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Abstract11

1. Established methods for inference about selection gradients involve least-squares regression12

of fitness on phenotype. While these methods are simple and may generally be quite robust,13

they do not account well for distributions of fitness.14

2. Some progress has previously been made in relating inferences about trait-fitness rela-15

tionships from generalised linear models to selection gradients in the formal quantitative16

genetic sense. These approaches involve numerical calculation of average derivatives of17

relative fitness with respect to phenotype.18

3. We present analytical results expressing selection gradients as functions of the coefficients19

of generalised linear models for fitness in terms of traits. The analytical results allow20

calculation of univariate and multivariate directional, quadratic, and correlational selection21

gradients from log-linear and log-quadratic models.22

4. The results should be quite generally applicable in selection analysis. They apply to any23

generalised linear model with a log link function. Furthermore, we show how they apply to24

some situations including inference of selection from (molecular) paternity data, capture-25

mark-recapture analysis, and survival analysis. Finally, the results may bridge some gaps26

between typical approaches in empirical and theoretical studies of natural selection.27
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1 Introduction28

The characterisation of natural selection, especially in the wild, has long been a major research29

theme in evolutionary ecology and evolutionary quantitative genetics (Endler, 1986; Kingsolver30

et al., 2001; Lande & Arnold, 1983; Manly, 1985; Weldon, 1901). In recent decades, regression-31

based approaches have been used to obtain direct selection gradients (especially following Lande32

& Arnold 1983), which represent the direct effects of traits on fitness. These, and related,33

measures of selection have an explicit justification in quantitative genetic theory (Lande, 1979;34

Lande & Arnold, 1983), which provides the basis for comparison among traits, taxa, etc.,35

and ultimately allows meta-analysis (e.g., Kingsolver et al. 2001). Selection gradients can36

characterise both directional selection and aspects of non-linear selection, and so are a very37

powerful concept in evolutionary quantitative genetics.38

Formally, the selection gradient is the vector of partial derivatives of relative fitness with39

respect to phenotype, averaged over the distribution of phenotype observed in a population.40

Given an arbitrary function W(z) for expected fitness of a (multivariate) phenotype z, a general41

expression for the directional selection gradient β is42

β = W̄−1
∫

∂W(z)
∂z

p(z)dz (1)

where p(z) is the probability density function of phenotype, and W̄ is mean fitness. Mean fitness43

can itself be obtained by
∫

W(z)p(z)dz. A quadratic selection gradient can also be defined as the44

average curvature (similarly standardised), rather than the average slope, of the relative fitness45

function,46

γ = W̄−1
∫

∂2W(z)
∂z2 p(z)dz. (2)

The directional selection gradient has a direct relationship to evolutionary change, assuming47

that breeding values (the additive genetic component of individual phenotype, Falconer 1960)48

are multivariate normally-distributed, following the Lande (1979) equation49

∆z̄ = Gβ (3)
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where ∆z̄ is per-generation evolutionary change, and G is the additive genetic covariance matrix,50

i.e., the (co)variances among individuals of breeding values. The quadratic selection gradient51

matrix has direct relationships to the change in the distribution of breeding values due to52

selection, but not with such simple relationships between generations as for the directional53

selection gradient and the change in the mean (Lande & Arnold, 1983).54

The primary method for obtaining selection gradient estimates has been a simple and robust55

approach justified in Lande & Arnold (1983). The method involves least-squares multiple56

regression of relative fitness, i.e., absolute fitness divided by the mean observed in any comparable57

group of individuals over a specific period of the life cycle, potentially the entire life cycle, on58

measures of phenotype. Fitness, or any component of fitness, will typically have highly non-59

normal residuals in such a regression. Nonetheless, the simple least-squares methods are unbiased60

(see Geyer & Shaw 2010). However, methods that account for distributions of residuals that61

arise in regressions involving fitness as a response variable may provide better precision and62

more reliable statements about uncertainty (i.e., standard errors, p-values, etc.).63

Some progress has been made at developing generalised regression model methods for64

inference of selection gradients. Janzen & Stern (1998) proposed a method for binomial responses65

