
“boiler” — 2016/2/22 — 11:11 — page 1 — #1i
i

i
i

i
i

i
i

Boiler: Lossy compression of RNA-seq alignments using
coverage vectors
Jacob Pritt 1,2,∗, Ben Langmead 1,2∗

1Department of Computer Science, Johns Hopkins University, Baltimore, MD 2Center for Computational Biology, Johns
Hopkins University, Baltimore, MD

ABSTRACT

We describe Boiler, a new software tool for compressing
and querying large collections of RNA-seq alignments.
Boiler discards most per-read data, keeping only a
genomic coverage vector plus a few empirical distributions
summarizing the alignments. Since most per-read data is
discarded, storage footprint is often much smaller than
that achieved by other compression tools. Despite this, the
most relevant per-read data can be recovered; we show
that Boiler compression has only a slight negative impact
on results given by downstream tools for isoform assembly
and quantitation. Boiler also allows the user to pose fast
and useful related queries without decompressing the entire
file. Boiler is free open source software available from
github.com/jpritt/boiler.

INTRODUCTION

Sequence Alignment/Map (SAM/BAM) (21) is a ubiquitous
file format for storing RNA (and DNA) sequencing
read alignments. Aligners and downstream analysis tools
almost universally use SAM/BAM. For each aligned read,
SAM/BAM stores the alignment’s location, shape (described
by the CIGAR string), base and quality sequences, and other
data. BAM files are the binary equivalent of SAM, and BAM
files are often sorted along the genome and compressed.

A drawback of SAM/BAM, and of any format that stores
data on a per-read basis, is that file size grows close to linearly
with the number of reads. But as sequencing continues to
improve (25), and as public archives fill with more datasets,
the burden of storing aligned sequencing data also increases
rapidly. The Sequence Read Archive (19), which stores raw
sequencing reads, grew from 3 to 4 petabases from February
to August of 2015. It is increasingly common for RNA-seq
studies to span hundreds or thousands of samples, with tens of
millions of reads per sample (2, 16).

Compressed formats eliminate redundant data across reads
or alignments, decreasing file size and allowing size to grow
sub-linearly (rather than linearly) with the number of reads.
CRAM (10), NGC (24), Goby (4) and REFEREE (7) use
reference-based compression, which was proposed earlier
(6, 15), to replace a read sequence with a concise description
of how it differs from a substring of the reference. Quip (11)
uses arithmetic coding together with a sequence model trained

∗To whom correspondence should be addressed. Email: jacobpritt@gmail.com

on-the-fly to compress losslessly and without a reference.
Goby uses a range of strategies, including column-wise
compression and detailed modeling of relationships between
columns. REFEREE uses separable streams and clustering
of quality strings. In these formats, the alignments and the
fields are largely preserved, but are compressed along with
neighbors row-wise (together with the other fields of the same
alignment), or column-wise (with other instances of the field
across alignments).

These studies also explore lossy compression schemes, in
which less important data, such as read names and quality
strings, is selectively discarded. Many tools optionally discard
read names and quality values, and REFEREE clusters quality
strings and replaces each with a single representative from its
cluster.

Boiler takes a radically lossy approach to compressing
RNA-seq alignments, yielding very small compressed outputs.
Inspired by the notion of transform coding, Boiler converts
alignment data from the “alignment domain,” where location,
shape and pairing information are stored for every alignment,
to the “coverage domain,” where the coverage vector is
stored and alignment information is inferred where needed.
Specifically, Boiler keeps only a set of coverage vectors and
a few empirical distributions that partially preserve fields
such as POS (offset into chromosome) TLEN (genomic
outer distance), XS:i (strand) and NH:i (number of
hits). Consequently, Boiler is lossy in an unusual sense:
compressing and decompressing might cause alignments to
shift along the genome, change shape, or become matched
with the wrong mate. Table 1 presents a comparison of how
CRAM, Goby, and Boiler preserve read information.

Despite being lossy, Boiler is lossless with respect to most
of the data that is relevant to downstream RNA-seq tools for
quantification and assembly; for example, the coverage vector,
distribution of read lengths, and distribution of genomic outer
distances (i.e. fragment lengths plus the lengths of all the
spanned introns) are all preserved. We show that popular
RNA-seq tools for isoform assembly and quantification –
Cufflinks (26) and StringTie (23) – yield near-identical results
when the input is Boiler-compressed.

Boiler yields extremely small file sizes, about 4-to-8-
fold smaller than files produced by CRAM and Goby
for samples with at least 5M paired-end reads. Unlike
other compression tools, Boiler’s compression ratio improves

c© 2016 The Author(s)

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 2 — #2i
i

i
i

i
i

i
i

2

substantially as input file size grows, growing from about 10-
fold for lower-coverage unpaired samples to over 50-fold for
higher-coverage samples. Speed and memory footprint are
comparable to other compression tools despite the fact that,
as we show, recovering alignments from a coverage vector
is computationally hard. Also, because nucleotide data is
removed, Boiler-compressed data is effectively de-identified,
making it easier to pass between parties securely.

Boiler also provides a range of speedy queries. Many
compression tools provide a way for the user to extract
alignments spanning a particular genomic interval from the
compressed file. REFEREE goes a step further by enabling
faster queries when the user is concerned with only a subset of
the fields. Boiler goes further still by providing fast queries
that are directly relevant to downstream uses of RNA-seq
data. Boiler allows user and downstream tools to (a) iterate
over “bundles” of alignments according to inferred gene
boundaries, (b) extract the coverage vector across a genomic
interval, and (c) extract alignments overlapping a genomic
interval.

MATERIALS AND METHODS

Compression
Boiler implements a lossy compression scheme that preserves
only the data needed by downstream isoform assembly tools
such as Cufflinks and StringTie. For this reason, read names
and quality strings are discarded, along with other data that
has little or no bearing on downstream RNA-seq analysis.

Given a set of alignments to a reference genome, Boiler first
partitions the alignments into “bundles” of overlapping reads.
Bundles are computed in the same manner as Cufflinks’ initial
bundling step: As sorted reads are processed, if the current
read starts within 50 bases of the end of the current bundle,
the read is added to the bundle. Otherwise, the current bundle
is compressed and a new bundle is initialized beginning with
the current read.

Boiler converts each bundle into a set of coverage vectors
and tallies of observed read lengths. Note that for most
Illumina sequencing datasets, reads are uniform-length (or
nearly so, e.g. after trimming), yielding a concise tally. If any
alignments in the bundle are paired-end, Boiler also stores a
tally of observed genomic outer distances as reported by the

Table 1. Comparison of the SAM fields stored by different compression
tools. CRAM and Goby can preserve some fields through configurable
options, summarized in the “Config” columns.

SAM Feature CRAM Goby Boiler
Default Config. Default Config.

Read Name Yes1 No No Yes No
Flags Yes No Yes No No
Mapping Quality Yes No Yes No No
Read Sequence Yes No Yes No No
Quality Scores No Yes Yes2 Yes No
Tags No Yes MD Yes3 XS, NH

1CRAMtools documentation claims that by default read names should not be preserved,
however we were not able to replicate this functionality.
2For mismatches only
3Goby preserves either all tags or just the MD tag.

aligner in the TLEN SAM field. Note that TLEN includes the
lengths of all the introns spanned by the alignment, so we
refer to this as ”genomic outer distance,” rather than ”fragment
length.” The coverage vector is compressed using run-length
encoding, which is particularly effective in low-coverage
regions.

