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Abstract  

Essential genes refer to those whose null mutation leads to lethality or sterility.  We propose that 

the fatal effect of inactivating an essential gene can be attributed to either the loss of indispensable 

core cellular function (type I), or the gain of fatal side effects after losing dispensable periphery 

function (type II).  In principle, inactivation of the type I essential genes can be rescued only by re-

gain of the core functions, whereas inactivation of the type II essential genes could be rescued by a 

further loss of function of another gene to eliminate the otherwise fatal side effects.  Because such 

loss-of-function rescuing mutations may occur spontaneously, type II essential genes may become non-

essential in a few individuals of a large population.  We tested this idea in the yeast Sacchromyces 

cerevisiae.  Large-scale whole genome sequencing of such essentiality-reversing mutants reveals 14 

cases where inactivation of an essential gene is rescued by loss-of-function mutations on another gene.  

In particular, the essential gene encoding the enzyme adenylosuccinate lyase (ADSL) is shown to be 

type II, suggesting a loss-of-function therapeutic strategy for the human disorder ADSL deficiency.  

A proof-of-principle test of this strategy in the nematode Caenorhabditis elegans shows promising 

results.  

 

Introduction 

There are usually hundreds to thousands of essential genes in an organisms (Giaever et al. 2002; 

Kobayashi et al. 2003; Baba et al. 2006; Harris et al. 2010).  It is often assumed that essential genes 

execute the functions that are indispensable to a cellular life(Mushegian and Koonin 1996; Koonin 

2000).  For example, in the bacterium Escherichia coli the essential gene DnaA is responsible for 

DNA replication initiation, TufA is responsible for RNA elongation in transcription, and InfA is 

responsible for translation initiation(Gerdes et al. 2003).  The counterexamples, however, can be 

easily conceived.  Suppose there are ten genes encoding a stable protein complex that carries out a 

dispensable function in a cell.  Inactivation one of the ten genes may cause dosage imbalance, 

generating toxic intermediate that is lethal to the cell.  Under this circumstance, each of the ten genes 

may appear essential while they together execute a dispensable function.  Thus, there might be two 

types of essential genes: type I essential genes execute ‘core’ functions that are indispensable to the 

organism; type II essential genes execute ‘periphery’ functions that are dispensable to the organism, 

the lack of which, however, results in fatal side effects.  Such a conceptual separation is meaningful, 
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because inactivation of a type I essential gene can be rescued only by restoration of the core function, 

while inactivation of a type II essential gene could be rescued by further loss-of-function mutations on 

another gene to suppress the otherwise lethal side effects (Fig. 1).  This reasoning has important 

implications to medical science because partial loss-of-function mutations on essential genes are 

involved in at least several hundred human inheritance disorders (Hamosh et al. 2005; Goh et al. 2007; 

Park et al. 2008).  The prevailing therapeutic strategies for these diseases are to restore the lost 

functions (Garcia-Blanco et al. 2004; Maguire et al. 2008; Bidou et al. 2012).  The proposition of 

type II essentiality suggests a possibility of using loss-of-function therapy to eliminate the disease-

causing side effects in some disorders, which is conceptually much easier than the conventional gain-

of-function therapy.  

In this study we attempt to characterize type II essential genes using the model organism yeast S. 

cerevisiae.  We reason that type II essential genes may become non-essential in a few individuals of 

a large population of the yeast cells since the potential rescuing mutations may occur spontaneously at 

a low frequency.  By sequencing the genomes of the few individuals with such rescuing mutations 

we can identify the mutations that can mask the effects of inactivating the essential genes.  Indeed, 

we obtained 17 such gene pairs where inactivation of an essential gene is rescued by loss-of-function 

mutations on the other gene, revealing a total of five type II essential yeast genes.  Of particular 

interest is the gene encoding adenylosuccinate lyase, an enzyme in the purine de novo synthesis 

pathway.  Partial loss-of-function mutations on this type II essential gene in humans cause 

adenylosuccinate lyase deficiency (ADSL; OMIM 103050), a rare Mendelian disorder with mental 

retardation and seizures as typical symptoms(Georges and Berghe 1984; Jaeken et al. 1988; Van den 

Berghe et al. 1997).  We suggest a loss-of-function therapeutic strategy to suppress the phenotypes of 

ADSL deficiency.  A proof-of-principle test of the strategy in the nematode C. elegans shows 

promising results.  