(e.g., per-interval survival, mated vs. not mated). The Janzen & Stern (1998) method provides66

estimates of β, and requires fitting a logistic model with linear terms only, calculating the67

average derivatives at each phenotypic value observed in a sample, and then standardising68

to the relative fitness scale. Morrissey & Sakrejda (2013) expanded Janzen & Stern’s (1998)69

basic approach to arbitrary fitness functions (i.e., not necessarily linear) and arbitrary response70

variable distributions, retaining the basic idea of numerically averaging the slope (and curvature)71

of the fitness function over the distribution of observed phenotype. Shaw & Geyer (2010)72

developed a framework for characterising the distributions of fitness (and fitness residuals) that73

arise in complex life cycles, and also showed how the method could be applied to estimate74

selection gradients by averaging the slope or curvature of the fitness function over the observed75

values of phenotype in a sample.76

Of the many forms regression analyses of trait-fitness relationships might take, log-linear77

or log-quadratic models of the relationship between traits and expected absolute fitness may78
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be particularly useful. In generalised linear models, the log link function is often useful and79

pragmatic. Fitness is a necessarily non-negative quantity, and expected fitness will typically best80

be modelled as a strictly positive quantity. This will indeed be the case if expected fitness is an81

exponential function of the sum of the predictors of the regression model, or, equivalently, a log82

link is used. Also, a log link function is compatible with generalised linear models with various83

distributions that could be useful for modelling fitness or fitness components. For example,84

it can be used with the Poisson distribution (counts, e.g., number of mates or offspring),85

the negative binomial distribution (for counts that are overdispersed relative to the Poisson86

distribution, potentially including lifetime production of offspring), and the exponential and87

geometric distributions (e.g., for continuous and discrete measures of longevity). The purpose88

of this short paper is to investigate the relationships between log-linear and log-quadratic models89

of fitness functions, and selection gradients.90

2 Log-linear and log-quadratic fitness functions, and se-91

lection gradients92

Selection gradients turn out to have very simple relationships to the coefficients of log-93

linear regression models predicting expected fitness from (potentially multivariate) phenotype.94

Suppose that there are k traits in the analysis and that the absolute fitness function, W(z) takes95

the form96

W(z) = ea+b1z1+b2z2+...+bkzk (4)

where a is a log-scale intercept, and the bi are log-scale regression coefficients relating the traits97

(zi) to expected fitness. The equation for the directional selection gradient (equation 1) can then98

be simplified. Focusing on the selection gradient for a specific trait, i, in a log-linear model of99

W(z),100

∂W
∂zi

= biW(z)
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and hence101

βi =

∫
biW(z)p(z)dz∫
W(z)p(z)dz

=
bi

∫
W(z)p(z)dz∫

W(z)p(z)dz

= bi. (5)

This result could be quite useful. In any log-linear model regressing expected absolute fitness,102

or a component of fitness, on trait values, the linear predictor-scale regression coefficients are103

the directional selection gradients.104

The situation is a little bit more complicated if a log-quadratic model is fitted. If W(z) takes105

the form106

W(z) = ea+
∑

i bizi+
∑

i gi( 1
2 z2

i )+
∑k−1

i=1
∑k

j=i+1 gi j(ziz j), (6)

i.e., of a log-scale regression model with linear and quadratic terms, plus first-order interactions,107

then the bi coefficients are not necessarily the directional selection gradients, nor are the gi and108

gi j coefficients the quadratic and correlational selection gradients, as they would be in a least109

squares analysis following Lande & Arnold (1983). However, we can use the log-scale quadratic110

fitness function with the general definitions of selection gradients (equations 1 and 2) to obtain111

analytical solutions for β and γ.112

The factor of 1
2 associated with the quadratic terms in equation 6 is a potential source of113

confusion, analogous to that surrounding a similar factor in Lande & Arnold’s (1983) paper (see114

Stinchcombe et al. 2008). In order to obtain the correct values of the gi coefficients, the covariate115

values for quadratic terms should be (1) mean-centred, then (2) squared, and then (3) halved.116