More specifically, each bundle is compressed as follows:

1. Boiler scans the bundle’s spliced alignments and finds
all splice sites spanned by at least one alignment. Boiler
divides the portion of the genome spanned by the bundle
into “partitions” formed by cutting at every splice site
(Figure 1a).

2. Boiler assigns each alignment to a bucket according to:
(a) the subset of partitions spanned by the alignment,
(b) the value in the alignment’s NH:i field, indicating
the number of distinct locations where the read aligned
to the reference, and (c) the value in the XS:A field,
indicating whether spanned splice motifs are consistent
with the sense (+) or anti-sense (-) strand of the gene.
Alignments not spanning a junction usually lack the
XS:A field; Boiler treats these as though the XS:A
field contains a “dummy” value indicating the strand is
unknown.

3. For each bucket, Boiler computes the coverage vector
from the alignments assigned to it. Boiler writes the run-
length encoded coverage vector (Figure 1b) followed
by the read and genomic outer distance distributions
(Figure 1c) for the junction.

Each bundle, which consists of many buckets, is
compressed independently using the DEFLATE algorithm
as implemented in the zlib package from the Python
Standard Library. Each bundle is compressed separately to
make targeted queries efficient, as discussed in the “Queries”
section.

Unbundled alignments
Prior to compression, Boiler must identify and handle paired-
end alignments that span bundles in unexpected ways. We call
these unbundled alignments. Unbundled alignments fall into
four categories: (a) one end falls within an intron spanned by
the other end, (b) the two ends align to different chromosomes,
(c) the two ends align to the same chromosome but very
far from each other, (d) one end is assigned to the sense
strand, while its mate is assigned to the anti-sense strand.
Both TopHat and HISAT report such alignments, though they
constitute only a small fraction of the alignments in a typical
dataset.

These alignments are hard to fit into the bundling scheme
described previously. Reads in case (a), also called “discordant
reads”, are biologically implausible. Boiler treats them as
unpaired reads by default, however the user may choose to
preserve these pairs.

Categories (b) and (c) could be scientifically relevant and
should be preserved. For instance, alignments in category (b)
may be evidence of gene fusions. Boiler stores all alignments
in categories (b) and (c) in a special “unbundled alignments”
section of the compressed file. Unbundled alignments are

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 3 — #3i
i

i
i

i
i

i
i

3

Figure 1. Illustration of how Boiler compresses alignments in a bundle, for
a dataset with unpaired reads. (a) The genome is divided into “partitions”
(colored segments) based on the processed splice sites. A bucket is defined by
the subset of partitions spanned (as well as the values of the NH:i and XS:A
fields, though these are omitted from the figure for simplicity). Each bucket
stores (b) the coverage vector and (c) the length tally of the reads assigned to
the bucket.

stored in bundle-spanning buckets. A bundle-spanning bucket
is identical to a normal bucket, but includes the indices of the
two bundles it spans in addition to the list of partitions spanned
from each bundle. The bundle-spanning buckets are stored as
a contiguous list, compressed in small chunks using zlib, and
indexed to reduce work for targeted queries.

Treatment of pairs in (d) is configurable by the user.
These pairs can either be treated as unpaired reads (which is
consistent with Cufflinks and StringTie). Alternately they can
remain paired, but with one end (selected randomly) modified
to match the other end’s strand.

Decompression
To decompress, Boiler first expands each bundle with the
INFLATE algorithm as implemented in the Python zlib
module, then expands each bucket.

When decompressing a bucket, Boiler’s goal is to recreate
the set of alignment intervals that yielded the bucket’s
coverage vector and read and genomic outer distance tallies.
This is a two-step process; first the reads must be recovered
from the coverage vector and read length tally (“read
recovery”), then the recovered reads must be paired according
to the paired length tally (“pairing”).

The read recovery problem may not have a unique solution;
e.g., consider a compressed dataset with read lengths l1 and l2
(l1 6= l2) and a coverage vector containing 1 at all positions in
the range

[
0,l1+l2

)
. This case has two valid solutions:

r1=
[
0,l1

)
, r2=

[
l1,l1+l2

)
and

r1=
[
0,l2

)
, r2=

[
l2,l1+l2

)
Thus, we cannot guarantee perfect recovery of the

compressed reads.
We define the read recovery problem as follows. Given a

coverage vector and tally of read lengths, we seek a list of
decompressed reads (genomic intervals) such that

1. the decompressed read lengths are a subset of those
given in the tally,

2. at no position does the coverage vector produced by
the decompressed reads exceed the value in the original
coverage vector, and

3. the sum of the lengths of all decompressed reads is
maximized.

This formulation is general enough to tolerate an input
where the read length tally and coverage vector are not
compatible, i.e., where no solution fits both precisely. In this
case, the algorithm might decompress only some of the reads
in the input tally.

We observe that the read recovery problem is NP-hard in
general (proved by reduction from the Multiple Subset Sum
Problem in Supplementary Note 1), but that some special
cases are easily solved. When all reads are the same length, for
example, the solution is unique and can be found efficiently.
We also observe that second-generation sequencing produces
datasets with uniform or near-uniform (e.g. after trimming)
read-length tallies. These facts lead us to propose the greedy
algorithm described below. The algorithm is not optimal in
general – no polynomial-time algorithm can be – but it is well
suited to cases where the input read lengths are uniform or
almost uniform.

Greedy algorithms for extracting and pairing reads. The
algorithm works from one end of the coverage vector to the
other, extracting reads that are “consistent” with the coverage
vector. A read is consistent with the vector if removing the
read and decrementing the corresponding coverage-vector
elements does not cause any vector elements to fall below
zero. When a consistent read is selected for extraction, the
corresponding coverage-vector elements are decremented and
the process repeats. The process stops when the far end of the
coverage vector is reached.

When reads have uniform length, the algorithm yields
the correct solution. When reads have various lengths, the
problem is harder and the algorithm may fail to yield the
optimal solution. In the case where reads are various lengths,
Boiler’s algorithm uses heuristics to arrive at a solution where
(a) the coverage vector induced by the extracted reads matches
the true vector as closely as possible, and (b) the distribution
of extracted read lengths matches the true distribution of read
lengths as closely as possible. Boiler favors (a) over (b); i.e.
it will artificially lengthen or shorten the extracted reads to fix
small coverage discrepancies. The algorithm’s heuristics are
described in Supplementary Note 2.

If the data contains paired-end reads, we must also solve
the read pairing problem. We would like Boiler to restore the
paired-end relationships in a way that matches the original
genomic outer distances as closely as possible. We start with

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 4 — #4i
i

i
i

i
i

i
i

4

(a) a collection of reads (ends), all of which are initially
unpaired, and (b) the “true” genomic outer distance tally,
storing the frequencies of each distance, which was compiled
and stored during compression.

We use the following greedy algorithm to pair up reads in a
way that closely matches the true genomic outer distance tally.
Each read is examined, working inward from the extremes,
alternating between the left and right extremes. For each read,
we seek the most distant read such that the resulting pairing is
compatible with distances remaining in the tally. When two
reads are paired in this way, they are removed from future
consideration, and the corresponding element of the tally is
decremented. Reads that are not paired in this way are matched
up randomly in a second pass.

Queries
Boiler allows the user to query a compressed RNA-seq
dataset to (a) iterate over genomic intervals delimiting regions
of non-zero coverage, roughly corresponding to genes, (b)
extract the genomic coverage vector across a specified
genomic interval, and (c) extract alignments overlapping a
specified genomic interval. Because each bundle of alignments
is compressed separately, Boiler can answer such queries
without decompressing the entire file.