 

Results 

The rationale of using spontaneous mutations to reveal type II essentiality 

We started with the yeast Tet-promoters Hughes Collection (yTHC) that is composed of 800 strains; 

in each strain the endogenous promoter of an essential gene is replaced by a tetracycline (TET) 

promoter(Mnaimneh et al. 2004).  In principle, for a given strain the expression of the focal essential 
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gene will be shut off upon the addition of doxycycline to the growth medium (Dox+ medium), resulting 

in no viable cell.  However, if the focal essential gene is type II whose expression shut-off can be 

rescued by mutations on other genes, there might be some viable individuals among a large number of 

cells because such rescuing mutations can occur spontaneously despite at a low rate.  In other words, 

we may simply plate a certain number of cells of an yTHC strain onto an agar plate supplied with 

doxycycline.  Some viable clones will appear if the focal essential gene is type II.   

We ran a computer simulation to estimate the number of cells required for capturing the 

spontaneous mutations that can mask the type II essentiality.  We considered only critical loss-of-

function mutations that include severe non-synonymous mutations, truncating substitution mutations 

and frame-shift indels.  We started from a single cell and ended with a population of a given size N.  

The probability that at least one critical loss-of-function mutation occurs during the population 

expansion is estimated for each of the ~6,000 yeast genes (Methods).  Up to ~84% of the genes can 

reach a probability of >90% when N = 3×107, and no apparent increase is observed with larger Ns (Fig. 

2A).  The remaining genes with a lower probability of acquiring a critical loss-of-function mutation 

in the population of N = 3×107 are mostly of short length (Fig. 2B), and it seems difficult to achieve a 

satisfactory detection probability for the ~15% yeast genes with a length of <800 base pairs.  At any 

rate, there is a reasonably high probability to capture the potential spontaneous rescuing mutations if 

N = 3×107 yeast cells are tested.   

 

Characterization of type II essentiality 

Among the 800 yTHC yeast strains some can grow well on the Dox+ medium.   This is possibly 

because the TET promoter is not 100% shut-off, confounding the above strategy of revealing type II 

essential genes.  To circumvent this problem, for each yTHC stain we first tested 104~105 cells and 

obtained 280 strains each showing no single colony on Dox+ agar.  Only these strains are further 

examined.  For each of the 280 strains we tested ~3×107 cells on Dox+ agar plates and observed a few 

colonies in some plates (Methods) (Fig. 3A).  There are two possibilities underlying the observation: 

mutations that invalidate the Tet-off system occurred such that the focal essential gene expresses 

normally on the Dox+ agar; alternatively, mutations that mask the focal gene essentiality occurred.  In 

cases of the second possibility, the focal essential gene can be physically removed from the genomes 

of the clones grown on the Dox+ plates.  We carried out the corresponding gene deletions using 
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homologous recombination, and confirmed that, for five essential genes ADE13, ERD2, MIM1, SEC14 

and RER2, there are viable clones on the Dox+ plates explained by the second possibility. 

We focused on the five essential genes and expanded the plating experiment to obtain for each 

strain 30 largely independent clones in which the focal essential gene can be physically removed.  To 

map the potential rescuing mutations we sequenced the genomes of the 30 x 5 = 150 clones and 

compared them with that of the parental strain of the yTHC stock.  There are often quite a few de 

novo mutations found in a clone.  For the 30 clones with the same focal essential gene, independent 

mutations found in the same gene(s) are likely to be the ones that can mask the focal gene essentiality.  

Indeed, we found a dozen of genes each enriched with the de novo mutations.  Interestingly, these 

mutations appear to be mostly loss-of-function, suggesting that suppression of these genes may rescue 

the otherwise lethal effect upon silencing the focal essential gene, a phenomenon characteristic of type 

II essentiality (Table S1).  

