MD 2Center for Computational Biology, Johns

Hopkins University, Baltimore, MD

ABSTRACT

We describe Boiler, a new software tool for compressing
and querying large collections of RNA-seq alignments.
Boiler discards most per-read data, keeping only a
genomic coverage vector plus a few empirical distributions
summarizing the alignments. Since most per-read data is
discarded, storage footprint is often much smaller than
that achieved by other compression tools. Despite this,
the most relevant per-read data can be recovered; we
show that Boiler compression has only a slight negative
impact on results given by downstream tools for isoform
assembly and quantification. Boiler also allows the user
to pose fast and useful queries without decompressing the
entire file. Boiler is free open source software available from
github.com/jpritt/boiler.

INTRODUCTION

Sequence Alignment/Map (SAM/BAM) (22) is a ubiquitous
file format for storing RNA (and DNA) sequencing read
alignments. For each aligned read, SAM/BAM stores the
alignment’s location, shape (described by the CIGAR string),
base and quality sequences, and other data. BAM files are the
binary equivalent of SAM, and BAM files are often sorted
along the genome and compressed.

A drawback of SAM/BAM, and of any format that stores
data on a per-read basis, is that file size grows close to linearly
with the number of reads. But as sequencing continues to
improve (27), and as public archives fill with more datasets,
the burden of storing aligned sequencing data also increases
rapidly. The Sequence Read Archive (20), which stores raw
sequencing reads, grew from 3 to 4 petabases from February
to August of 2015. It is increasingly common for RNA-seq
studies to span hundreds or thousands of samples, with tens of
millions of reads per sample (2, 17).

Compressed formats eliminate redundant data across reads
or alignments, decreasing file size and allowing size to grow
sub-linearly (rather than linearly) with the number of reads.
CRAM (11), NGC (25), Goby (4) and REFEREE (7) use
reference-based compression, which was proposed earlier
(6, 16), to replace a read sequence with a concise description
of how it differs from a substring of the reference. Quip (12)
uses arithmetic coding together with a sequence model trained
on-the-fly to compress losslessly and without a reference.

Goby uses a range of strategies, including column-wise
compression and detailed modeling of relationships between
columns. REFEREE uses separable streams and clustering
of quality strings. In these formats, the alignments and the
fields are largely preserved, but are compressed along with
neighbors row-wise (together with the other fields of the same
alignment), or column-wise (with other instances of the field
across alignments).

These studies also explore lossy compression schemes, in
which less important data, such as read names and quality
strings, is selectively discarded. Many tools optionally discard
read names and quality values, and REFEREE clusters quality
strings and replaces each with a single representative from its
cluster.

Boiler takes a radically lossy approach to compressing
RNA-seq alignments, yielding very small compressed outputs.
Inspired by the notion of transform coding, Boiler converts
alignment data from the “alignment domain,” where location,
shape and pairing information are stored for every alignment,
to the “coverage domain,” where the coverage vector is stored
and alignment information is inferred where needed. Boiler
keeps only a set of coverage vectors and a few empirical
distributions that partially preserve fields such as POS (offset
into chromosome) TLEN (genomic outer distance), XS:1i
(strand) and NH: i (number of hits). Consequently, Boiler is
lossy in an unusual sense: compressing and decompressing
might cause alignments to shift along the genome, change
shape, or become matched with the wrong mate. Table 1
presents a comparison of how CRAM, Goby, and Boiler
preserve read information.

Boiler should not be considered a general-purpose
alignment compression tool. Because it discards quality values
and non-reference alleles, its output is not appropriate for
downstream tools requiring such data, such as variant callers
and tools for allele-specific expression. However, Boiler
preserves the data most relevant to popular downstream
RNA-seq tools for quantification, assembly and differential
expression. We show that popular isoform-level tools —
Cufflinks (28) and StringTie (24) — yield near-identical results
when the input is Boiler-compressed.

Boiler yields extremely small file sizes, more than 3-fold
smaller than files produced by CRAM and Goby for paired-
end samples with at least 10M paired-end reads. Unlike
other compression tools, Boiler’s compression ratio improves

*To whom correspondence should be addressed. Email: jacobpritt@gmail.com, langmea@cs.jhu.edu

© 2016 The Author(s)

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10

not certified by peer review) is the amgﬂgﬁgg%vmx)zggrz

poste

nted

ht holder for this preprint (which was
e preprint in perpetuity. It is made

Sy

available under aCC-BY-ND 4.0 International license.

substantially as input file size grows, growing from about 10-
fold for lower-coverage unpaired samples to over 50-fold for
higher-coverage samples. Speed and memory footprint are
comparable to other compression tools despite the fact that,
as we show, recovering alignments from a coverage vector
is computationally hard. Also, because nucleotide data is
removed, Boiler-compressed data is effectively de-identified,
making it easier to pass between parties securely.

Boiler also provides a range of speedy queries. Many
compression tools provide a way for the user to extract
alignments spanning a particular genomic interval from the
compressed file. REFEREE goes a step further by enabling
faster queries when the user is concerned with only a subset of
the fields. Boiler goes further still by providing fast queries
that are directly relevant to downstream uses of RNA-seq
data. Boiler allows the user and downstream tools to (a)
iterate over “bundles” of alignments according to inferred
gene boundaries, (b) extract the coverage vector across a
genomic interval, and (c) extract alignments overlapping a
genomic interval.

MATERIALS AND METHODS
Compression

Boiler implements a lossy compression scheme that preserves
only the data needed by downstream isoform assembly tools
such as Cufflinks and StringTie. For this reason, read names
and quality strings are discarded, along with other data that
has little or no bearing on downstream RNA-seq analysis.

Given a set of alignments to a reference genome, Boiler first
partitions the alignments into “bundles” of overlapping reads.
Bundles are computed in the same manner as Cufflinks’ initial
bundling step: As sorted reads are processed, if the current
read starts within 50 bases of the end of the current bundle,
the read is added to the bundle. Otherwise, the current bundle
is compressed and a new bundle is initialized beginning with
the current read.

Boiler converts each bundle into a set of coverage vectors
and tallies of observed read lengths. For most Illumina
sequencing datasets, reads are uniform-length (or nearly so,
e.g. after trimming), yielding a concise tally. If any alignments
in the bundle are paired-end, Boiler also stores a tally of
observed genomic outer distances as reported by the aligner

Table 1. Comparison of the SAM fields stored by different compression
tools. CRAM and Goby can preserve some fields through configurable
options, summarized in the “Config” columns.

SAM Feature CRAM Goby Boiler
Default Config. Default Config.

Read Name Yes! No No Yes No
Flags Yes No Yes No No
Mapping Quality Yes No Yes No No
Read Sequence Yes No Yes No No
Quality Scores No Yes Yes? Yes No
Tags No Yes MD Yes? XS, NH

'CRAMtools documentation claims that by default read names should not be preserved,
however we were not able to replicate this functionality.

2For mismatches only

3Goby preserves either all tags or just the MD tag.

in the TLEN SAM field. Note that TLEN includes the lengths
of all the introns spanned by the alignment, so we refer to this
as “genomic outer distance,” rather than “fragment length.”
The coverage vector is compressed using run-length encoding,
which is particularly effective in low-coverage regions.

