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Abstract

We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify
informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression
datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression
dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching
normal tissues. DISCERN estimates the extent to which each gene is perturbed — having distinct regulator
connectivity in the inferred gene-regulatory dependencies between the disease and normal conditions. This
approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies
between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for
direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a
new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a
particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing
methods to identify perturbed genes between distinct states. In expression datasets from patients with acute
myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are
enriched for known tumor drivers, genes associated with the biological processes known to be important in the
disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN
can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity
patterns in cancer and normal tissue types more accurately than alternative methods, based on the available
epigenomic from the ENCODE project.

Introduction

Genes do not act in isolation but instead work as part of complex networks to perform various cellular processes.
Many human diseases including cancer are caused by dysregulated genes, with underlying DNA or epigenetic
mutations within the gene region or its regulatory elements, leading to perturbation (topological changes) in the
network [1-7]. This can ultimately impair normal cell physiology and cause disease [8-11]. For example, cancer
driver mutations [12-19] on a transcription factor can alter its interactions with many of the target genes that
are important in cell proliferation (Fig. 1A). A key tumor suppressor gene can be bound by different sets of
transcription factors between cancer and normal cells, which leads to different roles [6,20-23] (Fig. 1B). Recent
studies stress the importance of identifying the perturbed genes that create large topological changes in the gene
network between disease and normal tissues as a way of discovering disease mechanisms and drug

targets [8,9,24-27]. However, most existing analysis methods that compare expression datasets between different
conditions (e.g., disease vs. normal tissues) focus on identifying the genes that are differentially expressed [28-30].
For example, a recent review paper on biological network inference [31] emphasized that there is a lack of
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methods that focus on inferring the differential network between different conditions (e.g., distinct species, and
disease conditions).

Several recent studies compare gene networks inferred between conditions based on expression
datasets [1,32-37]. They fall into three categories: 1) Network construction based on prior knowledge: West et al.
(2012) computes the local network entropy, based on the protein interaction network from prior knowledge and
expression datasets from cancer and normal tissues [1]. 2) Pairwise correlation-based networks: Guan et al.
(2013) [35] proposed the local network similarity (LNS) method that compares the pairwise correlation matrices
of all genes between two conditions by using Pearson’s correlation. Various other authors compare pairwise
correlation coefficients for all gene pairs between conditions with different methods, such as t-tests [32,33,36]. 3)
Learning a condition-specific conditional dependency network and comparing between conditions: Gill et al.
(2010) proposed a method, called PLSNet, that fits a partial least squares model to each gene, computes a
connectivity scores between genes, and then calculates the L; distance between score vectors to estimate network
perturbation [34]. Zhang et al. (2009) proposed a differential dependency network (DDN) method that uses lasso
regression to construct networks, followed by permutation tests [37]. There have been approaches to identify
dysregulated genes in cancer by utilizing multiple types of molecular profiles, not based on network perturbation
across disease states estimated based on expression data. Successful examples use a linear model to infer each
gene expression model based on copy number variation, DNA methylation, ChIP-seq data, miRNAs or mRNA
levels of transcription factors [38—40]. The advantages of the aforementioned methods that take only expression
datasets as input to identify perturbed genes is in its applicability to data with many samples or to diseases for
which only expression data are available. In this paper, we focus on identifying perturbed genes purely based on
gene expression datasets representing distinct states, and compare our method with existing methods such as
LNS, D-score and PLSNet.

We present a new computational method, called DISCERN (DIfferential SparsE Regulatory Network), to
identify perturbed genes, i.e. the genes with differential connectivity between the condition specific networks (e.g.,
disease versus normal). DISCERN takes two expression datasets, each from a distinct condition, as input - where
it computes a novel perturbation score for each gene. The perturbation score captures how likely a given gene is
to have a distinct set of regulators between conditions (Fig. 1A). The DISCERN method contains specific
features that provide advantages over existing approaches: 1) DISCERN can distinguish direct associations
among genes from indirect associations more accurately than marginal association methods such as LNS; 2)
DISCERN uses a penalized regression-based modeling strategy that allows efficient inference of genome-wide
gene regulatory networks; and 3) DISCERN uses a new likelihood-based score that is more robust to the
expected inaccuracies in local network structure estimation. We elaborate on these three advantages below:

First, DISCERN infers gene networks based on conditional dependencies among genes - a key type of
probabilistic relationship among genes that is fundamentally distinct from correlation. If two genes are
conditionally dependent, then by definition, their expression levels are still correlated even after accounting for
(e.g., regressing out) the expression levels of all other genes. Thus, conditional dependence relationship is less
likely to reflect transitive effects than mutual correlation, and provides stronger evidence that those genes are
functionally related. These functional relationships could be regulatory, physical, or other molecular functionality
that causes two genes expression to be tightly coupled. As a motivating example, assume that the expression
levels of genes ‘3" and ‘5’ are regulated by gene ‘1’ in a simple 7-gene network (Fig. 1A). This implies that the
expression level of gene ‘1’ contains sufficient information to know the expression levels of genes ‘3’ and ‘5’. In
other words, genes ‘3’ and ‘5’ are conditionally independent from each other and from the rest of the network
given gene ‘1°.

Second, DISCERN uses an efficient neighborhood selection strategy based on a penalized regression to afford
inference of genome-wide networks. Penalized regression is a well established technique to identify conditional
dependencies [41]. Inferring the conditional dependence relationships from high-dimensional expression data (i.e.,
where the number of genes is much greater than the number of samples) is a challenging statistical problem, due
to a very large number of possible network structures among tens of thousands of genes. Unlike pairwise
correlation, the conditional dependence between ‘1’ and ‘2’ cannot be measured based on just the expression
levels of these two genes. One must consider a number of possible networks among all genes and find the one that
best explains the expression data. This involves both computational and statistical challenges. To make this
process feasible, DISCERN uses a sparse regression model for each gene to select neighbors in the
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network [41,42]. The inference of the genome-wide network with a conditional dependence method is a key
distinguishing feature of the DISCERN method.

Finally, one of the most novel features of DISCERN is a network perturbation score that avoids
overestimation of the degree of network perturbation due to dense correlation among many genes. Revisiting the
7-gene network (Fig. 1A), assume that genes ‘5’ and ‘7’ are highly correlated to each other, in which case a
penalized regression that imposes a sparsity prior, such as the lasso method, may arbitrarily select one of them.
This can result in a false positive edge between genes ‘1’ and ‘7’ instead of ‘1’ and ‘5’. This may lead to
overestimation of the perturbation of gene ‘1’ (Fig. 1A). Our network perturbation score overcomes this
limitation by measuring the network differences between conditions based on the likelihood when the estimated
networks are swapped between conditions - not based on the differences in topologies of the estimated networks.
We demonstrate the effectiveness of this feature by comparing with methods based on the topology differences of
the estimated networks.

We evaluate DISCERN on both synthetic and gene expression data from three human cancers, acute myeloid
leukemia (AML), breast cancer (BRC), and lung cancer (LUAD). Integrative analysis using DISCERN on
epigenomic data from the Encyclopedia of DNA Elements (ENCODE) project leads to hypotheses on the
mechanisms underlying network perturbation (Fig. 1C). The resulting DISCERN score for each gene in AML,
BRC and LUAD, the implementation of DISCERN, and the data used in the study are freely available on our
website http://discern-leelab.cs.washington.edu/.

Results

Method overview

Here, we describe the DISCERN method, referring to the Methods for a full description. We postulate that a
gene can be perturbed in a network largely in two ways: A gene can change how it influences other genes

(Fig. 1A), for example transcription factor mutations affecting cell proliferation pathways and possibly causing
cancer [12-19]. A gene can change the way it is influenced by other genes, a common example being when a
mutated (genetically or epigenetically) gene acquires a new set of regulators, which occurs frequently in
development and cancer [6,20-23] (Fig. 1B). Identifying the genes that are responsible for large topological
changes in gene networks when perturbed could be crucial for understanding disease mechanisms and identifying
key drug targets [8,9,24-27]. However, most current methods for identifying these genes rely on differential
expression [28-30], rather than genes being differently connected (rewired) to other genes in the gene expression
network (Fig. 1A).