An alternative analysis is possible, where the squared covariate values are not halved, but the117

estimated coefficient estimates are doubled (analogous to procedures discussed by Stinchcombe118

et al. 2008). However, this alternative analysis leads to an additional, and potentially confusing,119

step in the calculation of standard errors (detailed in the appendix).120

Define a vector b = (b1, . . . , bk)′ containing the coefficients of the linear terms in the exponent121
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of the model in equation 6, and a matrix g =
(
gi j

)
containing the coefficients of the corresponding122

quadratic form. We can then write the fitness function more conveniently in matrix form123

W(z) = e f (z) (7a)

124

f (z) = a + b′z +
1
2

z′gz. (7b)

Let d be a vector of the expectations of the first order partial derivatives of W(z) and let H be125

the matrix of expectations of the second order partial derivatives of W(z). Thus the elements of d126

are di = E
[
∂W(z)
∂zi

]
and the elements of H are Hi j = E

[
∂2W(z)
∂zi∂z j

]
. We can now rewrite the expressions127

for directional and quadratic selection gradients as128

β =
d

E[W(z)]
(8)

and129

γ =
H

E[W(z)]
. (9)

Differentiating equation 7 gives130

∂W(z)
∂z′

= (b + gz) e f (z), (10)

and131

∂2W(z)
∂z∂z′

=
(
g + (b + gz) (b + gz)′

)
e f (z). (11)

Assume that the phenotype z is multivariate normal, with mean µ and covariance matrix Σ,132

and denote its probability density by pµ,Σ(z). Provided e f (z) has a finite expectation, the function133

K(z) =
(
E

[
e f (z)

])−1
e f (z) pµ,Σ(z) (12)

is a probability density function. Define the matrix Ω−1 = Σ−1−g and the vector ν = µ+Ω(b+gµ).134

We show in the Appendix that Ω is symmetric. Provided it is also positive definite, it is a valid135
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covariance matrix, and, by equation A7,136

K(z) ∝ pν,Ω(z). (13)

As K is a probability density function this implies,137

K(z) = pν,Ω(z). (14)

Define Q−1 = Ω−1Σ = Ik−gΣ. Combining equations 8, 10 and 14 yields β = E[b+gz], where138

the expectation is taken with respect to K. This is an expectation of a linear function of z, and139

so140

β = b + gν = (b + gµ) + gΩ(b + gµ) = (Ik + gΩ)(b + gµ) = Q(b + gµ), (15)

by use of equation A4.141

Combining equations 9, 11 and 14 yields γ = E[g + (b + gz) (b + gz)′], where the expectation142

is taken with respect to K. Hence143

γ = g + Var(b + gz) + [E(b + gz)][E(b + gz)]′

= g + gΩg′ + ββ′

= ββ′ + (Ik + gΩ)g

= ββ′ + Qg, (16)

where we have noted that g is symmetric and used equation A4.144

In univariate analyses, the matrix machinery necessary for implementing the general formulae145

in equations 15 and 16 can be avoided. If the fitness function is W(z) = ea+bz+g 1
2 z2

(note, again,146

that the quadratic coefficient is that for centred, then squared, and then halved values of z1),147

and z has a mean of µ and a variance of σ2 and then β =
b+gµ

1−gσ2 and γ =
(b+gµ)2+g(1−gσ2)

(1−gσ2)2 . These148

expressions will hold for any univariate analysis, and can be applied to get mean-standardised,149

1This can be accomplished easily in R. Assume that W and z are variables in memory representing absolute
fitness and phenotypic data, and that residuals of W are assumed to follow a Poisson distribution. The regression
could be implemented by glm(W~z+I(0.5*(z-mean(z))^2),family=poisson(link="log")).
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variance-standardised, and unstandardised selection gradients, when appropriate values of µ and150

σ2 are used, and applied to log-quadratic models of W(z) where the phenotypic records have been151

correspondingly standardised. For the common case where the trait is mean-centred and (unit)152

variance standardised, the expressions simplify further to β = b
1−g and γ =

b2+g(1−g)
(1−g)2 .153

The equivalence of the regression coefficients of a log-linear fitness model with directional154

selection gradients (equation 5) of course requires that the regression model provides a reasonable155

description of the relationship between a trait and expected fitness and makes reasonable156

assumptions about fitness residuals. Otherwise, the relationship is relatively unburdened by157

assumptions. For example, it does not require any specific distribution of phenotype. The use158

of selection gradients obtained from log-linear regressions to predict evolution using the Lande159

equation (equation 3) does assume that breeding values are multivariate normal (see Morrissey160