Bundle boundaries are stored in the index at the beginning
of the compressed file, so skipping to a particular bundle can
be accomplished with a single uncompressed index lookup. To
compute the coverage query (query b, above), Boiler combines
the relevant portions of the coverage vectors for all the buckets
overlapping the specified region. This requires that Boiler
decompress the DEFLATED and run-length encoded coverage
vectors, but does not require the more work-intensive read and
pair recovery algorithms. Alignment-level queries (queries a
and c above) are more expensive, requiring Boiler to run
the greedy read recovery algorithm on each of the buckets
overlapping the specified region.

Downstream tools like Cufflinks can be modified to
query Boiler-compressed files directly, removing the need for
an intermediate SAM/BAM file. When a downstream tool
requires access only to information about gene boundaries
(query a, above) or about targeted regions of the coverage
vector (query b), Boiler’s queries can be much faster than
directly querying a sorted and indexed BAM file.

Implementation
Boiler is implemented in Python and is compatible with
Python interpreters version 3 and above. All of the Python
modules used by Boiler are in the Python Standard Library,
making Boiler quite portable across Python installations and
interpreters. For example, we use the fast PyPy interpreter for
our experiments.

RESULTS

We used Flux Simulator v1.2.1 (18) to simulate 10 RNA-
seq samples from the BDGP5 build of the D. melanogaster
genome and the Ensembl release 70 (27) gene annotation. We
simulated both paired-end and unpaired RNA-seq samples for
a series of library sizes: 0.5, 1, 2.5, 5, 10, and 20 million
reads. We also simulated two samples from the hg19 build

of the human genome and Gencode v12 gene annotation
(9) containing 20 and 40 million paired-end reads. We also
used a real human RNA-seq sample from the GEUVADIS
(16) project containing approximately 20 million paired-end
reads. All samples were aligned to the reference genome
using Tophat 2 v2.1.0 (13) with default parameters. The D.
melanogaster samples were aligned to the BDGP5 reference
genomes and the human samples were aligned to hg19.

We compared Boiler’s speed, compression ratio, and
peak memory usage to Goby and CRAMTools. Boiler and
Goby remove read names by default, but CRAM does not.
(CRAMtools has an option to preserve read names, but we
cannot find a working mechanism in version 3 to remove
them.) For a fair comparison, we stripped the read names
before compressing.

Efficiency and compression ratio
We compressed each set of alignments with Boiler v1.0.0,
CRAMTools v3.0, and Goby v2.3.5. Boiler was run with PyPy
v2.4 and CRAMTools and Goby were run with Java v1.7.
All were run with default parameters on the Homewood High
Performance Compute Cluster at Johns Hopkins University.
Each cluster computer has 2 Intel Xeon X5660 2.80GHz
processors and 48 GB of RAM. We measure running time
by adding the user and sys times reported by the Linux
time command. Each tool runs predominantly on a single
thread and processor. We measure peak memory usage in
Python by spawning a new child process for the command
and polling maximum resident set size (RSS) using the Python
resource package’s getrusage function. Peak memory
usage for Boiler and Goby was consistent across runs, but
CRAM memory usage varied widely between runs. We report
the median peak memory of 10 runs for greater consistency.

Boiler takes roughly 2 times longer than CRAMTools and
Goby to compress the D. melanogaster samples and about 2-
7 times longer for the human samples (Table 2, Figure 2). It
requires less memory than Goby for all samples and less than
CRAM for small datasets, however for larger datasets CRAM
memory is capped at around 2 GB (Table 3).

Importantly, Boiler usually produces far smaller
compressed files than CRAMTools or Goby. We measure
both compressed file size (Table 4) and the “compression
ratio” of original to compressed file size (Figure 3). The
“original” file is a sorted BAM file with read names removed.
For low-coverage unpaired datasets, CRAM’s compression
ratio is superior to Boiler’s. However, we observe that while
CRAMTools and Goby’s compression ratios remain flat as the
D. melanogaster library size increases, Boiler’s ratios improve
substantially (Figure 3), achieving its best compression ratios
for the 20M-read samples: 56-fold for unpaired and 39-
fold for paired-end samples. Boiler’s compression ratio is
consistently better than the other tools’ for paired-end samples
and improves as library size increases. For high coverage
D. melanogaster and all human dataset, Boiler achieves
compression ratios 3-4-fold higher than CRAM and 7-8-fold
higher than Goby.

Fidelity
Boiler discards read nucleotide and quality-value data.
So while Boiler is not appropriate for pipelines where

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 5 — #5i
i

i
i

i
i

i
i

5

0 5 10 15 20
Millions of Reads

0

200

400

600

800

1000

C
o
m

p
re

ss
io

n
 T

im
e
 (

s)

Boiler (Unpaired)

CRAM (Unpaired)

Goby (Unpaired)

Boiler (Paired)

CRAM (Paired)

Goby (Paired)

Figure 2. The compression time for simulated Drosophila paired-end
datasets compressed by Boiler, CRAM and Goby.

downstream tools measure non-reference alleles – e.g. for
variant calling, allele-specific expression, or RNA editing –
we show that Boiler is appropriate for the common case
where downstream tools are concerned with assembling and
quantifying isoforms, e.g. Cufflinks and StringTie.

Boiler tends to “shuffle” alignment data in certain ways
during compression. Some of the shuffling is harmless, having
no adverse effect on downstream results from Cufflinks and
StringTie. But some shuffling could in theory be harmful,
negatively impacting Cufflinks and StringTie. Using both
simulated and real data, we (a) establish the nature of the
shuffling introduced by Boiler, (b) show there is only slight
harmful shuffling in practice, and (c) show that the overall
amount of shuffling is smaller (often much smaller) than the
shuffling that results from substituting one technical replicate
for another.

Table 2. Compression times in seconds.

Dataset Boiler CRAM Goby

Drosophila, Simulated Unpaired
0.5M 44.6 14.1 13.4
1M 51.1 23.1 18.0
2.5M 84.5 40.1 30.6
5M 123.1 67.7 55.9
10M 196.3 124.3 100.5
20M 321.6 232.5 215.7

Drosophila, Simulated Paired
0.5M 51.4 25.5 19.6
1M 69.5 40.8 31.0
2.5M 148.3 80.1 70.5
5M 269.3 140.8 134.5
10M 508.6 274.6 267.0
20M 990.0 548.0 555.2

Human
GEUVADIS 20M 4553.8 684.4 841.7
Simulated 20M 2298.6 864.1 1110.9
Simulated 40M 7792.4 1566.1 1935.5

Alignment-level fidelity
Boiler compression can change where alignments lie on the
genome and how they are paired. Here we ask how well
alignment locations are preserved after Boiler compression of
the TopHat 2-aligned samples. We measure alignment-level
precision and recall in two ways. First we ignore read pairings.
For each aligned unpaired read (or end of a paired-end read)
in the original file, we seek a corresponding alignment in the
compressed file where the genomic position of the alignment
and of all overlapped splice junctions are identical. This
counts as a true positive, and the alignments involved are
“matched.” An alignment can be matched with at most one
other alignment. An alignment in the original file that fails

Table 3. Peak memory usage (GB) reported by Python. Numbers reported
are the median across 10 runs.