We model all genes’ expression values using sparse linear models (lasso regressions): let y; ) he expressmn
levels of gene 4 in an individual with state s, cancer (s = ¢) or normal (s = n), modeled as: yZ ~ Z w(s S).
Here, x1, ...z, denote candidate regulators, a set of genes known to regulate other genes, including transcrlptlon
factors, chromatin modifiers or regulators, and signal transduction genes, which were used in previous work on
network reconstruction approaches [43-46] (S1 Table). Linear modeling allows us to capture conditional
dependencies efficiently from genome-wide expression data containing tens of thousands genes. Naturally, a zero
weight w;, indicates that a regulator r does not affect the expression of the target gene i. Sparsity-inducing
regularization helps to select a subset of candidate regulators, which is a more biologically plausible model than
having all regulators, and makes the problem well-posed in our high-dimensional setting (i.e., number of genes >
number of samples).

To determine the regulators for any given gene, we use a lasso penalized regression model [47] with the
optimization problem for each lasso regression defined as

P

argminw<s) W Z (yl(;) Z w(s) (s)> +A> |w |, where y( s corresponds to the expression level of the

i1 Wiy j_ r—1
h gene in the j** patient in the s** state, and x(rj) similarly corresponds to the expression level of the "

regulator in the j** patient in the s state. The second term, the L; penalty function, will zero out many
irrelevant regulators for a given gene, because it is known to induce sparsity in solution [47]. We normalize the
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Figure 1. (A) A simple hypothetical example that represents the perturbation of the network of 7 genes between
disease and normal tissues. One possible cause of network perturbation is a cancer driver mutation on gene ‘1’
that alters the interactions with genes ‘3’, ‘4’, ‘5’ and ‘6’. (B) One possible cause of network perturbation. Gene
‘1’ is regulated by different sets of genes between cancer and normal conditions. (C) The overview of our
approach. DISCERN takes two expression datasets as input: an expression dataset from patients with a disease
of interest and another expression dataset from normal tissues (top). DISCERN computes the score for each gene
that estimates the difference in connection with other genes between disease and normal conditions (middle). We
perform various post-analyses to evaluate the DISCERN method by comparing with alternative methods, based
on the importance of the high-scoring genes in the disease through the survival analysis and on how well the
identified perturbed genes explain the observed epigenomic activity data accurately (bottom).

expression levels of each gene and each regulator to be mean zero and unit standard deviation, a technique called
standardization, which is a standard practice before applying a penalized regression method [47-50]. The
difference in the weight vector between conditions, wgn) and wgc), could indicate distinct connectivity of gene 4
with p regulators between the conditions. However, simply computing the difference of the weight vectors is
unlikely to be successful, due to the correlation among regulators. The lasso, or other sparsity-inducing regression
methods, can arbitrarily choose different regulators between cancer and normal. Examining the difference in the
weight vectors between conditions would therefore lead to overestimation of network perturbation.

Instead, DISCERN adopts a novel network perturbation score that measures how well each weight vector
learned in one condition explains the data in a different condition. This increases the robustness of the score to

correlation among regulators, as demonstrated in the next section. We call this score the DISCERN score,
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number of samples in the data from condition s. The numerator measures the error of predicting gene i’s
expression levels in cancer (normal) based on the weights learned in normal (cancer). If gene i has different sets
of regulators between cancer and normal, it is likely to have a high DISCERN score. The denominator plays an
important role as a normalization factor, which is demonstrated by comparing with an alternative score, namely
the D score (Fig. 2A), that uses only the numerator of the DISCERN score. We also compare with existing
methods, such as LNS [35] and PLSNet [34], that compare the weight vectors between cancer and normal models
where we demonstrate the advantages of the likelihood-based model that DISCERN uses.

Comparison with previous approaches on synthetically generated data

In order to systematically compare DISCERN with alternative methods in a controlled setting, we performed
validation experiments on 100 pairs of synthetically generated datasets representing two distinct conditions. Each
pair of datasets contains 100 variables drawn from the multivariate normal distribution with zero mean and
covariance matrices 37 and 3. We divided 100 variables into the following three categories: 1) variables that
have different sets of edge weights with other variables across two conditions, 2) variables that have exactly the
same sets of edge weights with each other across the conditions, and 3) variables not connected with any other
variables in the categories 2) and 3) in both conditions. For example, in Fig. 1A, ‘1’ is in category 1). ‘2’, ‘4’|
‘6’, and ‘7’ are in category 2), and ‘3’ and ‘5’ is in category 3). We describe how we generated the network edge
weights (i.e., elements of Zfl and 251) among the 100 variables in more detail in Methods.