Each bundle is compressed as follows:

1. Boiler scans the bundle’s alignments to find splice
sites spanned by at least one alignment. Boiler divides
the portion of the genome spanned by the bundle
into “partitions” formed by cutting at every splice site
(Figure 1a).

Boiler assigns each alignment to a bucket according to:
(a) the subset of partitions spanned by the alignment,
(b) the value in the alignment’s NH: i field, indicating
the number of distinct locations where the read aligned
to the reference, and (c) the value in the XS:A field,
indicating whether spanned splice motifs are consistent
with the sense (+) or anti-sense (-) strand of the gene.
Alignments not spanning a junction usually lack the
XS:A field; Boiler treats these as though the XS:A
field contains a “dummy” value indicating the strand is
unknown.

. For each bucket, Boiler computes the coverage vector
from the alignments assigned to it. Boiler writes the run-
length encoded coverage vector (Figure 1b) followed
by the read and genomic outer distance distributions
(Figure 1c) for the junction.

Each bundle, which consists of many buckets, is
compressed independently using the DEFLATE algorithm
as implemented in the zlib package from the Python
Standard Library. Each bundle is compressed separately to
make targeted queries efficient, as discussed in the “Queries”
section.

Some RNA-seq alignment tools (including HISAT (15))
output SAM records for reads or ends that fail to align,
whereas others (including TopHat 2 (14)) do not. Boiler deals
only with aligned reads. SAM records for unaligned reads are
ignored, and those reads are not represented in a compressed
Boiler file. Additionally, if one end of a paired-end read is
“orphaned” — i.e. its opposite end fails to align — Boiler will
convert the orphan to an unpaired read. The paired nature of
orphaned reads is lost during Boiler compression.

Unbundled alignments

Prior to compression, Boiler must identify and handle paired-
end alignments that span bundles in unexpected ways. We call
these unbundled alignments. Unbundled alignments fall into
four categories: (a) one end falls within an intron spanned by
the other end, (b) the two ends align to different chromosomes,
(c) the two ends align to the same chromosome but very
far from each other, (d) one end is assigned to the sense
strand, while its mate is assigned to the anti-sense strand.
Both TopHat and HISAT report such alignments, though they
constitute only a small fraction of the alignments in a typical
dataset.

These alignments are hard to fit into the bundling scheme
described previously. Reads in category (a) are biologically

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

ot Carited by pecr review) s e aRNGar: Wie S arae

27, The copyyight holder for this preprint (which was
e?ﬁc%ﬁ%s% o@dis‘p&# e preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

1 —
—

Figure 1. Ilustration of how Boiler compresses alignments in a bundle, for
a dataset with unpaired reads. (a) The genome is divided into “partitions”
(colored segments) based on the processed splice sites. A bucket is defined by
the subset of partitions spanned (as well as the values of the NH:i and XS:A
fields, though these are omitted from the figure for simplicity). Each bucket
stores (b) the coverage vector and (c) the length tally of the reads assigned to
the bucket.

implausible. Boiler treats them as unpaired reads by default,
however the user may choose to preserve these pairings.

Categories (b) and (c) could be scientifically relevant and
should be preserved. For instance, alignments in category (b)
may be evidence of gene fusions. Boiler stores all alignments
in categories (b) and (c) in a special “unbundled alignments”
section of the compressed file. Unbundled alignments are
stored in bundle-spanning buckets. A bundle-spanning bucket
is identical to a normal bucket, but includes the indices of the
two bundles it spans in addition to the list of partitions spanned
from each bundle. The bundle-spanning buckets are stored as
a contiguous list, compressed in small chunks using zlib, and
indexed to reduce work for targeted queries.

Treatment of pairs in category (d) is configurable by the
user. By default, they remain paired and one end, selected at
random, is modified to match the other’s strand. Optionally
(using —-split-discordant), such pairs can be treated
as unpaired reads, which is consistent with how they are
treated by Cufflinks and StringTie.

Multi-mapping reads

RNA-seq reads may align equally well to many genomic
locations. Such reads are called “multi mappers.” Because
downstream tools might treat multi mappers differently
from uniquely mapped reads, at least some multi-mapping
information must be preserved by Boiler.

For a multi-mapping read, Boiler preserves each alignment
along with its NH:i extra field. However, Boiler also discards
read names. This can have an adverse impact on downstream
tools that rely on read names to establish the one-to-many

relationship between reads and their alignments. Our fidelity
experiments show this does not substantially impact the
accuracy of downstream tools for isoform assembly and
quantification. However, it does have an adverse effect on
quantification accuracy when Cufflinks is asked to quantify
from a given gene annotation (-G mode), as discussed
in Supplementary Note 11. StringTie’s accuracy when
quantifying from a given gene annotation (-G —e mode) is
not substantially affected.

Decompression

To decompress, Boiler first expands each bundle with the
INFLATE algorithm as implemented in the Python z1lib
module, then expands each bucket.

When decompressing a bucket, Boiler seeks to recreate the
set of alignment intervals that yielded the bucket’s coverage
vector and read and genomic outer distance tallies. This is
a two-step process; first reads must be recovered from the
coverage vector and read length tally (“read recovery”), then
the recovered reads must be paired according to the paired
length tally (“pairing”).

The read recovery problem may not have a unique solution;
e.g., consider a compressed dataset with read lengths /1 and lo
(I1 #19) and a coverage vector containing 1 at all positions in
the range [0,[1 +l2). This case has two valid solutions:

r= [O,ll), ro = [ll,l1—|—l2)
and

ri= [O,lg), ro= [12,11 -HQ)

Thus, we cannot guarantee perfect recovery of the
compressed reads.

We define the read recovery problem as follows. Given a
coverage vector and tally of read lengths, we seek a list of
decompressed reads (genomic intervals) such that

1. the decompressed read lengths are a subset of those
given in the tally,

2. at no position does the coverage vector produced by
the decompressed reads exceed the value in the original
coverage vector, and

3. the sum of the lengths of all decompressed reads is
maximized.

This formulation is general enough to tolerate an input
where the read length tally and coverage vector are not
compatible, i.e., where no solution fits both precisely. In this
case, the algorithm might decompress only some of the reads
in the input tally.

We observe that the read recovery problem is NP-hard in
general (proved by reduction from the Multiple Subset Sum
Problem in Supplementary Note 1), but that some special
cases are easily solved. When all reads are the same length, for
example, the solution is unique and can be found efficiently.
We also observe that second-generation sequencing produces
datasets with uniform or near-uniform (e.g. after trimming)
read-length tallies. These facts lead us to propose the greedy
algorithm described below. The algorithm is not optimal in
general, but it is well suited to cases where the input read
lengths are uniform or almost uniform.

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10

not certified by peer review) is the amgﬂgﬁgg%vmx)zggrz

poste

nted

ht holder for this preprint (which was
e preprint in perpetuity. It is made

Sichio tisa

available under aCC-BY-ND 4.0 International license.

Greedy algorithms for extracting and pairing reads. The
algorithm works from one end of the coverage vector to the
other, extracting reads that are “consistent” with coverage.
A read is consistent with coverage if removing the read and
decrementing the corresponding coverage-vector elements
does not cause any vector elements to fall below zero. When a
consistent read is selected for extraction, the corresponding
coverage-vector elements are decremented and the process
repeats. The process stops when the far end of the coverage
vector is reached.