2014 for a discussion of selection gradients and associated assumptions about multivariate161

normality of phenotype and breeding values). The expressions for β and γ given a log-quadratic162

fitness model (equations 15 and 16) do assume multivariate normality of phenotype. Equations163

15 and 16 further require that Ω is positive definite. In univariate analyses, this condition164

reduces to g < 1
σ2 , implying that the fitness function should not curve upwards too sharply165

within the range of observed phenotype.166

A very convenient feature of the expressions for β and γ in equations 5, 15 and 16 is that the167

model (log) intercept does not influence the selection gradients. This means that the range of168

modelling techniques that yield selection gradients can be even further expanded. For example,169

adding fixed and random effects to Lande & Arnold’s (1983) least squares analysis will generally170

result in estimated regression coefficients that are not interpretable as selection gradients. For171

example, it might be desirable to estimate a single selection gradient across two sexes, if data172

are limited and sex-differences in selection are not anticipated. In such an analysis, it might173

seem sensible to include an effect of sex, to account for differences in mean fitness between the174

sexes. However, such an analysis would not yield correct selection gradients, because the theory175

underlying the least squares-based regression analysis of selection requires that mean relative176

fitness is one, and this would not be the case when different strata within an analysis have177

different intercepts. On the other hand, adding such an effect to a log-scale model of absolute178
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fitness, and then deriving selection gradients using equations 5, 15 and 16 will yield correct179

selection gradients. Other effects, such as random effects to account for individual heterogeneity180

in expected fitness, beyond that explained by the traits (or correlated, unmeasured traits), will181

be usable as well, while still retaining the ability to obtain correct selection gradients.182

3 Statistical uncertainty183

The expressions for selection gradients, given the parameters of a log-quadratic fitness function184

(equations 15 and 16) give the selection gradients conditional on the estimated values of b and185

g. However, b and g will not typically be known quantities in empirical studies of natural186

selection, but rather will be estimates with error. Because equations 15 and 16 are non-linear187

functions of one or more regression coefficients, unconditional estimators of β and γ would188

have to be obtained by integrating the expressions for β and γ over the sampling distributions189

of the estimated values of b and g. Such details are not normally considered in calculations190

of derived parameters (e.g., heritabilities) in evolutionary studies. Such integration could be191

achieved using approximations, bootstrapping, or MCMC methods. Alternatively, application192

of equations 15 and 16 directly to estimated values of b and g may be sufficient in practice.193

Similarly, while standard errors of the parameters b and g are not directly interpretable as194

standard errors of corresponding values of β and γ, approximations, bootstrapping, and MCMC195

methods may all potentially be useful in practice. In particular, approximation of standard196

errors by a first-order Taylor approximation (the “delta method”; Lynch & Walsh 1998) may197

generally be pragmatic. Formulae for approximate standard errors by this method are given in198

the appendix. For univariate analysis, with phenotype standardised to µ = 0 and σ2 = 1, the199

approximate standard errors of β and γ are given by200

S E[β] ≈

√
Σ[b]

(1 − g)2 +
b2Σ[g]
(1 − g)4 +

2bΣ[b, g]
(1 − g)3 , (17)

and201

S E[γ] ≈

√
4b2Σ[b]
(1 − g)4 +

(
1 + 2b2 − g

)2
Σ[g]

(1 − g)6 +
4b(1 + 2b2 − g)Σ[b, g]

(1 − g)5 . (18)
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Where Σ[b] and Σ[g] represent the sampling variances of the estimated b and g terms. These202

are the squares of their standard errors. Σ[b, g] is the sampling covariance of the b and g terms.203