Dataset Boiler CRAM Goby

Drosophila, Simulated Unpaired
0.5M 0.38 0.74 0.47
1M 0.29 1.37 0.45
2.5M 0.24 1.12 0.48
5M 0.24 1.13 0.81
10M 0.24 0.96 1.31
20M 0.50 1.53 3.03

Drosophila, Simulated Paired
0.5M 0.32 1.15 0.50
1M 0.31 1.91 1.71
2.5M 0.30 1.96 0.85
5M 0.32 1.18 2.55
10M 0.79 1.11 3.66
20M 1.57 0.99 4.39

Human
GEUVADIS 20M 3.23 2.08 6.86
Simulated 20M 6.11 2.08 7.63
Simulated 40M 9.14 2.08 9.69

Table 4. Size of compressed files (MB) compared to the original sorted BAM
with read names removed.

Dataset BAM Boiler CRAM Goby

Drosophila, Simulated Unpaired
0.5M 26.0 2.7 0.9 3.8
1M 49.4 3.6 1.6 7.4
2.5M 120.3 5.6 3.8 18.0
5M 222.2 7.6 6.7 32.9
10M 436.1 11.0 12.6 62.6
20M 883.0 15.0 23.2 114.0

Drosophila, Simulated Paired
0.5M 56.12 4.3 7.7 13.4
1M 104.6 6.7 14.2 25.6
2.5M 255.6 12.9 33.9 63.5
5M 488.1 20.0 61.9 121.0
10M 955.0 31.6 116.9 234.2
20M 1902.6 49.0 226.2 456.3

Human
GEUVADIS 20M 2017.9 78.0 288.8 609.6
Simulated 20M 2117.3 71.6 273.5 552.5
Simulated 40M 3858.4 118.0 491.4 1007.4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 6 — #6i
i

i
i

i
i

i
i

6

0 5 10 15 20
Millions of Reads

0

10

20

30

40

50

60

C
o
m

p
re

ss
io

n
 R

a
ti

o

Boiler (Unpaired)

CRAM (Unpaired)

Goby (Unpaired)

Boiler (Paired)

CRAM (Paired)

Goby (Paired)

Figure 3. The compression ratio for simulated Drosophila paired-end
datasets compressed by Boiler, CRAM and Goby, compared to the original
sorted BAM with read names removed.

to match an alignment in the compressed file counts as a
false negative and the converse is a false positive Given these
definitions, precision and recall are shown in the left-hand
columns of Table 5 (labeled “Ignoring pairings”). Both range
from about 96% to about 99% across the samples tested.

We also measure precision and recall in a way that
takes pairing into account: for each aligned pair, we seek a
corresponding pair in the compressed file where both ends
match their counterparts in terms of their genomic position
and the positions of splice junctions. These results are shown
in the right-hand columns of Table 5 (labeled “Including
pairings”). Here precision and recall are lower, ranging from
about 20% to about 50% across samples.

We also measured genomics outer distance distribution
(excluding discordant alignments) before and after Boiler
compression and found that they match closely as illustrated
in Figure 4. The results are emblematic of Boiler’s strategy:
aggregate distributions are preserved, but links between
particular alignments and particular points in the distribution
are lost. As a result, some data is “shuffled;” ends themselves
are largely unchanged, but pairings between the ends are
shuffled in a way that preserves the aggregate genomic outer
distance distribution.

Isoform fidelity
Having established Boiler’s lossy-ness and shuffling behavior,
we now assess the degree to which loss and shuffling
have an adverse effect on downstream results obtained
by Cufflinks v2.2.1 and StringTie v1.0.3. StringTie was
run with default parameters. Cufflinks was run with the
--no-effective-length-correction parameter to
avoid variability due to an issue (recently resolved) in how
Cufflinks performs effective transcript length correction (5).

Let T be the true simulated transcriptome, including
abundances for each transcript, which we can extract from
the Flux-generated .pro and .gtf files. Let T̂ be the

transcriptome assembled and quantified from the original
alignments, which we extract from the Cufflinks/StringTie
output. Let T̂ ′ be the same but for the Boiler-compressed
alignments. Here we ask whether T̂ and T̂ ′ are approximately
equidistant from T , indicating Boiler’s loss and shuffling are
not having an adverse effect.

We define a function for measuring the distance between
two transcripts t1 and t2 assembled with respect to a reference
genome. The function outputs a value between 0 and 1, with
0 indicating the transcripts do not match and 1 indicating a
perfect match.

A transcript t can be represented as a set of exons
{e1,...en}, each defined by its start and stop positions. We
first define a scoring function for two exons e1=(x1,y1) and
e2=(x2,y2):

s(e1,e2)=1−min(|x2−x1|,k)
2k

−min(|y2−y1|,k)
2k

for some threshold k. We further define function max(e,t̂)
to be the exon ê from t̂ with the highest score s(e,ê).

The weighted precision for pre-compression alignments is:∑
t̂∈T̂

max
t∈T

(
score(t̂,t)

)
·c(t̂)

Where c(t̂) is the predicted coverage level of t as reported
by Cufflinks/StringTie. This measure is weighted both by the
coverage of the assembled transcript and by the similarity of
the matched-up transcripts. Precision for the post-compression
alignments is calculated similarly, using T̂ ′ instead of T̂ .

Similarly, weighted recall is∑
t∈T

max
t̂∈T̂

(
s(t,t̂)

)
·c(t)

Table 5. Precision and recall of SAM reads.

Dataset Ignoring Pairings Including Pairings
Precision Recall Precision Recall

Drosophila, Simulated Unpaired
0.5M 0.980 0.989 – –
1M 0.971 0.983 – –
2.5M 0.960 0.976 – –
5M 0.954 0.971 – –
10M 0.953 0.967 – –
20M 0.960 0.970 – –

Drosophila, Simulated Paired
0.5M 0.977 0.986 0.538 0.542
1M 0.968 0.980 0.453 0.458
2.5M 0.957 0.971 0.333 0.338
5M 0.957 0.970 0.260 0.263
10M 0.960 0.970 0.217 0.219
20M 0.963 0.970 0.175 0.176

Human
GEUVADIS 20M 0.982 0.984 0.252 0.253
Simulated 20M 0.972 0.977 0.331 0.332
Simulated 40M 0.974 0.977 0.318 0.319

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 7 — #7i
i

i
i

i
i

i
i

7

0 20 40 60 80 100
Genomic Outer Distance (kb)

102

103

104

105

106

107

108

Fr
e
q
u
e
n
cy

Original

Compressed

0 20 40 60 80 100
Genomic Outer Distance (kb)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

C
o
m

p
re

ss
e
d
 /

 O
ri

g
in

a
l
Fr

e
q
u
e
n
cy

Figure 4. Comparison of genomic outer distances for the 10M paired-end D. melanogaster sample. Left: Distribution of paired-end genomic outer distances up
to 100,000 bases, before and after compression. Right: The ratio of genomic outer distances for each distance before and after compression, up to 100,000 bases.

Algorithm 1 Transcript scoring algorithm

1: procedure SCORE(t,t̂)
2: s←0 . Score before normalization
3: n←0 . Number of matching exons found
4: for e∈ t do
5: ê=max(e,t̂)
6: if e=max(ê,t) then
7: s←s+s(e,ê)
8: n←n+1
9: end if

10: end for
11: return s

|t|+|t̂|−n
12: end procedure

Where c(t) is the true coverage level for t as reported by Flux.
We calculated the weighted precision (Tables 6) and recall

(Table 7) for all simulated samples. While there are small
differences in all experiments (as expected due to Boiler’s
shuffling behavior), overall they indicate that the Boiler-
compressed alignments are not adversely impacting weighted
precision and recall.