When reads have uniform length, the algorithm yields
the correct solution. When reads have various lengths, the
problem is harder and the algorithm may fail to yield the
optimal solution. In the case where reads are various lengths,
Boiler’s algorithm uses heuristics to arrive at a solution where
(a) the coverage vector induced by the extracted reads matches
the true vector as closely as possible, and (b) the distribution
of extracted read lengths matches the true distribution of read
lengths as closely as possible. Boiler favors (a) over (b); i.e.
it will artificially lengthen or shorten the extracted reads to fix
small coverage discrepancies. The heuristics are described in
Supplementary Note 2.

If the data contains paired-end reads, we must also solve
the read pairing problem. We would like Boiler to restore the
paired-end relationships in a way that matches the original
genomic outer distances as closely as possible. We start with
(a) a collection of reads (ends), all of which are initially
unpaired, and (b) the “true” genomic outer distance tally,
storing the frequencies of each distance, which was compiled
and stored during compression.

We use the following greedy algorithm to pair up reads in a
way that closely matches the true genomic outer distance tally.
Each read is examined, working inward from the extremes,
alternating between the left and right extremes. For each read,
we seek the most distant read such that the resulting pairing is
compatible with distances remaining in the tally. When two
reads are paired in this way, they are removed from future
consideration, and the corresponding element of the tally is
decremented. Reads that are not paired in this way are matched
up randomly in a second pass.

Queries

Boiler allows the user to query a compressed RNA-seq
dataset to (a) iterate over genomic intervals delimiting regions
of non-zero coverage, roughly corresponding to genes, (b)
extract the genomic coverage vector across a specified
genomic interval, and (c) extract alignments overlapping a
specified genomic interval. Because each bundle of alignments
is compressed separately, Boiler can answer such queries
without decompressing the entire file.

Bundle boundaries are stored in the index at the beginning
of the compressed file, so skipping to a particular bundle can
be accomplished with a single uncompressed index lookup. To
compute the coverage query (query b, above), Boiler combines
the relevant portions of the coverage vectors for all the buckets
overlapping the specified region. This requires that Boiler
decompress the DEFLATED and run-length encoded coverage
vectors, but does not require the more work-intensive read and
pair recovery algorithms. Alignment-level queries (queries a
and ¢ above) are more expensive, requiring Boiler to run

the greedy read recovery algorithm on each of the buckets
overlapping the specified region.

Downstream tools like Cufflinks can be modified to
query Boiler-compressed files directly, removing the need for
an intermediate SAM/BAM file. When a downstream tool
requires access only to information about gene boundaries
(query a, above) or about targeted regions of the coverage
vector (query b), Boiler’s queries can be much faster than
directly querying a sorted and indexed BAM file.

Implementation

Boiler is implemented in Python and is compatible with
Python interpreters version 3 and above. All of the Python
modules used by Boiler are in the Python Standard Library,
making Boiler quite portable across Python installations and
interpreters. For example, we use the fast PyPy interpreter for
our experiments.

RESULTS

We used Flux Simulator v1.2.1 (19) to simulate 10 RNA-
seq samples from the BDGPS build of the D. melanogaster
genome and the Ensembl release 70 (29) gene annotation. We
simulated both paired-end and unpaired RNA-seq samples for
a series of library sizes: 0.5, 1, 2.5, 5, 10, and 20 million
reads. We also simulated two samples from the hg19 build
of the human genome and Gencode v12 gene annotation
(10) containing 20 and 40 million paired-end reads. We also
used two real human RNA-seq samples. We used sample
HGO00100 from the GEUVADIS (17) study, consisting of
about 20 million paired-end reads. We also chose one of the
seven technical replicates of the 3:1 ratio of Universal Human
Reference RNA to Human Brain Reference RNA from the
SEQC study (26). The study accession is SRP025982 and
the individual replicates have run accessions SRR1216073 —
SRR1216079. Each replicate consists of approximately 11-
million paired-end reads. We tested sample SRR1216073,
labeled “SRP025982” in the results below.. All samples were
aligned to the reference genome using either TopHat 2 v2.1.0
(14) with default parameters, or HISAT 0.1.6-beta (15) with
default parameters. D. melanogaster samples were aligned to
the BDGPS5 reference and human samples were aligned to the
hg19 reference.

We compared Boiler’s speed, compression ratio, and
peak memory usage to Goby and CRAMTools. Boiler and
Goby remove read names by default, but CRAM does not.
(CRAMtools has an option to preserve read names, but we
cannot find a working mechanism in version 3 to remove
them.) For a fair comparison, we stripped the read names
before compressing. For Goby, we enabled the full "ACT
H+T+D” compression scheme, as described in the Goby study
4).

Further details on software versions and command-line
arguments used are included in Supplementary Note 3.

Efficiency and compression ratio

We compressed each TopHat 2 alignment file with Boiler
v1.0.1, CRAMTools v3.0, and Goby v2.3.5. Boiler was
run with PyPy v2.4 and CRAMTools and Goby were run
with Java v1.7. All tools were run on the Homewood High

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

ot Carited by pecr review) s e aRNGar: Wie S arae

27, The copyight holder for this preprint (which was
ei_ﬁc%ﬁ%sf;%etog(;sﬁlgyﬁe preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Performance Compute Cluster at Johns Hopkins University.
Each cluster computer has 2 Intel Xeon X5660 2.80GHz
processors and 48 GB of RAM. We measured running time
by adding the user and sys times reported by the Linux
time command. Each tool runs predominantly on a single
thread and processor. We measured peak memory usage in
Python by spawning a new child process for the command
and polling maximum resident set size (RSS) using the Python
resource package’s getrusage function. Peak memory
usage for Boiler and Goby was consistent across runs, but
CRAM memory usage varied widely between runs. We report
the median peak memory of 10 runs for greater consistency.

Boiler takes roughly 1.5 — 2 times longer than CRAMTools
and Goby to compress the D. melanogaster samples and about
2 — 12 times longer for the human samples (Table 2, Figure
2). It requires less memory than Goby for all but the deeper
human samples, and less than CRAM for small datasets. For
larger datasets, CRAM memory’s memory footprint seems to
be capped at around 2 GB (Table 3). Supplementary Note 5
compares the decompression time for all three tools.

Importantly, Boiler achieves a compression ratio
comparable to BigWig (Table 4) for all but the largest
paired-end datasets, and usually produces far smaller
compressed files than CRAMTools or Goby. We measured
both compressed file size (Table 4) and the “compression
ratio” of original to compressed file size (Figure 3) for
alignments generated by TopHat 2. The “original” file is a
sorted BAM file with read names removed. For low-coverage
unpaired datasets, CRAM and Goby’s compression ratios
are superior to Boiler’s. However, we observe that while
CRAMTools and Goby’s compression ratios remain flat as the
D. melanogaster library size increases, Boiler’s ratios improve
substantially (Figure 3), achieving its best compression ratios
for the 20M-read samples: 56-fold for unpaired and 39-
fold for paired-end samples. Boiler’s compression ratio is
consistently better than the other tools for paired-end samples
and improves as library size increases. For high coverage
D. melanogaster and all human datasets, Boiler achieves
compression ratios 3-5-fold higher than both CRAM and
Goby.