We compared DISCERN with 4 alternative methods to identify perturbed genes: LNS [35], D-score [36],
PLSNet [34], and D° that uses only the numerator of the DISCERN score. Here, we do not compare with the
methods to identify differentially expressed genes, such as ANOVA, because the synthetic data were generated
from a zero mean Gaussian distribution. We note that the PLSNet method uses empirical p-values as the
network perturbation scores, where the empirical p-value for each gene is estimated from permutation tests that
generate the null distribution of the gene’s score [34]. All the other methods, such as DISCERN, LNS, and
D-score, do not require permutation tests (see Methods for details). To show that DISCERN outperforms
existing methods and those that use the empirical p-values obtained through permutation tests as the network
perturbation scores, we developed the following methods for comparison: LNS (D-score, or D°) followed by
permutation tests to compute the empirical p-values, called pLNS, pD-score, and pD°, respectively.

The averaged receiver operating characteristic (ROC) curves across 100 pairs of datasets for these methods
(Fig. 2A) show that DISCERN significantly outperforms all the other 7 methods — 3 existing methods (LNS,
D-score, and PLSNet), and 4 methods we created for comparison (D°, pD®, pLNS, and pD-score). Except
DISCERN, PLSNet performs the best among all existing methods. However, its run time grows too quickly as
the number of variables increases, which makes it two to three orders of magnitude slower than DISCERN when
run on larger data (Fig. 2B). PLSNet was too slow to run on genome-scale data and therefore we did not use it
for the subsequent experiments on genome-wide gene expression data from cancer patients.

We note that DISCERN does not need permutation tests to generate the null distribution of the score for
each gene. All other methods improve when the empirical p-values from permutation tests are used, which
indicates that the gene-level bias on the magnitude of the raw scores hurts their performance to identify
perturbed genes. DISCERN significantly outperforms D that uses only the numerator of the DISCERN score,
which indicates that the denominator of the DISCERN score plays a role to normalize the score such that the
scores of different genes can be comparable. Computing the empirical p-value for each gene based on the
gene-specific null distribution obtained through permutation tests is not feasible on genome-wide data. To obtain
a p-value of 0.05 after Bonferroni correction, we need at least (1/0.05 X p) permutation tests per gene, where p is
the total number of genes, and (1/0.05 x p?) permutation tests in total. When p = 20,000, this number is
(4 x 10?) permutation tests, which is not feasible even when using multiple processors at a reasonable cost. This
is demonstrated in Fig. 2B that shows the run time of PLSNet, a permutation test-based method, when applied
to data containing a varying number of genes (p).

Comparison of methods on gene expression datasets

We used genome-wide expression datasets consisting of 3 acute myeloid leukemia (AML) datasets, 3 breast
carcinoma (BRC) datasets and 1 lung adenocarcinoma (LUAD) dataset (Table 1). Details on the data
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Figure 2. (A) Average receiver operating characteristic (ROC) curves from synthetic data experiments. We
compare DISCERN with 7 alternative methods: 3 existing methods — LNS [35], D-score [36], and PLSNet [34] —
and 4 methods we developed for comparison — pLNS, pD-score, D° and pD°. (B) Comparison of the runtime
(hours) between PLSNet and DISCERN over varying numbers of variables. The triangles mean the measured run
times over specific values of p, the number of variables, and lines connect these measured run times. PLSNet uses
the empirical p-values from permutation tests as scores, and DISCERN does not. We show that DISCERN is two
to three orders of magnitude faster than PLSNet.

processing are provided in Methods. To evaluate the performance of the DISCERN method, we compared with
existing methods that scale to over tens of thousands of genes: LNS [35] and D-score [36] that aim to estimate
network perturbation, and ANOVA that measures differential expression levels between cancer and normal
samples.

We first computed the DISCERN, LNS, D-score, and ANOVA scores in the 3 cancers based on the following
datasets that contain normal samples: AML1, LUADI and BRC1. Then, we used the rest of the datasets to
evaluate the performance of each method at identifying genes previously known to be important in the disease,
for example, the genes whose expression levels are significantly associated with survival time in cancer. The value
of the sparsity tuning parameter A was chosen via cross-validation tests, a standard statistical technical to
determine the value of A [47].