To test this we again carried out the corresponding gene deletions using homologous 

recombination.  We started with BY4743, a diploid yeast strain with the wild-type genotype unless 

otherwise stated, and each time deleted one copy of the focal essential gene and one copy of the 

putative rescuing gene.  Analysis of the haploid segregants of the double heterozygous deletion 

mutant help confirm whether the focal essential gene is indeed type II (Method).  Overall, we 

obtained 14 such cases in which inactivating one of the five essential genes is rescued by inactivation 

of another gene that is invariably non-essential (Table 1).  This result proves the five genes type II 

essential.  The rescuing effects are generally strong since the growth rates of the double deletion 

mutants in the rich medium YPD are often over 70% of the wild-type rate (Fig. 3B and C).   

 

Mechanisms underlying the type II essentiality 

 Gene Ontology (GO) analysis shows that the five type II essential genes and their rescuing partners 

often have the same GO terms (Table 1).  For example, the essential gene ERD2 and its non-essential 

partner ERV29 are both involving in “Regulation of endoplasmic reticulum(ER) to Golgi vesicle-

mediated transport”.  ERD2 is responsible for the recycling of vesicle-associated proteins between 

ER and Golgi and suppression of ERD2 leads to abnormal Golgi structure due to the accumulation of 

too many proteins(Hardwick et al. 1992; Townsley et al. 1994).  Interestingly, ERV29 is responsible 

for transporting proteins from ER into Golgi.  This suggests a likely mechanism of the ERD2-ERV29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040568doi: bioRxiv preprint 

https://doi.org/10.1101/040568
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

interaction: suppression of ERD2 causes detrimental protein accumulation in Golgi, which is alleviated 

by suppressing ERV29 to slow down the transportation of proteins into Golgi.  In line with this, it has 

been shown that overexpression of SED1-4, four genes responsible for transporting proteins out of 

Golgi, can rescue the otherwise lethal effect of deleting ERD2(Hardwick et al. 1992).   

A more intriguing case is the essential gene ADE13, which encodes the enzyme adenylosuccinate 

lyase (ADSL) and has five non-essential rescuing partners revealed by our screening.  These genes 

are all related to de novo purine biosynthesis.  A close examination of the de novo purine biosynthesis 

pathway shows that, with the exception of ADE13, all genes in the pathway are non-essential with 

negligible fitness reduction upon deletion(Giaever et al. 2002; Qian et al. 2012).  This suggests that 

the process of de novo purine biosynthesis per se is dispensable to yeast cell in the rich medium YPD, 

so the essentiality of ADE13 must be due to factors unrelated to purine production.  We hypothesized 

that deletion of the enzyme gene results in accumulation of its substrates, which might be toxic to cell 

and thus fatal to the yeast.  If this hypothesis is true, deletion of the upstream genes to block the 

production of S-AMP and SAICAR, the two substrates of ADE13, should be able to mask the effect of 

ADE13 deletion (Fig. 4A).   

Consistent with this hypothesis, ADE4, ADE5, ADE6, BAS1 and PHO1, the five rescuing partners 

revealed by our screening appear to be all upstream of ADE13 in the pathway.  Specifically, ADE4, 

ADE5 and ADE6 encode enzymes directly involved in the de novo purine biosynthesis and BAS1 and 

PHO1 are two transcription factors regulating the pathway(Denis et al. 1998).  However, our 

screening provides no evidence that the other three upstream genes in the pathway, namely ADE8, 

ADE2 and ADE1, can mask the effect of ADE13 deletion.  We thus performed homologous 

recombination-based gene deletions and found that deleting each of the three genes is able to mask the 

otherwise lethal effect of ADE13 deletion.  This result well supports the above substrate accumulation 

hypothesis for explaining the type II essentiality of ADE13.  ADE13 catalyzes two reactions with S-

AMP and SAICAR as substrates, respectively (Van den Bergh et al. 1993).  It is unclear which one is 

responsible for the lethality of ADE13 deletion.  If S-AMP is the toxin, deletion of ADE12, the 

enzyme gene directly responsible for its production, should mask the effect of ADE13 deletion.  