To demonstrate Boiler’s performance on an established
benchmark, we also ran Boiler on the dataset with Sample ID
EJOYQAZ from the Goby study (Table 4). This consists of
roughly 7.5 million paired-end reads from H. sapiens. The
BAM file as well as the compressed Goby output is available
at data.campagnelab.org/home/
compression-of-structured-high-throughput-
sequencing-data. Boiler produces a compressed file
of 269 MB (2.8% of the original BAM) compared to
Goby’s output of 123.2 MB (13.0% of the original BAM),
representing a 77% space reduction for Boiler compared to
Goby.

Boiler achieves a comparable compression ratio for
alignments generated by HISAT (Supplementary Note 4).
We also show in Supplementary Note 4 that removing
orphaned reads or quality scores from the SAM file does not
significantly impact Goby’s compression ratio.

1000

e - Boiler (Unpaired)
e - CRAM (Unpaired)
e - Goby (Unpaired)
e—e Boiler (Paired)
e—e CRAM (Paired)
Goby (Paired)

800+

600

400

Compression Time (s)

2001

Millions of Reads

Figure 2. Time required for Boiler, CRAM and Goby to compress simulated
D. melanogaster paired-end datasets.

Fidelity

Boiler discards read nucleotide and quality-value data.
So while Boiler is not appropriate for pipelines where
downstream tools measure non-reference alleles — e.g. for
variant calling, allele-specific expression, or RNA editing —
we show that Boiler is appropriate for the common case
where downstream tools are concerned with assembling and
quantifying isoforms, e.g. Cufflinks and StringTie.

Boiler tends to “shuffle” alignment data in certain ways
during compression. Some of the shuffling is harmless, having
no adverse effect on downstream results from Cufflinks and
StringTie. But some shuffling could be harmful, negatively
impacting the fidelity of downstream results. Using both
simulated and real data, we (a) establish the nature of the

Table 2. Compression times in seconds.

Dataset Boiler CRAM Goby
Drosophila, Simulated Unpaired

0.5M 57.4 17.4 15.3
IM 66.5 20.7 23.2
2.5M 89.1 40.6 40.1
M 126.0 70.0 72.9
10M 197.9 129.6 122.3
20M 329.5 246.6 248.2
Drosophila, Simulated Paired

0.5M 50.5 30.9 24.1
IM 76.8 40.1 36.5
2.5M 152.5 80.8 81.5
M 254.8 142.0 156.4
10M 497.7 279.6 298.4
20M 943.9 556.1 626.4
Human

SRP025982 (11M) 6122.6 507.6 674.5
HG00100 (20M) 4118.8 691.6 1045.6
Simulated 20M 2337.3 906.8 1301.3
Simulated 40M 7906.3 1476.8 2138.7

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

ot ceited by peer eview) 8 e atkBIRnder w0 RS T

shuffling introduced by Boiler, (b) show there is only slight
harmful shuffling in practice, and (c) show that the overall
amount of shuffling is smaller — often much smaller — than the
shuffling that results from substituting one technical replicate
for another.

Alignment-level fidelity

Boiler compression can change where alignments lie on the
genome and how they are paired. Here we ask how well
alignment locations are preserved after Boiler compression of

Table 3. Peak memory usage (GB) reported by Python. Numbers reported

are the median across 10 runs.

Dataset Boiler CRAM Goby
Drosophila, Simulated Unpaired

0.5M 0.38 0.74 0.73
M 0.29 1.37 1.39
2.5M 0.24 1.12 1.72
SM 0.24 1.13 1.73
10M 0.24 0.96 2.11
20M 0.50 1.53 3.77
Drosophila, Simulated Paired

0.5M 0.32 1.15 0.90
IM 0.31 1.91 1.05
2.5M 0.30 1.96 1.33
SM 0.32 1.18 1.61
10M 0.79 1.11 5.67
20M 1.57 0.99 7.21
Human

SRP025982 (11M) 7.10 2.08 53
HGO00100 (20M) 3.23 2.08 4.12
Simulated 20M 6.11 2.08 4.87
Simulated 40M 9.14 2.08 6.88

Table 4. Size of compressed files (MB) compared to the original sorted BAM

with read names removed.

Dataset BAM BigWig Boiler CRAM Goby
Drosophila, Simulated Unpaired

0.5M 26.0 3.7 2.7 0.9 1.2
IM 494 6.4 3.6 1.6 2.4
2.5M 120.3 12.8 5.6 3.8 5.6
SM 2222 19.0 7.6 6.7 10.1
10M 436.1 28.1 11.0 12.6 19.0
20M 883.0 37.0 15.0 232 35.7
Drosophila, Simulated Paired

0.5M 56.1 6.3 43 7.7 49
IM 104.6 104 6.7 14.2 9.4
2.5M 255.6 19.8 12.9 339 23.8
SM 488.1 27.8 20.0 61.9 459
10M 955.0 37.2 31.6 116.9 95.8
20M 1902.6 47.8 49.0 226.2 193.3
Human

EJOYQAZ (7.5M) 74791 - 26.9 - 123.2¢
SRP025982 (11M) 810.1 54.6 38.0 160.5 159.8
HGO00100 (20M) 2017.9 98.7 78.0 288.8 3522
Simulated 20M 2117.3 54.3 71.6 273.5 307.8
Simulated 40M 3858.4 71.7 118.0 491.4 587.6

1 Datasets downloaded from Goby supplementary data.

poste
nted

60

50}

Compression Ratio

Sichie e

available under aCC-BY-ND 4.0 International license.

ht holder for this preprint (which was
e preprint in perpetuity. It is made

T

N
o

o o
o @
o -o

Boiler (Unpaired)
CRAM (Unpaired)
Goby (Unpaired)
Boiler (Paired)
CRAM (Paired)
Goby (Paired)

-

w
(=]

-
e -

-

-7 e =T - = = = 4

N
o

10f

p ° ® o

L L

10 15 20
Millions of Reads

Figure 3. Compression ratios for simulated D. melanogaster datasets when
compressed by Boiler, CRAM and Goby. Ratios are with respect to the
original sorted BAM with read names removed.

the TopHat 2-aligned samples. We measure alignment-level
precision and recall in two ways. First we ignore read pairings.
For each aligned unpaired read (or end of a paired-end read)
in the original file, we seek a corresponding alignment in the
compressed file where the genomic position of the alignment
and of all overlapped splice junctions are identical. This
counts as a true positive, and the alignments involved are
“matched.” An alignment can be matched with at most one
other alignment. An alignment in the original file that fails
to match an alignment in the compressed file counts as a
false negative and the converse is a false positive Given these
definitions, precision and recall are shown in the left-hand
columns of Table 5 (labeled “Ignoring pairings”). These range
from 96.2% to 99.4% across the samples tested.

