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Abstract: Microarray and RNA-sequencing technologies have enabled rapid
quantification of the transcriptomes in a large number of samples. Although
dimension reduction methods are commonly applied to transcriptome datasets
for visualization and interpretation of the sample variations, the results can be
hindered by confounding factors, either biological or technical. In this study,
we propose a Principal Component Analysis-based approach to Adjust for Con-
founding variation (AC-PCA). We show that AC-PCA can adjust for variations
across individual donors present in a human brain exon array dataset. Our ap-
proach is able to recover the anatomical structure of neocortex regions, including
the frontal-temporal and dorsal-ventral axes, and reveal temporal dynamics of
the interregional variation, mimicking the “hourglass” pattern of spatiotempo-
ral dynamics. For gene selection purposes, we extend AC-PCA with sparsity
constraints, and propose and implement an efficient algorithm. The top selected
genes from this algorithm demonstrate frontal/temporal and dorsal/ventral ex-
pression gradients and strong functional conservation.

1 Introduction

The development of microarray and next-generation sequencing technologies
has enabled rapid quantification of the mammalian transcriptomes in a large
number of samples[9, 45]. Dimension reduction methods, such as Multidimen-
sional Scaling (MDS) and Principal Component Analysis (PCA) are commonly
applied to visualize data in a low dimensional space, or/and identify dominant
patterns of gene expression (feature extraction) [57, 51, 22, 33, 44, 15]. MDS
aims to place each sample in a lower-dimensional space such that the between-
sample distances are preserved as much as possible [35]. PCA seeks the linear
combinations of the original variables such that the derived variables capture
maximal variance [30]. One advantage of PCA is that the principal components
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(PCs) are more interpretable by checking the loadings of the variables.
Human neurodevelopment is a dynamic and highly regulated biological pro-

cess [59]. Abnormalities in neurodevelopment in humans may lead to psychiatric
and neurological disorders, such as autism spectrum disorders [21, 64, 56]. Re-
cent transcriptome studies of developing human brain and neocortex provide
insights on the spatial or/and temporal dynamics of neurodevelopment [33, 44].
[33] collapsed the neocortex regions and demonstrated the spatial and temporal
variation through MDS and PCA on all the samples. However, the spatial varia-
tion across neocortex regions was not explored in [33]. In human, the neocortex
is involved in higher functions such as sensory perception, generation of motor
commands, spatial reasoning, conscious thought and language [40]. Through
analyzing the exon array dataset reported in [33], we found that visualization of
the neocortex regions is affected by confounding factors, likely originated from
the variations across individual donors (Figure 1). Without the adjustment, a)
there is no clear pattern among the neocortex regions or/and samples from the
same individual donors tend to form clusters, and b) it is challenging to identify
neurodevelopmental genes with interregional variation.

Confounding factors, usually originated from experimental artifacts and fre-
quently referred to as “batch effects”, are commonly observed in high through-
put transcriptome experiments. Various methods have been proposed to remove
the unwanted variation through regression models on known confounding factors
[28], factor models and surrogate vector analysis for unobserved confounding fac-
tors [38, 20, 37, 52, 68]. However, directly removing the confounding variation
using these methods may introduce bias, as a result of incorrect model assump-
tion of the confounding variation, and it can also remove the desired biological
variation. Moreover, limited work has been done in the context of dimension
reduction.

To address the limitations of existing methods, we have developed AC-PCA
for simultaneous dimension reduction and adjustment for confounding variation,
such as variations across individual donors. Applying AC-PCA to the human
brain exon array dataset [33], we are able to recover the anatomical structure of
neocortex regions, including the frontal to temporal axis and the dorsal to ven-
tral axis. Our results are able to capture the interregional variation in neocortex
and reveal the temporal dynamics of the spatial variation. In PCA, the loadings
for the variables are typically nonzero. In high dimensional settings, sparsity
constraints have been proposed in PCA for better interpretation of the PCs
[31, 70, 66, 49] and better statistical properties, such as asymptotic consistency
[29, 32, 41]. We have also developed an efficient and fast algorithm to find
sparse solutions for AC-PCA. The genes identified by AC-PCA demonstrate
smooth frontal to temporal, dorsal to ventral gradient and strong functional
conservation.
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2 Methods