Other Isoform Fidelity Scores
Supplementary Note 3 describes a complementary experiment
using weighted k-mer recall (WKR), which does not depend
on a distance function. Supplementary Note 4 describes a
third accuracy measure called the Tripartite Score, which
uses the same distance, but can compare two assembled
transcriptomes to a third “reference” transcriptome. The
results from those methods substantially agree with the results
above.

Shuffling relative to technical replicates
Next we investigate the amount of “shuffling” introduced by
Boiler – causing some reads to shift along the genome and
scrambling some paired-end relationships – and whether the
effect is large or small compared to the shuffling that occurs
when switching from one technical replicate to another.

We first construct five artificial technical replicates by
generating five times the desired number of reads with Flux
Simulator and randomly partitioning the resulting read file five
ways. We then assemble and quantify each using Cufflinks
and StringTie. Let T̂1, T̂2, ..., T̂5 be the corresponding
transcriptomes. We also pick a technical replicate (T̂1, say)
to compress with Boiler. Let T̂ ′1 be the result of running
Cufflinks/StringTie on the Boiler-compressed alignments. We
calculate the weighted precision and recall of T̂ ′1 relative to T̂1.
Finally, we calculate weighted precisions and recalls between
all 10 ordered pairs of technical-replicate transcriptomes:
(T̂1,T̂2),(T̂1,T̂3),...,(T̂4,T̂5). Results are presented in Tables
8 and 9. Precision and recall between technical replicates is
shown as a range from the minimum to the maximum observed
among the 10 ordered pairs.

Precision and recall after Boiler-compression are
consistently higher than precision and recall between
technical replicates. This indicates that the amount of
shuffling due to Boiler compression is consistently smaller
than the amount due to switching between technical replicates.

It is worth noting how precision and recall change relative to
per-sample coverage. Precision and recall between technical
replicates increases as per-sample coverage increases,
indicating that as more transcripts become deeply covered,
the adverse effect of technical-replicate shuffling decreases.
On the other hand, precision and recall of T̂ ′1 versus T̂1
decreases as per-sample coverage increases. This is notable
because there may be very high levels of coverage for which

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 8 — #8i
i

i
i

i
i

i
i

8

the Boiler precision/recall drops below the technical-replicate
precision/recall.

However, for the realistic levels of coverage that we tested,
Boiler’s shuffling remains significantly more accurate than
technical replicates.

Queries
Recovering coverage vectors from a Boiler-compressed file
requires that Boiler decompress and combine coverage vectors
for all the overlapping bundles. The decompression involves
use of the DEFLATE algorithm and run-length decoding, but
does not involve the more expensive read and pair recovery
algorithms. SAMtools, on the other hand, does not explicitly
represent the coverage vectors in a BAM file. Instead,
coverage information must be recovered from the BAM file

Table 6. Reference-based Precision.

Dataset Cufflinks StringTie
Original Compressed Original Compressed

Drosophila, Simulated Unpaired
0.5M 0.364 0.363 (-0.1%) 0.427 0.427 (+0.0%)
1M 0.432 0.432 (-0.0%) 0.507 0.506 (-0.1%)
2.5M 0.527 0.525 (-0.3%) 0.604 0.604 (-0.0%)
5M 0.564 0.563 (-0.1%) 0.618 0.618 (-0.0%)
10M 0.583 0.583 (-0.1%) 0.624 0.623 (-0.1%)
20M 0.602 0.601 (-0.3%) 0.631 0.629 (-0.3%)

Drosophila, Simulated Paired
0.5M 0.583 0.581 (-0.4%) 0.511 0.512 (+0.1%)
1M 0.611 0.606 (-0.9%) 0.587 0.586 (-0.2%)
2.5M 0.632 0.629 (-0.4%) 0.623 0.623 (+0.0%)
5M 0.635 0.633 (-0.4%) 0.619 0.617 (-0.4%)
10M 0.644 0.642 (-0.3%) 0.620 0.617 (-0.6%)
20M 0.639 0.634 (-0.8%) 0.613 0.610 (-0.4%)

Human, Simulated Paired
20M 0.552 0.552 (+0.1%) 0.537 0.534 (-0.5%)
40M 0.554 0.553 (-0.1%) 0.540 0.537 (-0.5%)

Table 7. Reference-based Recall

Dataset Cufflinks StringTie
Original Compressed Original Compressed

Drosophila, Simulated Unpaired
0.5M 0.583 0.583 (+0.0%) 0.521 0.521 (+0.0%)
1M 0.708 0.707 (-0.1%) 0.675 0.675 (-0.1%)
2.5M 0.791 0.784 (-0.8%) 0.794 0.794 (-0.0%)
5M 0.822 0.821 (-0.0%) 0.835 0.835 (+0.0%)
10M 0.824 0.824 (-0.0%) 0.843 0.843 (+0.0%)
20M 0.827 0.826 (-0.1%) 0.848 0.847 (-0.1%)

Drosophila, Simulated Paired
0.5M 0.732 0.729 (-0.4%) 0.688 0.687 (-0.2%)
1M 0.799 0.797 (-0.2%) 0.789 0.789 (+0.1%)
2.5M 0.825 0.827 (+0.2%) 0.840 0.840 (+0.0%)
5M 0.840 0.839 (-0.1%) 0.856 0.855 (-0.2%)
10M 0.828 0.830 (+0.2%) 0.849 0.850 (+0.1%)
20M 0.826 0.821 (-0.6%) 0.849 0.848 (-0.1%)

Human, Simulated Paired
20M 0.762 0.762 (-0.0%) 0.791 0.789 (-0.2%)
40M 0.792 0.789 (-0.4%) 0.822 0.816 (-0.7%)

by first extracting the relevant alignments, then composing the
coverage vector using another tool like BEDTools:

samtools view -b -h x.bam c:start-end |
genomeCoverageBed -bga -split -ibam stdin
-g chromosomes.txt

We compared the time required for Boiler to
respond to coverage queries to the time required for
SAMtools/BEDTools. Specifically, we iterated over all bundle
boundaries in several D. melanogaster samples and queried
for the coverage vector within those boundaries using both
Boiler and SAMtools/BEDTools. Figure 5 compares the tools

Table 8. Non-reference-based precision.

Dataset Cufflinks Stringtie
Calculated Tech Reps Calculated Tech Reps

(min–max) (min–max)

Drosophila, Simulated Unpaired
0.5M 0.996 0.246–0.255 0.996 0.277–0.286
1M 0.996 0.322–0.333 0.996 0.358–0.372
2.5M 0.995 0.430–0.437 0.996 0.493–0.504
5M 0.994 0.504–0.512 0.997 0.581–0.587
10M 0.991 0.570–0.577 0.996 0.656–0.661
20M 0.990 0.629–0.634 0.995 0.707–0.716

Drosophila, Simulated Paired
0.5M 0.979 0.425–0.440 0.995 0.362–0.376
1M 0.977 0.522–0.529 0.996 0.463–0.474
2.5M 0.967 0.624–0.632 0.994 0.587–0.598
5M 0.964 0.674–0.684 0.992 0.653–0.671
10M 0.957 0.713–0.722 0.991 0.704–0.715
20M 0.953 0.746–0.754 0.989 0.744–0.756

Human
GEUVADIS 20M 0.919 0.990
Simulated 20M 0.968 0.765–0.788 0.990 0.753–0.777
Simulated 40M 0.962 0.786–0.809 0.986 0.778–0.801

Table 9. Non-reference-based recall.