We also measure precision and recall in a way that
takes pairing into account: for each aligned pair, we seek a
corresponding pair in the compressed file where both ends
match their counterparts in terms of their genomic position
and the positions of splice junctions. These results are shown
in the right-hand columns of Table 5 (labeled “Including
pairings”). Here precision and recall are lower, with most
samples ranging from 17.6% to 54.5%. Note that the SEQC
sample, SRP025982, exhibited higher unpaired precision and
recall than the others (99.4%), and much higher than the others
when considering pairing (89.4%). This is likely due to the
smaller number of reads in the sample relative to the other
human samples, and to the much larger number of Boiler
buckets induced by that sample. The larger number of buckets
is likely owing to the presence of Universal Human Reference
RNA, in which many genes are expressed.

We also measure genomic outer distance distribution
(excluding unbundled alignments) before and after Boiler
compression. We find they match closely (Figure 4, left)
though not perfectly (Figure 4, right). The results are
emblematic of Boiler’s strategy: aggregate distributions are
preserved, but links between particular alignments and
particular points in the distribution are lost. As a result, some

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

ot Carited by pecr review) s e aRNGar: Wie S arae

27, The copyight holder for this preprint (which was
ﬂcgﬁgjsf;%etob(;sﬂ%ﬂe preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

data is “shuffled;” ends themselves are largely unchanged, but
pairings between ends are shuffled in a way that preserves the
aggregate genomic outer distance distribution.

We repeated these experiments for alignments output by
HISAT, as discussed in Supplementary Note 7. The results
are similar to those produced by TopHat 2, with precision and
recall ranging from 96.7% to 99.3% when ignoring pairings,
and from 14% to 32.1% when considering pairings.

Isoform fidelity

Having established Boiler’s lossy-ness and shuffling behavior,
we now assess the degree to which loss and shuffling
have an adverse effect on downstream results obtained
by Cufflinks v2.2.1 and StringTie v1.2.2. StringTie was
run with default parameters. Cufflinks was run with the
—--no-effective-length-correction parameter to
avoid variability due to an issue (recently resolved) in how
Cufflinks performs effective transcript length correction (5).

Let 7' be the true simulated transcriptome, including
abundances for each transcript, which we extract from
the Flux-generated .pro and .gtf files. Let T be the
transcriptome assembled and quantified from the original
alignments, which we extract from the Cufflinks/StringTie
output. Let T’ be the same but for the Boiler-compressed
alignments. Here we ask whether T and T” are approximately
equidistant from 7', indicating Boiler’s loss and shuffling are
not having an adverse effect.

We define a function for measuring the distance between
two transcripts 1 and ¢ assembled with respect to a reference
genome. The function outputs a value between 0 and 1, with
0 indicating the transcripts do not match and 1 indicating a
perfect match.

A transcript ¢ can be represented as a set of exons
{e1,...en}, each defined by its start and stop positions. We

Table 5. Precision and recall of SAM reads.

Dataset Ignoring Pairings Including Pairings
Precision Recall Precision Recall
Drosophila, Simulated Unpaired
0.5M 0.991 0.993 - -
IM 0.986 0.989 - -
2.5M 0.976 0.981 - -
5M 0.969 0.974 - -
10M 0.962 0.968 - -
20M 0.964 0.969 - -
Drosophila, Simulated Paired
0.5M 0.990 0.992 0.544 0.545
IM 0.984 0.987 0.458 0.460
2.5M 0.972 0.978 0.338 0.340
M 0.967 0.972 0.263 0.264
10M 0.964 0.969 0.219 0.220
20M 0.964 0.968 0.176 0.177
Human
SRP025982 (11M) 0.994 0.994 0.894 0.894
HGO00100 (20M) 0.983 0.983 0.261 0.261
Simulated 20M 0.973 0.976 0.327 0.328
Simulated 40M 0.972 0.975 0.319 0.320

first define a scoring function for two exons e; = (x1,y1) and
e2=(12,92):

_min(|lzg—21|,k) min(jy2—y1],k)
2k 2k

s(er,e2)=1 6))

for some threshold k. We further define function maz(e,t)
to be the set £ of exons ¢ from # with maximal score s(e,é).

Algorithm 1 Transcript scoring algorithm

1: procedure SCORE(t,t)
2 s+0 > Score before normalization
3 n<0 > Number of matching exons found
4 for ect do
5: E=max(e,t)
6 for é€ E do
7 if ee max(é,t) then
8 s+ s+s(e,é)
9: n<n+1
10 break
11: end if
12: end for
13: end for
S
14: return =
15: end procedure

The weighted precision for pre-compression alignments is:

2 max (score(t,t))-c(t))
teT

Where ¢(f) is the predicted coverage level of ¢ as reported

by Cufflinks/StringTie. This measure is weighted both by the

coverage of the assembled transcript and by the similarity of

the matched-up transcripts. Precision for the post-compression

alignments is calculated similarly, using 1" instead of 7.
Similarly, weighted recall is

max (score(t,t))-c(t) 3)
teT teT

Where ¢(t) is the true coverage level for ¢ as reported by Flux.

We used a threshold of £ =10 for the exon scoring function
(1). The selection of k=10 is discussed in Supplementary
Note 6. We calculated the weighted precision (Tables 6)
and recall (Table 7) for all simulated samples. While there
are small differences in all experiments (as expected due to
Boiler’s shuffling behavior) overall Boiler compression does
not have a substantial adverse impact on weighted precision
and recall.

Other Isoform Fidelity Scores

Supplementary Note 9 describes a complementary experiment
using weighted k-mer recall (WKR), which does not depend
on a distance function. Supplementary Note 10 describes a
third accuracy measure called the Tripartite Score, which
uses the same distance, but can compare two assembled

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.4 0634; thyi i9n poste 27, The copyright holder for this preprint (which was
not certified by peer review) is the atﬂﬁﬂggnder, m@?ﬁn@ efﬁc%ﬁ%s% 0 is‘p&#ge preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

1.08

1.06¢ 1

1.04¢ 1

1.02; 1

1.00 1

0.98¢ 1

Compressed / Original Frequency

0.96¢ 1

0-945 20 40 60 80
Genomic Outer Distance (kb)

100

— Original
— Compressed

Frequency
=
o
w

10 70 71 72 73 74 75 76 77 78 79
Genomic Outer Distance (kb)

Figure 4. Comparison of genomic outer distances for the 10M paired-end D. melanogaster sample. Left: Frequency ratio of each genomics outer distance,
compressed divided by original, up to a distance of 100,000 bases. Right: Original and compressed genomic outer distances between 70 and 79 kilobases in

length.

transcriptomes to a third “reference” transcriptome. The
results from those methods substantially agree with the results
above.

Shuffling relative to technical replicates

Next we investigate the amount of “shuffling” introduced by
Boiler — causing some reads to shift along the genome and
scrambling some paired-end relationships — and whether the
effect is large or small compared to the shuffling that occurs
when switching from one technical replicate to another.

Table 6. Reference-based Precision.