2.1 AC-PCA adjusting for variations of individual donors

Let Xi represent the b × p matrix for the gene expression levels of individual
i, where b is the number of brain regions and p is the number of genes. By
stacking the rows of X1, · · · , Xn, X represents the (n × b) × p matrix for the
gene expression levels of n individuals. We propose the following objective
function to adjust for individual variation:

maximize
v∈Rp

vTXTXv − 2

n− 1
λ

n−1∑
i=1

n∑
j=i+1

vT (Xj −Xi)
T (Xj −Xi)v

subject to ||v||22 ≤ 1.

(1)

In (1), the term vTXTXv is the objective function for standard PCA, and

the regularization term −
∑n−1

i=1

∑n
j=i+1 v

T (Xj − Xi)
T (Xj − Xi)v encourages

the coordinates of the brain regions across individuals to be similar. The factor
2

n−1 makes the regularization term in formulation (1) scale linearly with the
number of individuals. The tuning parameter λ > 0 controls the strength of
regularization. When λ = +∞, we are forcing the coordinates of the same brain
region across individuals to be the same after projection. Only the labels for
brain regions (i.e. labels for the primary variables) are required when imple-
menting formulation (1). We can apply it even if the individual labels of donors
(i.e. the confounding variables) are unknown. The connection of formulation
(1) with Canonical Correlation Analysis (CCA) is shown in the appendix.

2.2 AC-PCA in a general form

Let X be the N × p data matrix and Y be the N × l matrix for l confounding
factors. Denote yi the ith row in Y . We propose the following objective function
to adjust for more general confounding variation:

maximize
v∈Rp

vTXTXv − λvTXTKXv

subject to ||v||22 ≤ 1,
(2)

where K is the N × N kernel matrix, and Kij = k(yi, yj). It can be shown
that vTXTKXv is the same as the empirical Hilbert-Schmidt independence
criterion[23, 7] for Xv and Y , when linear kernel is applied on Xv (Appendix).
In the objective function, we are penalizing the dependence between Xv (i.e.
extracted feature) and the confounding factors. Formulation (1) is a special case
of (2), where linear kernel (i.e. Y Y T ) is applied on Y , and Y has the following
structure: in each column of Y , there are only two non-zero entries,

√
2/(n− 1)

and −
√

2/(n− 1)), corresponding to a pair of samples from the same brain
region but different individuals. Implementation examples for formula (2) are
provided in the simulation section (settings 3 and 4).
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Denote Z = XTX − λXTKX. Problem (2) can be rewritten as:

maximize
v∈Rp

vTZv subject to ||v||22 ≤ 1. (3)

Therefore it can be solved directly by implementing eigendecomposition on Z.

2.3 AC-PCA with sparse loading

Denote H = XTKX. It can be shown that solving (2) is equivalent to solving:

maximize
v∈Rp

vTXTXv subject to vTHv ≤ c1, ||v||22 ≤ 1, (4)

where c1 is a constant depending on λ. A sparse solution for v can be achieved
by adding `1 constraint:

maximize
v∈Rp

vTXTXv subject to vTHv ≤ c1, ||v||1 ≤ c2, ||v||22 ≤ 1. (5)

Following [66], this is equivalent to:

minimize
u,v∈Rp

− uTXv subject to vTHv ≤ c1, ||v||1 ≤ c2, ||v||22 ≤ 1, ||u||22 ≤ 1.

(6)
Problem (6) is biconvex in u and v, and it can be solved by iteratively updating

u and v. At the kth iteration, the update for u is simply
Xv(k−1)

||Xv(k−1))||22
. To update

v, we need to solve:

minimize
v∈Rp

− uT(k)Xv subject to vTHv ≤ c1, ||v||1 ≤ c2, ||v||22 ≤ 1. (7)

Because of the quadratic constraint on v, it is hard to solve (7) directly. We
propose to use the bisection method, solving the following feasibility problem
iteratively:

find v subject to − uTkXv ≤ t, vTHv ≤ c1, ||v||1 ≤ c2, ||v||22 ≤ 1, (8)

where t is an upper-bound for −uTkXv and is updated in each iteration. Note
that H is positive semidefinite and (8) can be solved by alternating projection
on the convex sets. Details for the projection are included in the Appendix. In
summary, the algorithm to update v is as follows:
Algorithm 1: Bisection method for solving problem (7) and updating v