Alternatively, deletion of ADE1, the gene encoding the enzyme phosphoribosylaminoimidazole 

carboxylase (PAICS), should mask the effect of ADE13 deletion if SAICAR is the toxin.  We 

successfully obtained Δade13+Δade1 double mutant but failed to obtain Δade13+Δade12 double 
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mutant, suggesting that the accumulation of SAICAR, rather than S-AMP, is the cause of the lethal 

effect upon ADE13 deletion.  

 

Loss-of-function therapy for the loss-of-function ADSL disease 

The purine de novo biosynthesis pathway is conserved among various lineages including yeast, 

nematode and mammals(Kanehisa and Goto 2000) (Fig. 4A).  Importantly, partial loss-of-function 

mutations on the human gene encoding the enzyme ADSL cause ADSL deficiency, an ultra-rare 

Mendelian disease with mental retardation and seizures as typical symptoms(Georges and Berghe 1984; 

Jaeken et al. 1988; Van den Berghe et al. 1997).  To date there is no treatment with proven clinical 

efficacy for this disease despite a variety of therapeutic attempts (Jaeken et al. 1988; Salerno et al. 

1998; Ciardo et al. 2001; Salerno et al. 2002; Jurecka et al. 2008).  For such loss-of-function diseases, 

gain-of-function therapeutic strategy is predominant.  Interestingly, recognition of the type II 

essentiality of the gene encoding ADSL suggests a loss-of-function therapeutic strategy to suppress 

the phenotypes of ADSL deficiency, which is conceptually much easier than the conventional gain-of-

function strategy to restore the lost function.  We decided to test this idea in the nematode C. elegans.  

The nematode genes encoding the two enzymes ADSL and PAICS are adsl-1 and pacs-1, respectively.  

RNA interference (RNAi) is used to mimic the loss of function of the two genes in C. elegans 

(Methods).   

Body length is used to assess the effect upon knocking down the C. elegans genes.  We 

considered the average increase of body length of a worm from the day 3 to day 6 after its birth.  As 

expected, knocking down the essential adsl-1 encoding gene alone results in a substantial reduction of 

the body growth compared to the negative control, while knocking down the non-essential pacs-1 

encoding gene shows no significant difference from the negative control (Fig. 4B and C).  

Interestingly, the effect of knocking down simultaneously the two genes is largely the same as that of 

knocking down the pacs-1 encoding gene alone.  This result indicates that the phenotype of ADSL 

deficiency in the nematode C. elegans is nearly fully masked by a further loss-of-function perturbation 

on the gene encoding pacs-1.  Given the identical purine de novo biosynthesis pathway between the 

C. elegans and humans, the loss-of-function therapeutic strategy proposed for the ADSL deficiency is 

highly likely to be effective in humans.  
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Discussion 

In this study, we propose two types of gene essentiality: the type I can be rescued/masked only 

by gain-of-function perturbations while the type II can be rescued/masked by loss-of-function 

perturbations.  This proposition is different from the previously proposed concept of genetically 

conditional essentiality that states nothing about the way of rescuing (Zhao et al. 1998; Geissler et al. 

2003; Gerdes et al. 2006; Rancati et al. 2008; Vernon et al. 2008; Delia et al. 2009; Bergmiller et al. 

2012).  Taking advantages of spontaneous mutations, a useful tool for probing the gene 

network(Szamecz et al. 2014; Liu et al. 2015), as well as the affordable whole genome sequencing, we 

identified five type II essential genes each with 1-8 rescuing partners in the yeast.  This is a 

preliminary screening and there are good reasons to expect many more type II essential genes: First, 

only one fourth of the yeast essential genes are examined because of the leakiness of the Tet promoter, 

and for each gene only ~3×107 cells are tested.  We found that plating more cells produces viable 

colonies that are primarily due to the failure of the TET system as a result of spontaneous mutations.  