We first construct five artificial technical replicates by
generating five times the desired number of reads with Flux
Simulator and randomly partitioning the resulting read file five
ways. We then assemble and quantify each using Cufflinks
and StringTie. Let Ty, T, ..., T5 be the corresponding
transcriptomes. We also pick a technical replicate (11, say)
to compress with Boiler. Let T{ be the result of running
Cufflinks/StringTie on the Boiler-compressed alignments. We
calculate the weighted precision and recall of T{ relative to 7.
Finally, we calculate weighted precisions and recalls between
all 10 ordered pairs of technical-replicate transcriptomes:

Dataset TopHat + Cufflinks TopHat + StringTie HISAT + StringTie

Original Compressed Original Compressed Original Compressed
Drosophila, Simulated Unpaired
0.5M 0.364 0.364 (+0.1%) 0.466 0.466 (+0.0%) 0.542 0.542 (+0.0%)
M 0.432 0.434 (+0.3%) 0.545 0.545 (+0.0%) 0.611 0.611 (+0.0%)
2.5M 0.527 0.527 (+0.1%) 0.627 0.627 (+0.0%) 0.646 0.542 (-0.7%)
SM 0.564 0.564 (+0.1%) 0.637 0.637 (-0.0%) 0.644 0.641 (-0.5%)
10M 0.583 0.585 (+0.2%) 0.645 0.645 (+0.0%) 0.639 0.637 (-0.3%)
20M 0.602 0.603 (+0.2%) 0.654 0.653 (-0.1%) 0.642 0.638 (-0.6%)
Drosophila, Simulated Paired
0.5M 0.583 0.582 (-0.1%) 0.546 0.546 (-0.0%) 0.628 0.628 (-0.0%)
IM 0.611 0.609 (-0.3%) 0.614 0.613 (-0.1%) 0.660 0.660 (-0.0%)
2.5M 0.632 0.630 (-0.4%) 0.644 0.643 (-0.2%) 0.666 0.665 (-0.2%)
M 0.635 0.633 (-0.3%) 0.652 0.652 (-0.1%) 0.662 0.661 (-0.2%)
10M 0.644 0.643 (-0.1%) 0.663 0.662 (-0.1%) 0.666 0.665 (-0.1%)
20M 0.639 0.634 (-0.8%) 0.660 0.659 (-0.2%) 0.660 0.657 (-0.4%)
Human, Simulated Paired
20M 0.552 0.554 (+0.4%) 0.570 0.568 (-0.4%) 0.613 0.613 (-0.1%)
40M 0.554 0.555 (+0.2%) 0.576 0.572 (-0.6%) 0.614 0.615 (+0.1%)

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

ot Carited by pecr review) s e aRNGar: Wie S arae

27, The copyight holder for this preprint (which was
ei_ﬁc%ﬁ%s%eto@(;sﬁlgyge preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

(Tl,TQ), (le’g),..., (T4,T5). Results are presented in Tables
8 and 9. Precision and recall between technical replicates is
shown as a range from the minimum to the maximum observed
among the 10 ordered pairs. Precision and recall after Boiler-
compression are consistently higher than precision and recall
between technical replicates, indicating that shuffling due to
Boiler compression is less consequential than shuffling due to
technical variation.

For SRP025982, we followed the same process but using
real lane-level technical replicates. The same sample was
sequenced in 5 separate lanes of an Illumina instrument,
but on the same flowcell. We compressed the first replicate
(SRR1216073) with Boiler and used the four others
(SRR1216076 — SRR1216079) to calculate the ten pairwise
precision and recall measures.

It is notable how precision and recall change relative to
per-sample coverage. Precision and recall between technical

hand, does not explicitly represent the coverage vectors in a
BAM file. Instead, coverage information must be recovered
from the BAM file by first extracting the relevant alignments,
then composing the coverage vector using another tool like
BEDTools:

samtools view -b -h x.bam c:start-end |
genomeCoverageBed -bga -split -ibam stdin
—-g chromosomes.txt

We compared the time required for Boiler to
respond to coverage queries to the time required for

Table 8. Non-reference-based precision. Columns labeled Boiler compare
precision before and after Boiler compression. Columns labeled Tech Reps
compare pairs of technical replicates.

replicates increases as per-sample coverage increases, . o
indicati h h huffli f d Dataset Cufflinks Stringtie
1n 1cat!ng that the shuffling effect decreases as more Boiler Tech Reps Boiler Tech Reps
transcripts become deeply covered. On the other hand, (min-max) (min-max)
precision and recall of T{ versus 77 decreases as per-sample b o Simulated Unoaired
. . rosopnila, Simu ate npaire
coverage increases. There.fore, therF: may be hlgherllevels 0.5M 0997 0.386-0.396 0998 0.452-0470
of coverage for which Boiler shuffling has a greater impact M 0.996 0.492-0502 0.998 05590578
than technical-replicate shuffling. For the realistic levels of 2.5M 0.989 0.659-0.669 0.993 0.729-0.736
coverage we tested, however, Boiler’s shuffling remains less M 0.988 0.757-0.763 0.989 0.807-0.816
consequential 10M 0.983 0.814-0.824 0.985 0.854-0.863
) 20M 0.980 0.861-0.868 0.983 0.892-0.900
We also measured precision and recall in an unweighted
fashion, i.e. omitting the coverage terms c(t) and c(t) from Drosophila, Simulated Paired
equations 2 and 3. These results are similar to the weighted 0.5M 0.986 0.618-0.636 1.000 0.568-0.583
results as discussed in Supplementary Note 8. IM 0980 0.724-0.733 0.996 0.698-0.706
2.5M 0.965 0.806-0.811 0.989 0.807-0.815
. M 0.969 0.843-0.850 0.991 0.854-0.862
Queries 10M 0.960 0.867-0.879 0.986 0.890-0.895
. . 20M 0.952 0.893-0.902 0.985 0.915-0.921
Recovering coverage vectors from a Boiler-compressed file
requires that Boiler decompress and combine coverage vectors Human
for all the relevant bundles and buckets. Decompression of the SRP025982 (11M) 0964 0.627-0.645 0.997 0.622-0.641
ver Vi r invol he DEFLATE aleorithm an n- HGO00100 (20M) 0.939 (no replicates) 0.997 (no replicates)
ICO eﬂ?gg eleo J Ot ‘;es the C el tfl‘ gorithm and ru Simulated 20M 0969 0.897-0912 0981 0.910-0.932
ength decoding, bul does not 1nvolve the more expensive Simulated 40M 0.965 0.911-0.927 0.976 0.935-0.947
read and pair recovery algorithms. SAMtools, on the other
Table 7. Reference-based Recall
Dataset Cufflinks StringTie HISAT + StringTie
Original Compressed Original Compressed Original Compressed
Drosophila, Simulated Unpaired
0.5M 0.583 0.583 (+0.0%) 0.526 0.526 (+0.0%) 0.551 0.551 (+0.0%)
IM 0.708 0.707 (-0.1%) 0.682 0.682 (+0.0%) 0.712 0.712 (+0.0%)
2.5M 0.791 0.785 (-0.7%) 0.795 0.795 (-0.0%) 0.803 0.800 (-0.4%)
M 0.822 0.822 (+0.0%) 0.834 0.834 (-0.0%) 0.833 0.831 (-0.3%)
10M 0.824 0.824 (+0.0%) 0.844 0.844 (+0.0%) 0.835 0.834 (-0.2%)
20M 0.827 0.826 (-0.1%) 0.851 0.850 (-0.1%) 0.853 0.847 (-0.7%)
Drosophila, Simulated Paired
0.5M 0.732 0.729 (-0.4%) 0.691 0.689 (-0.3%) 0.715 0.715 (-0.1%
IM 0.799 0.797 (-0.2%) 0.792 0.791 (-0.1%) 0.814 0.814 (-0.0%)
2.5M 0.825 0.826 (+0.1%) 0.840 0.840 (-0.0%) 0.843 0.840 (-0.4%)
M 0.840 0.838 (-0.2%) 0.857 0.855 (-0.2%) 0.861 0.859 (-0.3%)
10M 0.828 0.824 (-0.5%) 0.851 0.851 (-0.0%) 0.851 0.849 (-0.3%)
20M 0.826 0.823 (-0.4%) 0.850 0.849 (-0.1%) 0.854 0.849 (-0.6%)
Human, Simulated Paired
20M 0.762 0.762 (+0.0%) 0.794 0.792 (-0.2%) 0.851 0.850 (-0.1%)
40M 0.792 0.789 (-0.3%) 0.824 0.821 (-0.4%) 0.851 0.849 (-0.2%)