1. Initialize tup = 0 and tlow = −||XTuk||2

2. Iterate until convergence:

(a) t∗ = (tup + tlow)/2

(b) tup ← t∗ if (8) is feasible for t∗

(c) tlow ← t∗ if (8) is not feasible for t∗
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3. Let t = tup and find v by solving (8)

The algorithm to solve (6) is as follows:
Algorithm 2: Finding the sparse principal component

1. Initialize v to be the solution of (2)

2. Iterate until convergence:

(a) u← Xv(k−1)

||Xv(k−1)||22
(b) Update v by implementing algorithm 1

2.4 Multiple principal components

In (2), obtaining multiple principal components is straightforward, as they are
just the eigenvectors of Z; for the sparse solution, (6) can only obtain the first
sparse principal component. To obtain the other sparse principal components,
we can update X sequentially with X(i+1) = X(i)(I − v̂iv̂Ti ) for i = 1, · · · , and
implement (6) on X(i+1), where X(1) = X and v̂i is the ith principal component.

2.5 Data preprocessing

The human brain exon array dataset was downloaded from the Gene Expression
Omnibus (GEO) database under the accession number GSE25219. The dataset
was generated from 1,340 tissue samples collected from 57 developing and adult
post-mortem brain[33]. Details for the quality control (QC) of the dataset are
described as in [33]. After the QC procedures, noise reduction was accomplished
by removing genes that were not expressed [39], leaving 13,720 genes in the
dataset. We next selected the top 5,000 genes sorted by coefficient of variation
and centered the expression levels of this consort.

2.6 Conservation and heterozygosity scores

The dN/dS score for cross-species conservation was calculated using Ensembl
BioMart [14]. The heterozygosity score was calculated using 1,000 Genomes
phase 1 version 3 [12]. Let f1, · · · fp denote the allele frequencies for the p non-
synonymous coding SNPs in a gene, and let l denote the maximum transcript
length over all isoforms of that gene. The heterozygosity score was calculated
as: 2

∑p
i=1 fi(1 − fi)/l. For a gene with low heterozygosity score, the non-

synonymous variants in that gene tend to be rare, which indicates the functional
importance of that gene.

3 Tuning parameters

3.1 Tuning λ

Let X denote the N × p data matrix. l = vTXTKXv can be treated as a loss
function to be minimized. We do 5-fold cross-validation to tune λ:
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(a) From X, we construct 5 data matrices X1, · · · , X5, each of which is missing
a non-overlapping one-fifth of the rows of X

(b) For each Xi, i = 1, · · · , 5, implement (2) and obtain vi

(c) Calculate lcv. In Xv, we use vi and the missing rows that are left out in
Xi, for i = 1, · · · , 5

(d) When λ increases from 0, lcv usually decreases sharply and then either
increases or becomes flat. In practice, we choose λ to be the “elbow” point
of lcv. When there is no or little confounding variation, lcv tends to be flat
when λ changes, and we can use regular PCA.

3.2 Tuning c1 and c2

Because c1 and c2 capture different aspects of the data, we propose a two-step
approach: first tune c1, and then tune c2 with c1 fixed. This also greatly reduces
the computational cost since tuning c2 can be slow. To tune c1:

(a) We follow the previous procedure to tune λ

(b) The best λ is used to calculate v, as in (2)

(c) Let c1 = vTY v

To tune c2, we follow Algorithm 5 in [66], which is based on matrix completion:

(a) From X, we construct 5 data matrices X1, · · · , X5, each of which is missing
a non-overlapping one-fifth of the elements of X

(b) For X1, · · · , X5, fit (6) and obtain X̂i = duvT , the resulting estimate of Xi

and d = uTXiv

(c) Calculate the mean squared errors of X̂i, for i = 1, · · · , 5, using only the
missing entries

(d) Choose c2 that minimizes the sum of mean squared errors

4 Results

The human brain exon array dataset reported in [33] includes the transcriptomes
of 16 brain regions comprising 11 areas of the neocortex, the cerebellar cortex,
mediodorsal nucleus of the thalamus, striatum, amygdala and hippocampus.
Because the time period system defined in [33] had varying numbers of donors
across developmental epochs, we grouped samples from every 6 donors, sorted
by age and beginning from period 3. While the last time window had only 5
donors, this reorganization more evenly distributed sample sizes and allowed
improved comparisons across time (Table 1).