Second, the mutation rate varies among genes by orders of magnitude, so our strategy that is designed 

based on the average mutation rate becomes invalid for detecting the rescuing mutations on the genes 

with intrinsically low mutation rate.  This point is well demonstrated in the case of ADE13 that has 

eight rescuing partners; our extensive screening identifies only five of the eight and the rest three are 

suggested by reasoning and validated by target gene deletions.  Third, a recent study reports that up 

to ~10% of the yeast essential genes are dispensable in a newly evolved genetic status(Liu et al. 2015).  

Although the resulting aneuploidy precludes the authors from identifying the specific genes 

responsible for the essentiality turnover, it won’t be surprising if a further study shows a large 

proportion of them type II essential.  Interestingly, only one of the five type II essential genes 

identified in this study is found conditionally dispensable in that study, suggesting that both screenings 

are far from saturation.  

It is worth noting that such type II essentiality was actually observed before in quite a few cases, 

including the yeast gene ADE13(Zekhnov et al. 1995; Zekhnov and Domkin 2000), although the 

knowledge has never been applied to thinking of the therapy for the human disease.  The clinical 

difficulty for Mendelian diseases is in great part due to the fact that most of the diseases are due to 

loss-of-function mutations on the genes with key functions.  The basic therapeutic principle for such 

diseases has been to restore the lost functions (Garcia-Blanco et al. 2004; Maguire et al. 2008; Bidou 
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et al. 2012), which is extremely difficult to realize.  Because inventing a compound to inactive a 

function is much simpler than inventing a compound to restore a function, using loss-of-function 

perturbations to mask the loss-of-function effects of type II essential genes suggests a conceptually 

much easier therapeutic strategy for loss-of-function human diseases.  Therefore, studies of the 

nature of essential genes not only deepen our understandings of the gene network but can also help the 

medical practice.  

 

 

Methods 

Yeast strains  

The Tet promoter-based Hughes Collection (yTHC) of yeast strains were purchased from GE 

Healthcare Dharmacon. The kanR-TetO7-TATA cassette was integrated into the yeast genome, 

replacing the endogenous promoter for each essential gene in the haploid background strain R1158 

(URA3::CMV-tTA MATa his3-1 leu2-0 met15-0). This strain was created by a one-step integration of 

the tet-off activator (tTA, which dissociated in the presence of doxycycline), under the control of the 

CMV promoter, at the URA3 locus.  The diploid yeast strain used in the study is BY4743 (MATa/α 

his3Δ1/ his3Δ1 leu2Δ0/ leu2Δ0 lys2Δ0/ lys2Δ0 metΔ15/met15 ura3Δ0 /ura3Δ0). 

Simulating the number of cells required for capture the rescuing mutations 

In the previous study, an overall base-substitutional mutation rate and small insertion/deletions 

mutation rate estimate of 0.33×10-9 and 0.02×10-9 per site per cell division(Lynch et al. 2008). Analysis 

of the loss-of-function mutation probability for each gene must consider the severe non-synonymous 

mutations, truncating substitution mutations and frame-shift indels. The probability is estimated that 

at least one null mutation occurs during the population expansion for each of the ~6,000 yeast genes 

when screened different population size Ns. The probability that occur loss-of-function mutation for 

each gene is estimated by 

𝑥[𝐿, 𝑅] = ∑[

∞

n=1

(μi𝐺)𝑛ⅇ−(μi𝐺)

𝑛!
× (1 − (1 −

𝐿

𝐺
)
𝑛

)] + [
(μs𝐺)𝑛ⅇ−(μs𝐺)

𝑛!
× (1 − (1 −

𝑟𝑅

𝐺
)𝑛)] 

Where µi is the indel mutation rate per base per generation; µs is the single-nucleotide mutation rate 

per base per generation(Lynch et al. 2008). L is the gene length while G represent the whole genome 

size. R represent the number of non-synonyms substitutions sites while r is the ratio of severe sites 
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upon all non-synonyms substitutions sites. For a given population N, the probability was estimated by 

1 −
(xN)𝑛ⅇ−(xN)

𝑛!
, (𝑛 = 0).  