This is not always reported, but can usually be obtained. For example, in R, it can be extracted204

from a fitted glm object using the function vcov().205

We performed a small simulation study to assess the extent of any bias in the estimators β206

and γ and the adequacy of their standard errors. We simulated univariate directional selection,207

with values of b between -0.5 and 0.5, and with g = −0.5, 0 and 0.2. Because β and γ are non-208

linear functions of g, it is not possible to simultaneously investigate ranges of parameter values209

with regular intervals of values of both g and selection gradients. These values of g represent a210

compromise between investigating a regular range of g and γ. We used a (log) intercept of the211

fitness function of a = 0. We simulated a sample size of 200 individuals. This sample size reflects212

a very modest-sized study with respect to precision in inference of non-linear selection, and is213

therefore a useful scenario in which to judge performance of different methods for calculating214

standard errors. Fitness was simulated as a Poisson variable with expectations defined by the215

ranges of values of b and g, and with phenotypes sampled from a standard normal distribution.216

Firstly we analysed each simulated dataset using the OLS regression described by Lande &217

Arnold (1983), i.e., wi = µ+βzi+γ
(

1
2 z2

i

)
+ei, using the R function lm(). For the OLS regressions, we218

calculated standard errors assuming normality using the standard method implemented in the R219

function summary.lm(), and by case-bootstrapping, by generating 1000 bootstrapped datasets220

by sampling with replacement, running the OLS regression analysis, and calculating the standard221

deviation of the bootstrapped selection gradient estimates. Secondly we fitted a Poisson glm222

with a linear and quadratic terms, using the R function glm(). We then calculated conditional223

selection gradient estimates using equations 15 and 16. We obtained standard errors by using224

a first-order Taylor series approximation (the “delta method”; Lynch & Walsh 1998, appendix225

A1). For each method of obtaining estimates and standard errors, we calculated the standard226

deviation of replicate simulated estimates. We could thus evaluate the performance of different227

methods of obtaining standard errors by their ability to reflect this sampling standard deviation.228

We also calculated mean absolute errors for both estimators of β and γ for all scenarios. Every229

simulation scenario and associated analysis of selection gradients was repeated 1000 times.230
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Selection gradient estimates obtained by all three methods were essentially unbiased (figure231

1a,d,g,j,m,p), except for small biases that occurred when the fitness function was very curved.232

Thus, glm-derived values of selection gradients, conditional on estimated values of b and233

g performed very well as estimators of β and γ in our simulations. Similarly, first-order234

approximations of standard errors of the glm-derived estimates of β and γ closely reflected the235

simulated standard deviations of the estimators (figure 1). All methods for obtaining standard236

errors performed well for estimates of β in the pure log-linear selection simulations (figure 1h,k).237

OLS standard errors performed reasonably well under most simulation scenarios, except when g238

was positive (figure 1n,q); across all scenarios bootstrap standard errors of the OLS estimators239

outperformed standard OLS standard errors. Mean absolute error of the glm estimators was240

always smaller than that of the OLS estimators of β and γ. This is unsurprising, as the simulation241

scheme corresponded closely to the glm model. These results demonstrate the usefulness of the242

conditional values of β and γ as estimators, and show that gains in precision and accuracy can243

be obtained when glm models of fitness functions fit the data well. It remains plausible that244

the OLS estimators motivated by Lande & Arnold’s (1983) work could outperform glm-based245

analyses in some scenarios.246

4 Other analyses that correspond to log-linear fitness247

functions248

In addition to generalised linear models with log link functions, there may be other cases249

where models of trait-fitness relationships may correspond to log-linear or log-quadratic fitness250

functions. In paternity inference, some methods have been proposed wherein the probability251

that candidate father i is the father of a given offspring is modelled according to252

W(z) ∝ e f (z),

and where realised paternities of a given offspring array are then modelled according to a253

multinomial distribution, potentially integrating over uncertainty in paternity assignments based254
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on molecular data (Hadfield et al., 2006; Smouse et al., 1999). When f (z) is a linear function,255

Smouse, Meagher & Korbak (1999; T. Meagher, personal communication) interpreted the256

analysis as analogous to Lande and Arnold’s 1983, but not necessarily identical. For a linear257

f (z), this analysis does in fact yield estimates of β, and for a quadratic function, directional and258

quadratic selection gradients can be obtained using equations 15 and 16. This can be seen by259

noting that expected fitness, given phenotype, of candidate fathers for any given offspring array260

will be, in the log-linear case,261

W(z) = cea+bz,

where c is a constant. In application of the expressions yielding equation 5, c appears in both262

the numerator and the denominator, yielding β = b.263

Another case where our formulae may be applicable pertains to inferences of survival rate.264