6

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040485doi: bioRxiv preprint 

https://doi.org/10.1101/040485
http://creativecommons.org/licenses/by-nd/4.0/


Table 1: Span of the windows in this study.

Window Age
1 12PCW≤Age<16PCW
2 16PCW≤Age<21PCW
3 21PCW≤Age<35PCW
4 35PCW≤Age<10M
5 10M≤Age<8Y
6 8Y≤Age<19Y
7 19Y≤Age<30Y
8 30Y ≤Age<42Y
9 42Y≤Age

M: postnatal months
PCW: post-conception weeks
Y: postnatal years.

In the analysis, we used samples from 10 regions in the neocortex. V1C was
excluded from the analysis as the distinct nature of this area relative to other
neocortical regions tended to compress the other 10 regions into a single cluster.
We conducted traditional Principal Component Analysis (PCA) for windows 1
and 2, as shown in Figures 1a and 1b. At first glance, neither analysis produced
any clear patterns among neocortical regions. However, closer observation of
these plots suggested some underlying structure: we performed PCA on just
the right hemisphere of donor HSB113 and found that the gross morphological
structure of the hemisphere was largely recapitulated (Figure 1c). The gross
structure tends to be consistent between hemispheres and across donors within
time windows when PCA is performed simultaneously, but the pattern is largely
distorted, likely due to the small sample size and noisy background (Supplemen-
tary Materials). If we first regress the gene expression levels on the individual
labels and then perform PCA on the residuals, the result is better but still not
satisfactory (Supplementary Materials).

In contrast, when we applied AC-PCA to see the effectiveness of our ap-
proach in adjusting confounding effects from individual donors, we were able to
recover the anatomical structure of neocortex (Figure 1f; Supplementary Fig-
ures 1a, 1b, 2a and 2b in [33]). We treated the left and right hemispheres from
the same donor as different individuals when implementing (1). Every region
tended to form a smaller cluster, when λ is larger than the optimal tuning value.
Variation of the principal components shrinks and the overall pattern remains
consistent (Supplementary Materials).

Next, we explored the temporal dynamics of the principal components (PC)
(Figure 2). The pattern is similar from windows 1 to 5, with PC1 representing
the frontal to temporal gradient, which follows the contour of developing cortex
[44], and PC2 representing the dorsal to ventral gradient. Starting from window
6, these two components reversed order. In windows 6 to 9, MFC shows increas-
ing distance from the other regions, and primary areas (M1C, S1C, A1C) are
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(a) Window 1, PCA
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(c) Window 1, PCA for HSB113(R)
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(d) Window 1, AC-PCA, λ∗ = 3
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(e) Window 2, AC-PCA, λ∗ = 3
(f) Representative fetal human brain,
lateral surface of hemisphere [33]

Figure 1: Visualization of the brain exon-array data [33], windows 1 and 2.
Each color represents a donor. Samples from the right hemisphere are labeled
as italic. For both windows, the best tuning parameter λ∗ was 3. In (f), MFC
is not visible on the lateral surface, and it belongs to slice L2.
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Figure 2: Temporal dynamics of the principal components. Median was taken
across individuals. λ was fixed to 2 for all windows when implementing Formu-
lation (1).

separated from other regions in PC1, implying the prominence of transcriptional
changes during specification of regional functions.

We also calculated the interregional variation explained by the PCs (Figure
3). In the first three windows, PC1 explains about 20% of the interregional
variation. The variation explained by the first two PCs decreases close to birth
(window 4) and then increases in later time windows, similar to the “hourglass”
pattern previously reported based on cross-species comparison and differential
expression [47, 39]. Interestingly, if we compare the proportion of variation
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Figure 3: Interregional variation explained by the principal components. Inter-
regional variation is calculated to be the sum over the variance across regions
among the individuals.

explained by the first two PCs, a smooth pattern is revealed: compared with
PC1, the variation explained by PC2 first increases, in window 5, it nearly
equals to that of PC1, then it decreases and finally slightly increases.