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10 406345 hi ion posted. May 27, . COPYi
not certified by peer review) is the munﬂgr,m%xg@ rantedtﬁio Iva Iiﬁegé% t b(;s‘p[gy

t holder for this preprint (which was
preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

10

SAMtools/BEDTools. Specifically, we iterated over all bundle
boundaries in several D. melanogaster samples and queried
for the coverage vector within those boundaries using both
Boiler and SAMtools/BEDTools. Figure 5 compares the tools
both in terms of average query time (left) and per-bundle
query time (right). As expected, Boiler is consistently faster
than SAMtools/BEDTools, with Boiler taking under 0.1
seconds on average, and SAMtools/BEDTools taking close to
0.75 seconds.

We also compared alignment query times for Boiler to those
for the indexed BAM. A SAMtools alignment query uses this
command:

samtools view —-h x.bam chrom:start-end

Boiler must both decompress the relevant bundles and
run the greedy read and pair recovery algorithms. Figure 6
compares the tools both in terms of average query time (left)
and per-bundle query time (right). As expected, because of the
need to run read and pair recovery, Boiler’s alignment query is
consistently slower than SAMtools. Even so, Boiler’s average
response time is under 0.15 seconds.

DISCUSSION

Boiler applies principles of lossy compression and transform
coding to the problem of compressing RNA-seq alignments.
Beyond discarding unnecessary BAM attributes, Boiler
additionally discards most of the data that ties individual reads
to their aligned positions and shapes. Boiler instead stores
coverage vectors and read- and outer-distance tallies, effective
shifting from the “alignment domain” to the “coverage
domain.” While this can cause alignments to shift along
the genome or pair with the wrong mate, the shuffling
effect is modest compared to the shuffling induced by

Table 9. Non-reference-based recall. Columns labeled Boiler compare recall
before and after Boiler compression. Columns labeled Tech Reps compare
pairs of technical replicates.

Dataset Cufflinks Stringtie

Boiler Tech Reps Boiler Tech Reps

(min—-max) (min—max)

Drosophila, Simulated Unpaired
0.5M 0.996 0.386-0.396 0.998 0.428-0.441
IM 0.993 0.492-0.502 0.998 0.528-0.549
2.5M 0.989 0.659-0.669 0.993 0.708-0.716
SM 0.988 0.757-763 0.989 0.789-0.799
10M 0.983 0.814-0.824 0.985 0.843-0.851
20M 0.979 0.861-0.868 0.983 0.892-0.900
Drosophila, Simulated Paired
0.5M 0.985 0.618-0.636 0.999 0.568-0.583
IM 0.981 0.724-0.733 0.996 0.698-0.706
2.5M 0.970 0.806-0.811 0.991 0.807-0.815
SM 0.971 0.843-0.850 0.991 0.854-0.862
10M 0.957 0.867-0.879 0.986 0.890-0.895
20M 0.949 0.893-0.902 0.985 0.915-0.921
Human
SRP025982 (11M) 0.939 0.627-0.645 0.997 0.622-0.641
HGO00100 (20M) 0.936 (no replicates) 0.995 (no replicates)
Simulated 20M 0.967 0.897-0.912 0.981 0.910-0.932
Simulated 40M 0.963 0.911-0.927 0.977 0.935-0.947

switching between technical replicates, and adverse effects on
downstream tools for isoform assembly and quantification are
minimal.

Boiler is not a general-purpose substitute for RNA-seq
SAM/BAM files, but it is an extremely space-efficient
alternative that works well with tools like Cufflinks and
StringTie. RNA-seq alignments are much larger than
downstream files summarizing coverage (BigWig) or per-
isoform expression level (FPKM table). Boiler and BigWig
are similar in size, but, importantly, Boiler files preserve the
ability to re-run the analysis repeatedly in the future. This
can profoundly reduce the cost and difficulty of working with
RNA-seq data, especially for large datasets.

Though we have not explored it here, we expect Boiler
compression to work well with annotation-based tools like
featureCounts (18) and HiTseq (1), as well as downstream
differential-expression tools like derfinder (8) that rely on
counts and coverage values.

Boiler also discards information about non-reference
alleles, making Boiler archives readily sharable even when the
input data is protected by privacy provisions like dbGaP.

In future work, it will be important to explore alternatives
to the greedy decompression algorithms described here. For
example, Boiler’s greedy algorithm for extracting reads from
a coverage distribution assumes the distribution of input
read lengths has a dominant mode. This is a reasonable
assumption for Illumina data, but not so for other sequencing
technologies. Also, Boiler’s compression and decompression
algorithms could be accelerated by moving from Python
to a compiled language such as C/C++. In general, there
are many opportunities to make the read extraction and
pairing algorithms more accurate, faster, and less hampered
by assumptions about the data.

Another subject for future work is how Boiler represents
multi-mapping alignments. By discarding read names, Boiler
discards the one-to-many relationship between a multi-
mapping read and its alignments. While this does not harm
fidelity in most cases, it does adversely affect fidelity when
Cufflinks is used to quantify from a gene annotation. It
is an open question as to whether and how multi-mapping
relationships can be represented in a way that allows trading
off between compression ratio and fidelity.

Finally, we note that the methods used here to characterize
Boiler’s shuffling effect are more generally useful for
evaluating any upstream tool that modifies the data. For
example, one could apply the same techniques to evaluate a
tool for read trimming or digital normalization, or to compare
many parameterizations of the spliced aligner.

Boiler is available
github.com/jpritt/boiler and is
under the open source MIT license.

from
distributed

ACKNOWLEDGEMENTS

We are grateful to Abhinav Nellore and Chris Wilks for
their comments on the software and manuscript. We are
also grateful to Fabien Campagne for his comments on the
manuscript.