Often, data about trait-dependent survival rates may be assessed over discrete intervals. While265

the experimental unit of time may be an interval (e.g., a day or a year), the biologically-relevant266

aspect of variation in survival may be longevity, i.e., for how many intervals an individual267

survives. One such situation arises when per-interval survival rate is assessed via a logistic268

regression analysis, and trait-dependent survival rates are (or may be assumed to be) constant269

across intervals. A common case of logistic regression analysis that satisfies this first condition270

is often implemented in capture-mark-recapture procedures. Suppose that per-interval survival271

rate, given phenotype, may be assumed to be constant, and that fitness is defined to be the272

expected survival time. Then fitness will be given by the mean of a geometric distribution273

where death in a particular interval of an individual with phenotype z occurs with probability274

ρ(z),275

W(z) =
1 − ρ(z)
ρ(z)

.

If trait-dependent per-interval survival probability is denoted φ(z) (φ being the standard symbol276

for survival rate in capture-mark-recapture analyses; Lebreton et al. 1992), then the fitness277

function in terms of expected number of intervals lived is W(z) =
1−(1−φ(z))

1−φ(z) =
φ(z)

1−φ(z) . If per-interval278
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survival rate has been modelled as a logistic regression, i.e.,279

φ(z) =
e f (z)

1 + e f (z)

where φ(z) denotes the per-interval fitness function, and f (z) is the fitness function on the logistic280

scale, then the fitness function on the discrete longevity scale is281

W(z) =

e f (z)

1+e f (z)

1 − e f (z)

1+e f (z)

= e f (z).

Therefore, if f (z) is a linear function, then its terms are the directional selection gradients on282

the discrete-longevity scale. If f (z) is a quadratic function, then the corresponding directional283

and quadratic selection gradients, again if the relevant aspect of fitness is the number of284

intervals survived, can be obtained using equations 15 and 16. Waller and Svensson (2016; this285

issue) takes advantage of these relationships to compare inference of trait-dependent survival286

in capture-mark-recpature models to classical inference using Lande & Arnold’s (1983) least-287

squares regression analysis where fitness is assessed as the number of intervals that individuals288

survive.289

It must be stressed that these results do not justify interpretation of logistic regression290

coefficients of survival probability as selection gradients in a general way. Such coefficients291

differ from selection gradients for three reasons: (1) they pertain to a linear predictor scale, and292

natural selection plays out on the data scale, (2) they directly model absolute fitness, not relative293

fitness, and (3) they pertain to per-interval survival, which may not necessarily be the aspect294

of survival that best reflects fitness in any given study. It is only when the number of intervals295

survived is of interest (and mean survival can be assumed to be constant across intervals) that296

these three different aspects of scale cancel out such that the parameters of a logistic regression297

are selection gradients.298

Finally, another situation where an important analysis for understanding trait-fitness299

relationships that has an immediate – but not necessarily immediately apparent – relationship300

to selection gradients, arises in survival analysis. In a proportional hazards model (Cox, 1972),301

the instantaneous probability of mortality experienced by live individuals, the hazard λ(t), as a302
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function of their phenotype could be modelled as303

λ(t) = λ0e f (z)

where λ0 is the baseline hazard, and the e f (z) part of the function describes individual deviations304

from this baseline hazard. If the baseline hazard is constant in time, then survival distributions305

conditional on phenotype are exponential, and have mean λ−1. So, if fitness is taken to be306

expected longevity (as a continuous variable now, not discrete number of intervals as in the307

relations given above between logistic models of per-interval survival and selection gradients)308

then309

W(z) =
1

λ0e f (z) =
1
λ0

e− f (z).