We then implemented Formulation (6) to select genes associated with the
PCs. The number of genes with non-zero loadings are shown in Figure 4, along
with the interregional variation explained in the regular PCs. Interestingly, the
trends tend to be consistent: when the regular PC explains more variation,
more genes are selected in the corresponding sparse PC; compared with PC1,
fewer genes tend to be selected in PC2. The numbers of selected genes are quite
dynamic. At both early developmental periods prior to birth and later postnatal
periods, more genes tend to be selected in both PCs. For PC1 in windows 1, 2,
3 and 9, more than 4, 000 genes are selected, which indicates global trends in
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Figure 4: Number of genes selected in the sparse PCs and the interregional
variation explained by the regular PCs.

neocortex that affect large numbers of genes.
To produce more stringent and comparable gene lists, we chose c2 such that

200 genes are selected in each window. The overlap of gene lists across windows
is moderate (Figure 5) and, as expected, the overlap with the first window
decreases over time. The overlap between adjacent windows tend to be larger
in later time windows, indicating that interregional differences become stable.
Interestingly, the overlap between windows 2 and 3 is also large. Results of
pathway enrichment analysis using DAVID bioinformatics resources [27, 58] are
available in the Supplementary Tables.

In windows 1 and 3, genes with the largest loadings demonstrate interesting
spatial patterns (Figure 6). For PC1, the top genes follow the frontal to temporal
gradient; while for PC2, they tend to follow the dorsal to ventral gradient. A
brief overview of the functions of these genes are listed in Table 2.

Finally, we demonstrate the functional conservation of the 200 genes selected
in PC1 and PC2 (Figure 7). These genes tend to have low dN/dS scores for
human vs. macaque comparison, even lower than the complete list of all essen-
tial genes. In the human vs. mouse comparison, we observed a similar trend
(Supplementary Materials). Parallel to the cross-species conservation, we also
observed that these genes tend to have low heterozygosity scores, a measure of
functional conservation in human (Figure 7).
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Figure 6: Expression levels for the genes with top loadings in windows 1 and
3. The top 3 genes are shown and each point represents the median over the
individuals.
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Table 2: Top genes in the PCs and their functions.

Window 1, PC1
NECAB1 calcium ion binding [60, 19]
SEMA3E semaphorin, control vascular morphogenesis,

serve as axon guidance ligands [24, 55, 11]
PCDH17 calcium ion binding, establishment and function

of specific cell-cell connections in the brain [67, 25]
Window 1, PC2

NTS dopamine signaling [34]
SLIT2 axonal guidance, midline guidance in the forebrain [6, 5, 48]

ADAMTS3 extracellular matrix proteases,
cleaves the propeptides of type II collagen [62, 18]

Window 3, PC1
POPDC3 important in heart development [8, 4]
GREM1 BMP Antagonist, may play a role in regulating organogenesis,

body patterning, and tissue differentiation [26]
CPNE8 calcium-dependent phospholipid binding [63, 13]

Window 3, PC2
GRP gastrin-releasing peptide, regulates the

gastrointestinal and central nervous systems [43, 10, 61]
MCHR2 receptor for Melanin-concentrating hormone (MCH),

important in feeding behaviors and energy metabolism [3, 65]
IGFBP5 insulin-like growth factor(IGF) binding protein,

essential for growth and development [1, 53]
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Figure 7: Conservation and heterozygosity scores for the genes in PC1 and PC2.
“All” represents the total 17, 568 genes in the exon array experiment. “All-
5000” represents the 5, 000 genes used in the analysis. “Essential” represents a
list of 337 genes that are functionally conserved and essential, obtained from the
Database of Essential Genes (DEG) version 5.0 [69]. “Window” is abbreviated
as “W”.
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5 Simulation