Screening assay 

Yeast Tet-promoter strains for screening were removed from frozen stock (25% glycerol, −80 °C) and 

streaked onto YPD plate (1%Yeast Extract, 2%Peptone, 2%Dextrose). A single original colony were 

inoculated in YPD medium overnight. For each strain, 3×107 cells were condensed, washed and then 

spread on YPD plate with 10 µg/ml doxycycline, incubated for 3-4 days at 30°C. On some Dox+ plates, 

there were indeed appeared some viable colonies, and then we attempted to knock down the focal 

essential genes of these viable colonies using standard lithium acetate transformation protocol. We 

successfully detected positive deletion in five essential genes. For each of the five genes, the screening 

experiment mentioned above were repeated 30 times to select 30 independent clones on 30 Dox+ plates. 

Finally, 150 (30×5) clones were all deleted focal essential gene to exclude the false positive mutation. 

By the way, the five parental clones were prepared to sequence as well.  

Genome sequencing and mutation calling 

Genomic DNA was extracted from ~108 yeast cells using the Dr. GenTLE® (from Yeast) High 

Recovery kit (catalog number: 9082). Three genomes were pooled together and we had 55(10×5+5) 

samples for the five essential genes. Fragments between 400bp and 600bp were collected for library 

construction and samples were sequenced on an Illumina Hi-seq 2000 platform. Approximately 8 

million 125bp reads were generated for each sample, corresponding to an average sequencing depth 

of ~80. Sequence reads were aligned to yeast genome by bowtie2(Langmead and Salzberg 2012) with 

default setting, and duplicated reads were removed by Picard (http://picard.sourceforge.net). Single-

nucleotide mutations and indels were called on the Genome Analysis Toolkit (GATK) 

platform(Margulies et al. 2005) with default settings. 

Identification of the type II essential genes  

The gene Leu and Ura were used to replace one copy of essential gene and their rescuing gene 

respectively in diploid yeast strain BY4743 using a standard lithium acetate transformation protocol. 

The resulting double heterozygous deletion mutant strains were inoculated in sporulation medium 

(10g/L potassium acetate and 50mg/L zinc acetate in water) for 4-5 days at 25°C on a rotary shaker. 

200µl of cell suspension were resuspended in Potassium Phosphate buffer (67 mM KH2PO4; pH 7.5) 
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added with 25 units Zymolyase (ZYMO research), incubated for 30min at 30°C on a rotary shaker to 

digest the cell walls and then held in a dry bath for 15min at 55°C to kill diploid cells. Then, the spore 

suspension was spread on YPD plate for three days. Spores from the diploid strains heterozygous for 

a focal essential gene and a putative rescuing gene deletion would be expected to show a 1:1:1:0 

viability segregation pattern between the four haploid spores: wild-type; rescuing gene deletion; both 

essential gene and rescuing gene deletion; only essential gene deletion. Analysis of the haploid 

segregants help confirm whether the focal essential gene is indeed type II.  

C.elegans culture and gene knockdown using RNAi 

C.elegans strains (rrf-3-/-) were maintained at 16°C on NGM plate, with E.coli (OP50) as feed 

(WormBook). We use RNA interference (RNAi) to mimic loss-of-function mutation of gene adsl-1 

and pacs-1 in C. elegans. Two single-gene-interferencing vectors, adsl-1/GFP and pacs-1/GFP, for 

knocking down adsl-1 and pacs-1 separately and a double-gene-interferencing vector, adsl-1/pacs-1, 

for knocking down the two genes simultaneously, were constructed. We fused the gene with the coding 

sequence of GFP in the single-gene-interferencing vectors to achieve a similar length of insert as the 

double-gene-interferencing vector, which ensures comparable RNAi efficiency for the same genes in 

different vectors. The L4440 empty vector were used as negative control. The L4440 vector and the 

L4440 with gene of interest vectors were transformed into the HT115 strain, then grown in LB media 

with ampicillin at 37°C. The next day, bacteria were 1:100 transferred into fresh LB media at 16°C 

and used 1mM IPTG to induce dsRNA expression. The bacteria were harvested and transferred onto 

NGM plates containing IPTG as feed. For each RNAi experiment, at least ten three-day-old F0 worms 

were transferred onto an RNAi plate. The F0 worms were killed with heated inoculating loop at day 0, 

when F1 eggs were first observed on the plate. Growth of F1 worms were measured in day 3 and day 

6, using ImageJ. 