Dataset Cufflinks Stringtie
Calculated Tech Reps Calculated Tech Reps

(min–max) (min–max)

Drosophila, Simulated Unpaired
0.5M 0.997 0.246–0.255 1.000 0.277–0.286
1M 0.995 0.322–0.333 0.999 0.358–0.372
2.5M 0.996 0.430–0.437 0.998 0.493–0.504
5M 0.995 0.504–0.512 0.998 0.581–0.587
10M 0.993 0.570–0.577 0.997 0.656–0.661
20M 0.990 0.629–0.634 0.997 0.707–0.716

Drosophila, Simulated Paired
0.5M 0.980 0.425–0.440 0.997 0.362–0.376
1M 0.979 0.522–0.529 0.997 0.463–0.474
2.5M 0.971 0.624–0.632 0.994 0.587–0.598
5M 0.970 0.674–0.684 0.993 0.653–0.671
10M 0.959 0.713–0.722 0.991 0.704–0.715
20M 0.954 0.746–0.754 0.990 0.744–0.756

Human
GEUVADIS 20M 0.921 0.990
Simulated 20M 0.968 0.765–0.788 0.991 0.753–0.777
Simulated 40M 0.961 0.786–0.809 0.978 0.778–0.801

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 9 — #9i
i

i
i

i
i

i
i

9

both in terms of average query time (left) and per-bundle
query time (right). As expected, Boiler is consistently faster
than SAMtools/BEDTools, with Boiler taking under 0.1
seconds on average, and SAMtools/BEDTools taking close to
0.75 seconds.

We also compared alignment query times for Boiler to those
for the indexed BAM. An alignment query is easy to handle
with SAMtools:

samtools view -h x.bam chrom:start-end

Boiler must both decompress the relevant bundles and
run the greedy read and pair recovery algorithms. Figure 6
compares the tools both in terms of average query time (left)
and per-bundle query time (right). As expected, because of
the need to run read and pair recovery, Boiler is consistently
slower than SAMtools. Even so, Boiler’s average response
time is under 0.15 seconds.

DISCUSSION

Boiler applies principles of lossy compression and transform
coding to the problem of compressing RNA-seq alignments.
Beyond the lossy methods used in CRAMTools and Goby,
Boiler additionally discards most of the data that ties
individual reads to their aligned positions and shapes. Boiler
instead stores coverage vectors and read- and outer-distance
tallies, effective shifting from the “alignment domain” to
the “coverage domain.” While this can cause alignments to
shift along the genome or pair with the wrong mate, the
shuffling effect is modest compared to the shuffling induced
by switching between technical replicates, and adverse effects
on downstream tools for isoform assembly and quantification
are minimal.

Boiler is not a general-purpose substitute for RNA-seq
SAM/BAM files, but it is an extremely space-efficient
alternative that works well with tools like Cufflinks and
StringTie. Though we have not shown it here, we also expect
Boiler compression to work well with annotation-based tools
like featureCounts (17) and HiTseq (1), as well as downstream
differential-expression tools. Also, because Boiler discards
information about non-reference alleles, Boiler archives are
more readily sharable even when the input data is protected
by privacy provisions such as dbGaP.

In future work, it is important to explore alternatives
to the greedy decompression algorithms described here.
For example, Boiler’s greedy algorithm for extracting reads
from a coverage distribution assumes that the distribution
of input read lengths has a dominant mode. This is a
reasonable assumption for Illumina data (including data that
has passed through a read trimmer beforehand), but not so
for other sequencing technologies. Also, the compression and
decompression algorithms currently implemented in Python
could be accelerated by moving to a compiled language such
as C/C++. In general, there are many opportunities to make the
read extraction and pairing algorithms more accurate, faster,
and less hampered by assumptions about the data.

Finally, we note that the methods used here to characterize
Boiler’s shuffling effect are more generally useful for
evaluating any upstream tool that modifies the data. For
example, one could apply the same techniques to evaluate a

tool for read trimming or digital normalization, or to compare
many parameterizations of the spliced aligner.

Boiler is available from
github.com/jpritt/boiler and is distributed
under the open source MIT license.

ACKNOWLEDGEMENTS

We are grateful to Abhinav Nellore and Chris Wilks for
commenting on the software and manuscript.

FUNDING

BTL and JP were supported by a Sloan Research Fellowship
to BL and by National Science Foundation grant IIS-1349906
to BL.

Conflict of interest statement. None declared.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 10 — #10i
i

i
i

i
i

i
i

10

● ● ● ●

●

●

●

● ●
●

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
Num. Paired Reads

C
ov

er
ag

e
Q

ue
ry

 T
im

e
(s

)

●

●

Boiler

Indexed BAM

0

10

20

0 100,000 200,000 300,000 400,000
Bundle length

S
am

to
ol

s
tim

e
/ B

oi
le

r
tim

e

Figure 5. Comparison of coverage query times for Boiler the indexed BAM for all bundles. Left: Average query time for varying D. melanogaster paired-end
datasets. Right: Ratio of Samtools / Boiler query time for each bundle in the 10M D. melanogaster paired-end dataset plotted as a function of bundle length. The
blue line denotes the best fit line for the points, the red line is y=1.

●

●

●

●

●

●

●
●

●

●

0.00

0.05

0.10

0.15

2.5 5.0 7.5 10.0
Num. Paired Reads

R
ea

d
Q

ue
ry

 T
im

e
(s

)

●

●

Boiler

Indexed BAM

0

1

2

3

0 100,000 200,000 300,000 400,000
Bundle length

S
am

to
ol

s
tim

e
/ B

oi
le

r
tim

e

Figure 6. Comparison of alignment query times for Boiler the indexed BAM for all bundles. Left: Average query time for varying D. melanogaster paired-end
datasets. Right: Ratio of Samtools / Boiler query time for each bundle in the 10M D. melanogaster paired-end dataset plotted as a function of bundle length. The
blue line denotes the best fit line for the points, the red line is y=1.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 11 — #11i
i

i
i

i
i

i
i

11

REFERENCES

1. Anders S, Pyl PT, Huber W (2014) HTSeq–A Python framework to work
with high-throughput sequencing data. Bioinformatics, 31(2), 166–169.

2. Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, Gelfand ET,
Trowbridge CA, Maller JB, Tukiainen T, Lek M et al (2015) The Genotype-
Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in
humans. Science, 348(6235), 648-660.

3. Bonfield JK, Mahoney MV (2013) Compression of fastq and sam format
sequencing data. PLoS ONE, 8(3), e59190.

4. Campagne F, Dorff K, Chambwe N, Robinson JT, Mesirov JP (2013)
Compression of Structured High-Throughput Sequencing Data. PLoS
ONE, 8(11), e79871.

5. Cufflinks pull request 32, https://github.com/cole-trapnell-
lab/cufflinks/pull/32 (2015).

6. Daily K, Rigor P, Christley S, Xie X, Baldi P (2010) Data structures
and compression algorithms for high-throughput sequencing technologies.
BMC bioinformatics, 11(1), 514.

7. Filippova D, Kingsford C (2015) Rapid, separable compression enables
fast analyses of sequence alignments. ACM Conference on Bioinformatics,
194–201.

8. Hach F, Numanagic I, Alkan C, Sahinalp SC (2012) SCALCE: boosting
sequence compression algorithms using locally consistent encoding.
Bioinformatics, 28(23), 3051–3057.

9. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski
F, Aken BL, Barrell D, Zadissa A, Searle S et al (2012) GENCODE: the
reference human genome annotation for The ENCODE Project. Genome
research, 22(9), 1760–1774.