We first tested the performance of formulation (1) on simulated datasets with
individual variation. We considered n = 5, b = 10 and p = 400.
Simulation setting 1 : for the ith individual, the b×pmatrixXi = Wh+αBsi+εi.
Wh represents the shared variation across individuals. αBsi corresponds to in-
dividual variation and εi is noise. W = (w1 w2) is a b×2 matrix, representing the
latent structure of the shared variation. For visualization purpose, we assumed
that it is smooth and has rank 2. Let µ = (1, · · · , b)′ and w1 is the normalized µ,

with mean 0 and variance 1. w2 ∼ N (0, 0.25·Σ), where Σij = exp(− (wi1−wj1)
2

4 ).
h is a 2× p matrix and the rows in h are generated from N (0, Ip), where Ip is
the p× p identity matrix. B is a b× 1 matrix with all 1s. si is generated from
N (0, Ip). α is a scalar indicating the strength of confounding variation, we set
α = 2.5. The rows in εi are generated from N (0, 0.25 · Ip).

Simulation setting 2 : for the ith individual, let Xi =

(
X1i

X2i

)
, where X1i rep-

resents the data matrix for the first 200 genes and X2i represents that of the
other 200 genes. X1i = Wh+ ε1i and X2i = αWihi + ε2i. W , h, hi, ε1i and ε2i
are generated similarly as that in setting 1. α = 2.5. The first column in Wi is
generated fromN (0, Ib), and the second column is generated fromN (0, 0.25·Ib),
where Ib is the b× b identity matrix.

Settings 1 and 2 represent two different scenarios: in setting 1, the individual
variation is represented by a global trend for all the genes; while in setting 2, we
assumed that for some genes, the variation is shared among individuals, and it
is not shared for the other genes. The results of data visualization are presented
in Figure ??.

Then we tested the performance of formulation (2) on simulated dataset
with other confounding structure:
Simulation setting 3 : Let N = 10 and p = 400. The N × p matrix X =
Wh + αBs + ε. W , h are the same as that in setting 1. We set α = 2.5.
B = (b1 b2) is a N × 2 matrix: the entries in b1 have 0.3 probability of being 0,
otherwise the entries are set to 1; b2 equals 1 − b1. s is a 2 × p matrix, where
the rows are generated from N (0, Ip). ε is an N × p matrix, where the rows are
generated from N (0, 0.25 · Ip).
Simulation setting 4 : Let N = 10 and p = 400. The N × p matrix X =
Wh+ αw̃1s+ ε. W , h are the same as that in setting 1. We set α = 2.5. w̃1 is
a permutation of w1. s is generated from N (0, Ip). ε is an N × p matrix, where
the rows are generated from N (0, 0.25 · Ip).

Setting 3 represents an experiment with two “batches”, contributing glob-
ally to the gene expression levels. Setting 4 represents an experiment with a
continuous confounding factor (e.g. age). We implemented formulation (2) with
linear kernels, and set Y = B and w̃1 for settings 3 and 4, correspondingly. The
visualization results are shown in Figure 8.

Finally, we tested the performance of formulation (6) for variable selection
when the true loading is sparse. For simplicity, we assumed that the latent
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−1.5 −0.5 0.0 0.5 1.0 1.5

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Factor 1

Fa
ct

or
 2

1

2

3

4
5 6

7

8

9

10

(g) Setting 3, true pattern

−20 0 20 40

−
30

−
10

0
10

20
30

PC 1

P
C

 2

1

2
34

5

6

7

8

9

10

(h) Setting 3, PCA

−30 −20 −10 0 10 20 30

−
10

−
5

0
5

PC 1

P
C

 2

1

2

3
4

5
6

7

8

9
10

(i) Setting 3, AC-PCA

−1.5 −0.5 0.0 0.5 1.0 1.5

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Factor 1

Fa
ct

or
 2

1

2

3

4
5

6

7

8

9

10

(j) Setting 4, true pattern

−50 0 50

−
30

−
20

−
10

0
10

20
30

PC 1

P
C

 2

1

23

4
5

6

7

8
9

10

1

23

4
5

6

7

8
9

10

(k) Setting 4, PCA

−30 −20 −10 0 10 20 30−
10

−
5

0
5

PC 1

P
C

 2

1

2

3

4
5

6
7

8

9

10
1

2

3

4
5

6
7

8

9

10

(l) Setting 4, AC-PCA

Figure 8: Visualization of simulated data with confounding variation. The
parameter λ was tuned as described in the previous section.
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Table 3: Estimation of sparsity and sensitivity