In expressions for selection gradients (equations 1 and 2), 1
λ0

would be a constant in the integrals310

in both the numerators and denominators, and therefore cancels in calculations of selection311

gradients. Therefore, if proportional hazards are modelled with f (z) as a linear or quadratic312

function, then the expressions for selection gradients (equations 5, 15 and 16) hold, but the313

coefficients of the trait-dependent hazard function must be multiplied by -1.314

5 Conclusion315

We have provided analytical expressions for selection gradients, given the parameters of log-316

linear and log-quadratic functions describing expected fitness. These functions can be applied317

in conjunction with a range of generalised linear model approaches, specific situations in capture-318

mark-recapture analysis, and relate to fitness functions used in theoretical studies. The general319

relationship of selection gradients to the coefficients of log-linear and log-quadratic models, in320

particular, various generalised linear models, are probably the most generally useful feature of321

our results. In empirical applications, our preliminary simulation results indicate that, given322

an appropriate model of a log-scale fitness function, inference using log-linear and log-quadratic323

models may be very robust, and could provide more reliable statements about uncertainty (e.g.,324

reasonable standard errors) than the main methods used to date. Furthermore, the relationships325
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given here between log-quadratic fitness functions and selection gradients could lead to better326

integration between empirical and theoretical strategies for modelling selection. In theoretical327

studies, Gaussian fitness functions are often used. These are simply log-quadratic functions that328

are parameterised in terms of a location parameter (phenotype of maximum fitness), and a width329

parameter. A relationship between the parameters of a Gaussian fitness function and directional330

selection gradients (Lande 1979; the expression we give for β is an alternative formulation) is331

already widely used in the theoretical literature. For any given distribution of phenotype, these332

parameters correspond directly to linear and quadratic (log-scale) regression parameters, and so333

can be directly related to selection gradients in empirical studies.334
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Figure 1: Simulation results for the performance of Lande & Arnold’s (1983) least squares-based
(OLS) estimators (red lines), and log-quadratic (GLM) estimators (blue lines), of directional
and quadratic selection gradients. The first column shows bias in estimates of β and γ, where
departure from the grey line (the simulated truth) indicates bias. The middle column shows the
performance of OLS standard errors (red dashed lines), bootstrap standard errors (red dotted
lines), and first-order approximations (blue dashed lines) of the standard errors of the GLM
estimators. Ideally, all values of estimated mean standard errors would fall on the simulated
standard deviation of their associated estimators, shown as solid lines. The right column shows
the mean absolute errors of the OLS and GLM estimators.
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Appendix379

Denote a vector containing all unique elements of γ by γ̃. The following assumes that γ̃ is380

composed by vertically stacking the columns of the diagonal and sub-diagonal elements of γ.381

For example, in an analysis with three traits, γ̃ =
[
γ1,1, γ2,1, γ3,1, γ2,2, γ3,2, γ3,3

]′
. Let v() denote382

the function mapping the distinct elements of a symmetric matrix r onto the column vector r̃.383

The first-order approximation to the sampling covariance matrix of the elements of β and384

γ is then given by JΣ̃J′, where Σ̃ is the sampling covariance matrix of a vector containing the385

elements of b and g̃, where the latter is a column vector containing the distinct elements of g386

arranged according to the same scheme that defines γ̃. J is the Jacobian, or gradient matrix of387

first order partial derivatives, of β and γ̃ with respect to b and g̃, i.e.,388

J =

 ∂β∂b
∂β
∂g̃

∂γ̃
∂b

∂γ̃
∂g̃

 ,
evaluated at the estimated values of b and g.389

Note that some users may prefer to fit the model 6 with gii replaced by 2gi, say. The formulae390

for β and γ are readily re-expressed in terms of these variables by making this substitution. If Σ1391

denotes the covariance matrix obtained when fitting this revised model, the required covariance392

matrix Σ̃ can be calculated using Σ̃ = DΣ1D′, where D is a diagonal matrix with all the diagonal393

elements equal to one, apart from those corresponding to the variables gii which equal 2.394

The four submatrices of J can be treated separately. Noting that β = Q (b + gµ) (equation395

15),396
∂β

∂b
= Q. (A1)

Let s = 1
2 k(k + 1), where k is the number of traits in the analysis, and let e1, . . . , es be the397

standard basis for an s dimensional space (i.e., e1 = [1, 0, . . . , 0]′, etc.). Define an indicator398

matrix Cm = C(i, j) where C(i, j) is a k by k matrix in which399

[
C(i, j)

]
xy

=

1, (x, y) = (i, j) or ( j, i);

0, otherwise.