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10 406345 hi ion posted. May 27, . The copyight holder for this preprint (which was
not certified by peer review) is the fun@r,%mo%xggggranted ORXiv a Iiﬁ(gé% @d@% preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

11
1.00 - o
=o=|Boiler
° e
=o=|Indexed BAM
— o (¢
Co154 o T as — | E20{
GJ E
g o °
= o
Py m
m ~
S 0.50 o
<) £
> @
© o)
:
Q 0.25
O ((/‘3 ® o ’
) e
0.00 0-
25 5.0 75 10.0 0 100,000 200,000 300,000 400,000
Num. Paired Reads Bundle length

Figure 5. Comparison of coverage query times for Boiler the indexed BAM for all bundles. Left: Average query time for varying D. melanogaster paired-end
datasets. Right: Ratio of Samtools / Boiler query time for each bundle in the 10M D. melanogaster paired-end dataset plotted as a function of bundle length. The
blue line denotes the best fit line for the points, the red line is y =1.

FUNDING

JP was supported and BL was partially supported by a
Sloan Research Fellowship to BL. BL was partially supported
by National Science Foundation (IIS-1349906) and National
Institute of General Medical Sciences (1RO1GM118568)
grants to BL.

Conflict of interest statement. None declared.

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10 406345 hi ion posted. May 27, . copygight holder for this preprint (which was
not certified by peer review) is the fun_clér,%mo%xgggranted Iva Iiéegé% ;Lbc?lsﬁlfa% preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

12
0.154 3-
=o= Boiler
=o= Indexed BAM »
(0]
— £
) -
o 0.10 1 Q
£ Q
= s
g o
: £
o »
i 0
© 0.05+ 8
h'4 % g °
/ N /
(<]
/ -]
0.00+
2.5 5.0 7.5 10.0 0 100,000 200,000 300,000 400,000

Num. Paired Reads Bundle length

Figure 6. Comparison of alignment query times for Boiler versus sorted and indexed BAM for all bundles. Left: Average query time for varying D. melanogaster
paired-end datasets. Right: Ratio of Samtools / Boiler query time for each bundle in the 10M D. melanogaster paired-end dataset plotted as a function of bundle
length. The blue line denotes the best fit line for the points, the red line is y=1.

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10 406345 hi ion postesl.
not certified by peer review) is the munﬂér,m%xg@zanted 0
available under aCC-BY-ND 4.0 International license.

REFERENCES

1.

2.

10.

11.

12.

13.

. Cufflinks

Anders S, Pyl PT, Huber W (2014) HTSeq—A Python framework to work
with high-throughput sequencing data. Bioinformatics, 31(2), 166—169.
Ardlie KG, Deluca DS, Segré AV, Sullivan TJ, Young TR, Gelfand ET,
Trowbridge CA, Maller JB, Tukiainen T, Lek M et al (2015) The Genotype-
Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in
humans. Science, 348(6235), 648-660.

. Bonfield JK, Mahoney MV (2013) Compression of fastq and sam format

sequencing data. PLoS ONE, 8(3), €59190.

. Campagne F, Dorff K, Chambwe N, Robinson JT, Mesirov JP (2013)

Compression of Structured High-Throughput Sequencing Data. PLoS
ONE, 8(11), e79871.

pull request
lab/cufflinks/pull/32 (2015).

32, https://github.com/cole-trapnell-

. Daily K, Rigor P, Christley S, Xie X, Baldi P (2010) Data structures

and compression algorithms for high-throughput sequencing technologies.
BMC bioinformatics, 11(1), 514.

. Filippova D, Kingsford C (2015) Rapid, separable compression enables

fast analyses of sequence alignments. ACM Conference on Bioinformatics,
194-201.

. Frazee A, Sabunciyan S, Hansen K, Irizarry R, Leek J (2014)

Differential expression analysis of RNA-seq data at single-base resolution.
Biostatistics, 15(3), 413-426.

. Hach F, Numanagic I, Alkan C, Sahinalp SC (2012) SCALCE: boosting

sequence compression algorithms using locally consistent encoding.
Bioinformatics, 28(23), 3051-3057.

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski
F, Aken BL, Barrell D, Zadissa A, Searle S et al (2012) GENCODE: the
reference human genome annotation for The ENCODE Project. Genome
research, 22(9), 1760-1774.

Hsi-Yang FM, Leinonen R, Cochrane G, Birney E (2011) Efficient
storage of high throughput DNA sequencing data using reference-based
compression. Genome Research, 5, 734-740.

Jones DC, Ruzzo WL, Peng X, Katze MG (2012) Compression of next-
generation sequencing reads aided by highly efficient de novo assembly.
Nucleic Acids Research, 40(22), e171.

Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D (2010)
BigWig and BigBed: enabling browsing of large distributed datasets.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

t holder for this preprint (which was

y 27, 2016. The copyri
Iva Ii§ t dis‘p[g preprint in perpetuity. It is made

13

Bioinformatics, 26(17), 2204-2207.

. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL

(2013). TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions Genome Biol, 14(4), R36.

. Kim D, Langmead B, Salzberg SL (2013). HISAT: a fast spliced aligner

with low memory requirements Nature methods, 12(4), 357-360.

. Kozanitis C, Saunders C, Kruglyak S, Bafna V, Varghese G (2011)

Compressing genomic sequence fragments using SlimGene. Journal of
Computational Biology, 18(3), 401-413.

. Lappalainen T, Sammeth M, Friedlinder MR, AC?t Hoen P, Monlong

J, Rivas MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG
et al (2013) Transcriptome and genome sequencing uncovers functional
variation in humans. Nature, 501(7468), 506-511.

Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general
purpose program for assigning sequence reads to genomic features.
Bioinformatics, 30(7), 923-930.

Griebel T, Zacher B, Ribeca P, Raineri E, Lacroix V, Guigé R, Sammeth M
(2012) Modelling and simulating generic RNA-Seq experiments with the
flux simulator. Nucleic acids research, 40(20), 10073-10083.

Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive.
Nucleic acids research, 39(suppl 1), D19-D21.

Li H, Durbin R (2009) Fast and accurate short read alignment with
Burrows-Wheeler Transform. Bioinformatics, 25, 1754—-1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecases G, Durbin R (2009) The Sequence Alignment/Map format and
SAMtools. Bioinformatics, 25(16), 2078-2079.

Ochoa I, Asnani H, Bharadia D, Chowdhury M, Weissman T, Yona G
(2013) QualComp: a new lossy compressor for quality scores based on
rate distortion theory. BMC Bioinformatics, 14, 187.

Pertea M, Pertea GM, Antonescu CM, Chang TS, Mendell JT, Salzberg SL
(2015). StringTie enables improved reconstruction of a transcriptome from
RNA-seq reads. Nature Biotechnology, 33(3), 290-295.

Popitsch N, von Haeseler A (2013). NGC: lossless and lossy compression
of aligned high-throughput sequencing data. Nucleic Acids Research,
41(1), e27.

SEQC/MAQC-II Consortium (2014) A comprehensive assessment of
RNA-seq accuracy, reproducibility and information content by the
Sequencing Quality Control Consortium. Nat Biotechnol, 32(9), 903-914.

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer
R, Schatz MC, Sinha S, Robinson GE (2015) Big Data: Astronomical or
Genomical? PLoS Biol, 13(7), e1002195.

Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, van Baren
J, Salzberg S, Wold B, Pachter L (2010).Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nature Biotechnology, 28(5), 511—
515.

Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D,
Cummins C, Clapham P, Fitzgerald S, Gil L et al (2015). Ensembl 2016
Nucleic Acids Research, 28(5), gkv1157.

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