True non-zeros=100 True non-zeros=40
α = 1.5 α = 2 α = 2.5 α = 2 α = 2∗

σ = 0.2 113.7(34.2) 88.7(20.9) 81.4(20.5) 37.4(14.7) 46.7(16.5)
Estimated non-zeros σ = 0.5 120.6(42.5) 91.6(31.1) 79.4(24.4) 38.9(15.6) 54.6(19.0)

σ = 0.2 0.85(0.06) 0.83(0.08) 0.83(0.08) 0.74(0.11) 0.77(0.10)
Sensitivity σ = 0.5 0.80(0.07) 0.79(0.08) 0.80(0.05) 0.62(0.10) 0.69(0.11)

To calculate sensitivity, c2 was chosen such that the estimated non-zero entries equals the true number.
In α = 2∗, wh was scaled with 2.5 to let the variation match with the less sparse setting.

factor is of rank 1.

Simulation setting 5 : for the ith individual, let Xi =

(
X1i

X2i

)
, where X1i

represents the expression levels of the first 200 genes and X2i represents that
of the other 200 genes. X1i = wh + ε1i and X2i = αWihi + ε2i. w is the same
as w1 in setting 1. Some entries in h are set to 0 to reflect sparsity, the other
entries are generated from N (0, I). Wi and hi are the same as that in setting
2. The rows in ε1i and ε2i are generated from N (0, σ2 · I), where σ is a scalar
indicating the noise level.

Results of simulation setting 5 are shown in Table 3. Larger noise (σ) leads to
lower sensitivity, larger standard error for the estimated non-zeroes, but does not
affect the mean much. Smaller confounding variation (α) leads to overestimate
of the non-zeroes, but does not affect the sensitivity much.

6 Discussion

Dimension reduction methods are commonly applied to visualize datapoints in a
lower dimensional space and identify dominant patterns in the data. Confound-
ing variation, technically and biologically originated, may affect the performance
of these methods, and hence the visualization and interpretation of the results
(Figure 1).

In this study, we have proposed AC-PCA for simultaneous dimension re-
duction and adjustment for confounding variation, such as variations of the
individual donors, and demonstrated its good performance through the analysis
of human brain developmental exon array dataset [33] and simulated data as
well. We showed that AC-PCA is able to recover the anatomical structure of
the neocortex regions. In the first five time windows, PC1 captures the frontal
to temporal variation and PC2 captures the dorsal to ventral variation. Because
of the structural complexity of primate neocortex, physical distance may not be
a good measure for the true similarity between regions. Our results show that
AC-PCA is able to reconstruct the regional map in neocortex based on tran-
scriptome data alone. The developmental gradients in neocortex are likely a
result of intrinsic signaling, controlled in part by graded expression of transcrip-
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tion factors during early cortical development, followed by extrinsic signaling
from thalamic afferents after the start of corticogenesis [44, 42, 46, 50, 54, 59].
For better interpretation of the PCs and gene selection purpose, we proposed
to incorporate sparsity constraints in AC-PCA. The selected genes demonstrate
frontal to temporal gradient and dorsal to ventral gradient. These genes are
of potential interest for studying cortical patterning. They also tend to be
functionally important, as indicated by the cross-species conservation and the
heterozygosity scores calculated from the 1000 Genomes data.

One feature of AC-PCA is its simplicity. There is no need to specify any
analytical forms for the confounding variation. Instead, we extended the ob-
jective function of regular PCA with penalty on the dependence between the
extracted features (i.e. Xv) and the confounding factors. AC-PCA is designed
to capture the desired biological variation, even when the confounding factors
are unobserved, as long as the labels for the primary variable of interest are
known.