Quantitative PCR 

Total RNA was extracted from the C. elegans worms using Trizol (Life Technologies, catalog number: 

15596-026). Two micrograms of total RNA were treated by RNase-Free DNase Set (QIAGEN, catalog 

number: 79254) and converted into cDNA using PrimerScript RT reagent Kit (Takara, catalog number: 

RR037A). The qPCR experiments were performed using SYBR Green (Takara, catalog number: 

RR820B) and Roche LightCycler 480 apparatus. The β-actin gene was used as the reference gene. 

Quantitative RT-PCR reveals successful RNA interference. Expression level of the gene adsl-1 reduces 
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by 64.4% and 61.1% in worms subject to adsl-1/GFP and adsl-1/pacs-1 treatment, respectively; the 

numbers are 62.1% and 58.2% for the gene pacs-1 in worms subject to pacs-1/GFP and adsl-1/pacs-1 

treatment, respectively. 
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Figure legends 

Fig. 1 Two types of essential genes whose null phenotypes can be masked only by the gain of 

the original function (Type I) or by the loss of another function (Type II).  

 

Fig. 2 The probability of individual genes with at least one critical loss-of-function mutation 

during the population expansion from a single yeast cell.  (A) The probability distribution of the 

~6,000 yeast genes (y-axis) as a function of the ending population size N (x-axis).  The probabilities 

have no apparent increase after the N reaches 3×107.  (B) The probability distribution (y-axis) as a 

function of the gene length (x-axis) when N = 3×107.  The number of genes in each length category 

is shown next to the box.  

 

Fig. 3 Identification of the type II essential genes and their rescuing partners.  (A) A 

flowchart of the entire experimental procedure.  (B) The colony size of each of the double deletion 

mutants.  Cells diluted in gradient were spread on YPD plate, incubated for 48 hours except for the 

ΔMIM1+ΔSIT4 that was incubated for 72 hours.  Each panel shows a type II essential gene and its 

rescuing partners.  (C) The fitness of each double gene deletion mutant relative to the wild-type in 

the rich medium YPD.   

 

Fig. 4 The loss-of-function therapy for the ADSL deficiency.  (A) A schematic presentation of 

the purine de novo synthesis pathway.  The pathway is extremely conserved among the yeast, 

nematode and humans.  The filled oval marks the essential gene and the unfilled ovals show the 

rescuing partners of the essential gene.  (B) The worms were fed with vectors producing the double-

stranded RNAs each silencing adsl-1, pacs-1 and adsl-1/pacs-1, respectively.  Knockdown of pacs-1 

masks well the phenotypic defects of adsl-1 knockdown.  Scale bars shows 1000μm.  (C) The 

relative size gain of the F1 worms from day-3 to day-6.  The worms of adsl-1(-)/pacs-1(-) have 

significantly faster growth than those of adsl-1(-) (P < 10-11; t-test). 
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Table 1. The identified type II essential genes with their rescuing partners 

essential 

gene 

rescuing 

partner 

Total 

mutation 

number 

Mutation Type  

Function Indel Nonsense 

mutation 

Missense 

mutation 

Silent 

mutation 

ADE13 ADE6 10 2 5 3 0 De novo IMP 

biosynthetic process ADE5 8 2 2 4 0 

ADE4 5 1 1 3 0 

BAS1 3 0 0 3 0 

PHO2 2 1 1 0 0 

SEC14 

 

KES1 12 3 3 6 0 Phosphatidylcholine 

metabolic process PCT1 12 2 0 10 0 

CKI1 3 1 1 1 0 

RER2 UME6 8 4 1 3 0 Histone 

deacetyplation SIN3 5 2 2 1 0 

RPD3 2 1 0 1 0 

SDS3 2 0 2 0 0 

ERD2 ERV29 14 4 10 0 0 ER to Glogi vesicle-

mediated transport 

MIM1 SIT4 6 0 0 6 0 - 
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