Using the standard expression for the derivative of the inverse of a matrix with respect to a400
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scalar, we can obtain ∂β
∂g̃ , i.e., the upper-right sub-matrix of J.401

β = Ψ−1 (b + gµ) ⇒
∂β

∂g̃m
=

∂β

∂gi j
= −Ψ−1

[
∂Ψ

∂gi j

]
Ψ−1 (b + gµ) +Ψ−1

[
∂ (b + gµ)

∂gi j

]
= −Q

[
∂ Ik − gΣ
∂gi j

]
Q (b + gµ) + Q

[
∂ g
∂gi j

]
µ

= Q
[
∂g
∂gi j

] [
ΣQ (b + gµ)

]
+ Q

[
∂ g
∂gi j

]
µ

= QC(i j) (Σβ + µ) = QCm (Σβ + µ)

⇒
∂β

∂g̃
=

s∑
m=1

∂β

∂g̃m
e′m = Q

s∑
m=1

Cm (Σβ + µ) e′m (A2)

Let Q[u] denote the uth column of Q. Using the previous relation ∂β
∂b = Q, we can obtain ∂γ̃

∂b ,402

i.e., the lower-left sub-matrix of J.403

γ = ββ′ + Qg ⇒
∂γ

∂bu
= β

(
∂β

∂bu

)′
+

(
∂β

∂bu

)
β′ = βQ′[u] + Q[u]β

′

⇒
∂γ̃

∂bu
= v

(
βQ′[u] + Q[u]β

′
)

⇒
∂γ̃

∂b
=

k∑
u=1

v
(
βQ′[u] + Q[u]β

′
)

e′u (A3)

Let M(m) = QCm (Σβ + µ)β′. Note that Q−1 = Ω−1Σ implies Ω = ΣQ. Moreover Ω−1 = Σ−1 − g404

implies firstly that405

Ik + gΩ = Σ−1Ω = Q (A4)

and secondly that Ω is symmetric, since Σ and g are both symmetric. It follows that406

Q′ = Ik + (gΩ)′ = Ik +Ωg. (A5)

The lower-right sub-matrix of J can then be derived.407

∂γ

∂gi j
=

[
∂β

∂gi j

]
β′ + β

[
∂β

∂gi j

]′
+ QC(i j) + QC(i j)ΣQg

=
[
QC(i j) (Σβ + µ)

]
β′ + β

[
QC(i j) (Σβ + µ)

]′
+ QC(i j) + QC(i j)Ωg

⇒
∂γ̃

∂gi j
= v

[
M(m) + (M(m))′ + QCm(Ik +Ωg)

]
⇒

∂γ̃

∂g̃
=

s∑
m=1

v
[
M(m) + (M(m))′ + QCmQ′

]
e′m, (A6)

by use of equation A5.408
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Finally note that equations A4 and A5 are also relevant to the derivation of formula 13. By409

definition, f (z) = a + z′b + 1
2 z′gz, and we have log[pµ,Σ(z)] = − 1

2 z′Σ−1z + z′Σ−1µ+ α, where α does410

not depend on z. Thus, if α′ = α + a, it follows that, as a function of z,411

f (z) + log[pµ,Σ(z)] = − 1
2 z′(Σ−1 − g)z + z′(b + Σ−1µ) + α′ = − 1

2 z′Ω−1z + z′Ω−1
[
Ω(b + Σ−1µ)

]
+ α′,

Now, by A4 and A5, we have Ω(b + Σ−1µ) = Ωb + (Σ−1Ω)′µ = Ωb + Q′µ = Ωb + (Ik +Ωg)µ = ν,412

implying that413

f (z) + log[pµ,Σ(z)] = − 1
2 z′Ω−1z + z′Ω−1ν + α′ = − 1

2 (z − ν)′Ω−1(z − ν) + α′′, (A7)

where α′′ is constant as a function of z. The exponent of e f (z) pµ,Σ(z) is thus identical, as a function414

of z, to that of pν,Ω(z). Hence formula 13 holds.415
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