The application of AC-PCA is not limited to transcriptome datasets. Di-
mension reduction methods have been applied to other types of genomics data
for various purposes, such as feature extraction for methylation prediction [16],
classifying yeast mutants using metabolic footprinting [2], and classifying im-
mune cells using DNA methylome [36], etc. AC-PCA is applicable to these
datasets to capture the desired variation, adjust for potential confounders, and
select the relevant features. AC-PCA can serve as an exploratory tool and
be combined with other methods. For example, the extracted features can be
implemented in regression models for more rigorous statistical inference. The
R package, Matlab source code, and application examples will be available on
Bioconductor and Gtihub.
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Appendix A Connection with Canonical Corre-
lation Analysis (CCA)

Without loss of generality, let n = 2, then the objective function in formulation
(1) becomes:

vTXTXv − 2λvT (X2 −X1)T (X2 −X1)v = (1− 2λ)vTXTXv + 4λvTXT
2 X1v

In Canonical Correlation Analysis (CCA), there are two datasets X and Y ,
and the goal is to maximize the correlation between X and Y after projections.
The objective function in CCA is aTXTY b, where a and b are two column
vectors. Note that aTXTY b and vTXT

2 X1v have similar forms: in vTXT
2 X1v,

the projection vectors a and b are the same as v. Therefore the objective function
in (1) represents a balance between regular PCA and CCA. When λ > 0.5, the
weight on PCA is negative.

Appendix B Hilbert-Schmidt independence cri-
terion

The linear kernel of Xv is L = XvvTXT . Let K be the kernel of Y . Let H =
I −N−1eeT , where e is a column vector with all 1s. Then HTX = HX = X,
as X is centered. The empirical Hilbert-Schmidt independence criterion for Xv
and Y is:

Tr(HLHK) = Tr(HXvvTXTHK)

= Tr(vTXTHKHXv)

= Tr(vTXTKXv)

= vTXTKXv

Appendix C Details for the projections

Projection onto `2 ball
First do decomposition K = ∆∆T , and let M = ∆TX. We have MTM =
XT ∆∆TX = XTKX.

We need to solve the following optimization problem:
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minimize
v

‖v − v0‖22 subject to ‖Mv‖22 ≤ c1

It is equivalent to the following Lagrangian problem:

L(λ, v) = ‖v − v0‖22 + λ(‖Mv‖22 − c1), where λ ≥ 0.

For any fixed λ, L(λ, v) is a convex differentiable function of v. By taking
derivative, it can be shown that v∗ ≡ v∗(λ) = (Ip +λMTM)−1v0 minimizes the
Lagrangian. Then we have

g(λ) ≡ inf
v
L(λ, v) = L(λ, v∗)

By singular value decomposition, M = UΣV T , where UTU = UUT = IN and
V TV = V V T = Ip. Then we have

v∗ = (Ip + λV ΣT ΣV T )−1v0 = V (Ip + λΣT Σ)−1V T v0 (9)

and

g(λ) = ‖V (Ip − (Ip + λΣT Σ)−1)V T v0‖22 + λ‖UΣ(Ip + λΣT Σ)−1V T v0‖22 − λc1
= ‖(Ip − (Ip + λΣT Σ)−1)V T v0‖22 + λ‖Σ(Ip + λΣT Σ)−1V T v0‖22 − λc1

=
d∑

i=1

(
λσ2

i

1 + λσ2
i

)2(V T v0)2i + λ
d∑

i=1

(
σi

1 + λσ2
i

)2(V T v0)2i − λc1

=
d∑

i=1

λσ2
i

1 + λσ2
i

(V T v0)2i − λc1,

where d(<= N) is the number of non-zero singular values of M , σi is the ith
non-zero singular value, and (·)i represents the ith element of a vector. When
λ ≥ 0, g(λ) is concave and the optimal value λ∗ can be found by Newton-
Raphson’s Method. With λ = λ∗, the projection v can be calculated with (9),
where the inversion part is a diagonal matrix. It can be shown that only the
first d columns of V affect the projection and typically we have d� p.
Projection onto `1 ball

minimize
v

‖v − v0‖22 subject to ‖v‖1 ≤ c2

This can be solved efficiently by the algorithm presented in [17].
Projection onto hyperplane

minimize
v

‖v − v0‖22 subject to −uTkXv ≤ t

The solution is:

v = v0 −
uTkXv0 + t

‖XTuk‖22
XTuk
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