10. Hsi-Yang FM, Leinonen R, Cochrane G, Birney E (2011) Efficient
storage of high throughput DNA sequencing data using reference-based
compression. Genome Research, 5, 734–740.

11. Jones DC, Ruzzo WL, Peng X, Katze MG (2012) Compression of next-
generation sequencing reads aided by highly efficient de novo assembly.
Nucleic Acids Research, 40(22), e171.

12. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D (2010)
BigWig and BigBed: enabling browsing of large distributed datasets.
Bioinformatics, 26(17), 2204–2207.

13. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL
(2013). TopHat2: accurate alignment of transcriptomes in the presence of

insertions, deletions and gene fusions Genome Biol, 14(4), R36.
14. Kim D, Langmead B, Salzberg SL (2013). HISAT: a fast spliced aligner

with low memory requirements Nature methods, 12(4), 357-360.
15. Kozanitis C, Saunders C, Kruglyak S, Bafna V, Varghese G (2011)

Compressing genomic sequence fragments using SlimGene. Journal of
Computational Biology, 18(3), 401-413.

16. Lappalainen T, Sammeth M, Friedländer MR, AC?t Hoen P, Monlong
J, Rivas MA, Gonzàlez-Porta M, Kurbatova N, Griebel T, Ferreira PG
et al (2013) Transcriptome and genome sequencing uncovers functional
variation in humans. Nature, 501(7468), 506-511.

17. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general
purpose program for assigning sequence reads to genomic features.
Bioinformatics, 30(7), 923-930.

18. Griebel T, Zacher B, Ribeca P, Raineri E, Lacroix V, Guigó R, Sammeth M
(2012) Modelling and simulating generic RNA-Seq experiments with the
flux simulator. Nucleic acids research, 40(20), 10073-10083.

19. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive.
Nucleic acids research, 39(suppl 1), D19-D21.

20. Li H, Durbin R (2009) Fast and accurate short read alignment with
Burrows-Wheeler Transform. Bioinformatics, 25, 1754–1760.

21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecases G, Durbin R (2009) The Sequence Alignment/Map format and
SAMtools. Bioinformatics, 25(16), 2078–2079.

22. Ochoa I, Asnani H, Bharadia D, Chowdhury M, Weissman T, Yona G
(2013) QualComp: a new lossy compressor for quality scores based on
rate distortion theory. BMC Bioinformatics, 14, 187.

23. Pertea M, Pertea GM, Antonescu CM, Chang TS, Mendell JT, Salzberg SL
(2015). StringTie enables improved reconstruction of a transcriptome from
RNA-seq reads. Nature Biotechnology, 33(3), 290-295.

24. Popitsch N, von Haeseler A (2013). NGC: lossless and lossy compression
of aligned high-throughput sequencing data. Nucleic Acids Research,
41(1), e27.

25. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer
R, Schatz MC, Sinha S, Robinson GE (2015) Big Data: Astronomical or
Genomical? PLoS Biol, 13(7), e1002195.

26. Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, van Baren J,
Salzberg S, Wold B, Pachter L (2010). Nature Biotechnology, 28(5), 511–
515.

27. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D,
Cummins C, Clapham P, Fitzgerald S, Gil L et al (2015). Nucleic Acids
Research, 28(5), gkv1157.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 12 — #12i
i

i
i

i
i

i
i

12

SUPPLEMENT

Supplementary Note 1
LEMMA 0.1. The read decompression problem is strongly

NP-hard.

Proof Consider the Multiple Subset Sum Problem (MSSP),
defined as follows. Given n items with weights w1,w2,...,wn
and m knapsacks with capacities c1,c2,...,cm, assign items to
knapsacks such that:

1. each item is assigned to up to 1 knapsack

2. the capacity of each knapsack is not exceeded by the
combined weights of the items assigned to it

3. the total weight of the items in all the knapsacks is
maximized.

MSSP is known to be strongly NP-hard (28).
We reduce MSSP to a special case of the read

decompression problem where the coverage vector never
exceeds 1. We first construct a vector C encoding knapsack
capacities in unary. We start with empty C then, for each
i, append ci 1s followed by a single 0. Note that because
the length of C depends on the numeric knapsack weights,
this is a pseudo-polynomial time reduction. Next, we let the
read length tally equal the item weight tally. Finally, we run
our decompression algorithm on the coverage vector C and
read length tally. The algorithm packs reads into the nonzero
stretches of C. This solution is converted to an MSSP solution
by converting reads to the corresponding items and stretches
of the coverage vector to the corresponding knapsacks.

The reduction satisfies the requirements of a pseudo-
polynomial transformation (29). Hence, the read
decompression problem for unpaired reads is strongly
NP-hard.

Supplementary Note 2
Greedy algorithm for obtaining reads from coverage vector.
The algorithm works from one end of the coverage vector
to the other, removing reads that remain consistent with the
coverage vector. We take advantage of the homogeneous read
length distribution produced by sequencing experiments by
preferentially removing reads of the most common length.
When necessary, we adjust the lengths of previously found
reads by a few bases to match the coverage vector as closely
as possible.

Initially, we extract reads in end-to-end sets of the form
(a,b,n) where a and b are the starting and ending indices in
the coverage vector and n is the number of end-to-end reads.
Each read set must satisfy

n·lmin≤(b−a)≤n·lmax

where lmin and lmax are the minimum and maximum lengths
in the read distribution, respectively. Each time we find a
new read (b,c), we search for an existing read set matching
(a,b,n) and update it to (a,c,n+1). If no such read exists, we
add a new read set (b,c,1).

We define two helper functions extend(x0,x1) and
shorten(x0,x1).
extend(x0,x1) searches for a read set of the form (a,x0,n)

satisfying

n·lmin≤(x1−a)≤n·lmax

and updates it to (a,x1,n) and decrements the coverage vector
in the range [x0,x1) by 1.

shorten(x0,x1) searches for a read set of the form
(a,x1,n) satisfying

n·lmin≤(x0−a)≤n·lmax

and updates it to (a,x0,n) and increments the coverage vector
in the range [x0,x1) by 1.

These functions allow us to adjust previous reads by small
amounts to fit in later reads. The read extraction algorithm
works as follows:

Last start and end be the indices of the first and last
nonzero elements in the coverage vector, respectively. We
find a and b such that cov[i]>0∀i∈ [start,a), cov[a]=0 and
cov[i]=0∀i∈ [a,b), cov[b]>0.

Special end case: if a=end<start+lmin, we first attempt
to run extend(start,a). If unsuccessful, we decrement the
bases in the coverage vector in the range [start,a) but do not
add a new read.

If a≥ lmode, we add a new read (start,start+lmode) and
update the coverage vector.

Otherwise, we attempt to run extend(start,a). If
unsuccessful, we attempt to run shorten(a,b). If this is also
unsuccessful, we do one of the following:

1. If (a−start)≥ lmin, we add a new read (start,a) and
update the coverage vector.

2. If lmin
2 ≤(a−start)<lmin, we add a new read

(start,start+lmode) and update the coverage vector.

3. If (a−start)< lmin
2 , we decrement the bases in the

coverage vector in the range [start,a) but do not add
a new read.

We then update start and end and repeat until the coverage
vector is empty.

Supplementary Note 3
Weighted k-mer recall. We assess fidelity by measuring
weighted k-mer recall (WKR), a component of the KC score
developed by Li et al. (30) to assess transcriptome assemblies.
WKR measures the degree to which an assembly recovers
k-mers from the true simulated transcriptome, weighted by
abundances of simulated transcripts containing the k-mer. For
a k-mer r, its frequency profile p(r) is defined as:

p(r)=

∑
t∈T n(r,t)c(t)∑
t∈T n(t)c(t)

where T is the simulated transcriptome and for each
transcript t∈T :

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 13 — #13i
i

i
i

i
i

i
i

13

• n(r,t) is the number of times r occurs in t,

• n(t) is the total number of k-mers in t, and

• c(t) is the coverage of t.

Letting R(T) be the set of all k-mers in transcriptome T :

WKR=
∑

r∈R(T)

p(r)

WKR is defined with respect to the true transcriptome
T , which we obtain from Flux Simulator’s output. The
GEUVADIS sample is not considered here, since it is not
simulated. Figure 7 shows that WKR is largely unchanged
after Boiler compression for various k-mer length settings.

It also shows that the difference in WKR is more
pronounced for Cufflinks than for StringTie. Table 10
shows the WKR for k=15 for all datasets. Overall, the
differences are slight, with the biggest difference at k=15
being an increase of 0.4% for the paired-end 2.5M-read D.
melanogaster sample.

Supplementary Note 4
Tripartite Score We developed a third scoring algorithm
to compare the accuracy of alignments before and after
compression, which we call the tripartite score. There are two
versions of this score, strict and loose.

We first construct a tripartite graph containing a node for
each transcript in the cufflinks output for the alignments
both before and after compression, as well as for each
transcript in the reference transcriptome. We add a connecting
edge from each transcript from the original set to the best-
matching transcript from the reference set, determined using
the transcript scoring method described previously. Similarly,
we add an edge from each transcript in the compressed set to
the best match from the reference set of transcripts.

Table 10. WKR.

Dataset Cufflinks StringTie
Original Compressed Original Compressed

Drosophila, Simulated Unpaired
0.5M 0.745 0.745 (-0.1%) 0.627 0.627 (+0.1%)
1M 0.859 0.858 (-0.1%) 0.784 0.784 (+0.0%)
2.5M 0.925 0.923 (-0.2%) 0.902 0.902 (+0.0%)
5M 0.949 0.949 (+0.0%) 0.937 0.938 (+0.0%)
10M 0.957 0.958 (+0.1%) 0.955 0.955 (+0.0%)
20M 0.962 0.962 (+0.1%) 0.961 0.961 (+0.0%)

Drosophila, Simulated Paired
0.5M 0.848 0.848 (-0.0%) 0.782 0.782 (+0.0%)
1M 0.909 0.908 (-0.1%) 0.882 0.883 (+0.1%)
2.5M 0.929 0.933 (+0.5%) 0.942 0.942 (+0.0%)
5M 0.948 0.945 (-0.3%) 0.957 0.958 (+0.0%)
10M 0.938 0.939 (+0.1%) 0.960 0.961 (+0.1%)
20M 0.936 0.937 (+0.0%) 0.964 0.964 (+0.0%)

Human, Simulated
20M 0.882 0.883 (+0.2%) 0.933 0.931 (-0.2%)
40M 0.900 0.908 (+0.9%) 0.934 0.930 (-0.4%)

5 10 15 20 25 30
k-mer Length

0.90

0.92

0.94

0.96

0.98

1.00

W
e
ig

h
te

d
 K

m
e
r

R
e
ca

ll

Original (Cufflinks)

Compressed (Cufflinks)

Original (StringTie)

Compressed (StringTie)

Figure 7. WKR with varying k-mer length for simulated Drosophila 10M
paired-end reads, assembled with Cufflinks and StringTie.

For the strict tripartite score, we take all the nodes from the
set of reference transcripts that are connected to a single node
Ai from the set of original transcripts and a single node Bi
from the set of compressed transcripts. The final score is the
average of the transcript scores for every pair Ai, Bi.

For the loose tripartite score, we take all the nodes from the
set of reference transcripts that are connected to at least one
node from the set of original transcripts and at least one node
from the set of compressed transcripts. Let Ai be the original
transcript with the highest score compared to the reference
node, and let Bi be the compressed transcript with the highest
score compared to the reference transcript. The final score is
the average of the transcript scores for every pair Ai, Bi.

Tables 11 and 12 show the tripartite scores alongside the
percentage of transcripts from the original and compressed set
of transcripts that contribute to the score.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 14 — #14i
i

i
i

i
i

i
i

14

Table 11. Tripartite score for Cufflinks transcripts.

Dataset Strict Loose
Score % True % Comp Score %True % Comp

Drosophila, Simulated Unpaired
0.5M 1.000 27.5 27.5 0.984 43.9 43.9
1M 0.998 23.0 23.1 0.986 39.5 39.5
2.5M 0.995 23.8 23.8 0.991 34.8 34.8
5M 0.997 23.9 23.9 0.995 30.6 30.6
10M 0.997 23.1 23.1 0.994 28.0 28.0
20M 0.996 22.3 22.3 0.993 26.9 26.9

Drosophila, Simulated Paired
0.5M 0.994 45.1 45.0 0.984 59.2 59.1
1M 0.990 35.5 35.4 0.983 47.1 46.9
2.5M 0.981 31.5 31.4 0.978 39.4 39.2
5M 0.978 27.9 27.7 0.975 34.4 34.2
10M 0.973 25.3 25.2 0.967 31.7 31.6
20M 0.972 23.3 23.2 0.965 29.5 29.5

Human, Simulated
20M 0.986 16.7 16.7 0.978 22.6 22.6
40M 0.984 14.4 14.4 0.973 20.2 20.2

Table 12. Tripartite score for Stringtie transcripts.

Dataset Strict Loose
Score % True % Comp Score %True % Comp

Drosophila, Simulated Unpaired
0.5M 0.999 36.8 36.6 0.984 54.1 53.9
1M 0.998 37.8 37.7 0.992 53.6 53.4
2.5M 0.996 36.1 36.0 0.991 48.1 47.9
5M 0.998 31.5 31.5 0.997 39.8 39.7
10M 0.997 27.4 27.4 0.995 34.7 34.6
20M 0.997 23.2 23.1 0.995 30.8 30.7

Drosophila, Simulated Paired
0.5M 0.999 39.8 39.7 0.991 54.5 54.4
1M 0.998 36.9 36.8 0.992 48.8 48.7
2.5M 0.996 32.0 32.1 0.995 40.3 40.3
5M 0.994 26.4 26.4 0.992 34.2 34.2
10M 0.993 23.1 23.1 0.990 31.0 31.0
20M 0.992 21.6 21.6 0.989 29.2 29.3

Human, Simulated
20M 0.995 15.4 15.4 0.991 21.5 21.5
40M 0.989 12.8 12.9 0.985 18.9 19.1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

“boiler” — 2016/2/22 — 11:11 — page 15 — #15i
i

i
i

i
i

i
i

15

REFERENCES

28. Caprara A, Kellerer H, Pferschy U (2000) A PTAS for the multiple subset
sum problem with different knapsack capacities. Information Processing
Letters, 73(3), 111-118.

29. Garey MR, Johnson DS (1978) “Strong” NP-Completeness Results:
Motivation, Examples, and Implications. Journal of the ACM, 25(3),
499–508.

30. Li B, Fillmore N, Bai Y, Collins M, Thomson J, Stewart R, Dewey C
(2014) Evaluation of de novo transcriptome assemblies from RNA-Seq
data. Genome Biology, 15(12), 553.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040634doi: bioRxiv preprint

https://doi.org/10.1101/040634
http://creativecommons.org/licenses/by-nd/4.0/