To remove any potential concern of the effect of standardization on genes with very low expression level, we
first show that genes with low mean expression do not tend to have high enough DISCERN score to be
considered in our evaluation in the next sections (S1 Fig). The Pearson’s correlation between the mean
expression before standardization and the DISCERN score ranges from 0.08 and 0.43. Positive correlation is
induced because genes with low mean expression tend to have lower DISCERN scores, indicating that there is
probably not an issue in terms of overly selecting genes whose expression are likely essentially noise. To further
reduce the potential concern of genes with low expression in RNA-seq data (LUAD), we applied the voom
normalization method that is specifically designed to adjust for the poor estimate of variance in count data,
especially for genes with low counts [51].

We assessed the significance of the DISCERN scores through a conservative permutation testing procedure,
where we combined cancer and normal samples, and permuted the cancer/normal labels among all samples (more
details in Methods). Unlike the gene-based permutation test described in the previous section, here, we generated
a single null distribution for all genes, which requires a significantly less number of permutation tests (one million
in this experiment). After applying false discovery rate (FDR) correction on these p-values, there are 1,351 genes
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(AML), 2,137 genes (BRC), and 3,836 (LUAD) genes whose FDR corrected p-values are less than 0.05. We
consider these genes to be significantly perturbed genes (S2 Table). The difference in these numbers of
significant perturbed genes identified by DISCERN is consistent with a prior study that showed that lung cancer
has a larger number of non-synonymous mutations per tumor than breast cancer, which has a larger number than

AML [52].

Table 1. Gene expression datasets used in this paper.

Reference # Genes | # of Tumors | # of Normal | Survival? Platform Accession
AML1 MILE, [53] 16853 541 73 No Affy U13342.0 | GSE13159
AML2 || Gentles, [54] 16853 515 0 Yes Affy U1334+2.0 | GSE12417,GSE14468,GSE]
AML3 Metzeler 11697 152 0 Yes Affy U133A GSE12417
BRC1 TCGA 10809 529 61 Yes Agilent G4502A | Firehose 2013042100
BRC2 Metabric 10809 1981 0 Yes INlumina HTv3 | Synapse: syn1688369
BRC3 Oslo 10809 184 0 Yes Mumina HTv3 | Synapse: syn1688370
LUAD1 TCGA 17022 504 57 Yes Illumina HiSeq | Firehose 2015110100

Top scoring DISCERN genes in AML reveal known cancer drivers in AML

The 1,351 genes that were predicted to be significantly perturbed between AML samples and normal
non-leukemic bone marrow samples were enriched for genes causally implicated previously in AML pathogenesis
(S2 Table). We noted deregulation of a number of genes that we and others have previously identified as being
aberrantly activated in leukemic stem cells including BAALC, GUCY1A3, RBPMS, and MSI2 [55-57]. This is
consistent with over-production of immature stem-cell like cells in AML, which is a major driver of poor
prognosis in the disease. Prominent among high-scoring DISCERN genes were many HOX family members,
which play key roles in hematopoietic differentiation and in the pathogenesis of AML [58]. HOX genes are
frequently deregulated by over-expression in AML, often through translocations that result in gene fusions. The
highest ranked gene in AML by DISCERN is HOXB3 which is highly expressed in multipotent hematopoietic
progenitor cells for example. Thirteen (out of 39 known) HOX genes are in the 1,351 significantly perturbed
genes (p-value: 5.99 x 107°).

When compared to known gene sets from the Molecular Signature Database (MSigDB) [59] in an unbiased
way, the top hit was for a set of genes (VERHAAK_AML_WITH_NPM1_MUTATED_DN; p-value: 2 x 10~86)
that are down-regulated by NPM1 (nuclephosmin 1) mutation in AML (see Supporting Information). NPM1 is
one of three markers used in AML clinical assessment; the others are FLT3 and CEBPA that are significantly
perturbed genes identified by DISCERN as well. Mutation leads to aberrant cytoplasmic location of itself and its
interaction partners, leading to changes in downstream transcriptional programs that are being captured by
DISCERN. Also highly significant were genes highly expressed in hematopoietic stem cells [60]
(JAATINEN_HEMATOPOIETIC_STEM_CELL_UP; p-value: 6 x 10~7). Among these were key regulators of
hematopoietic system development such as KIT, HOXA3, HOXA9, HOXB3 (with the latter homeobox genes also
implicated in AML etiology); as well as FLT3 which plays a major role in AML disease biology, with its mutation
and constitutive activation conferring significantly worse outcomes for patients [61]. Comparison to Gene
Ontology (GO) categories identified dysregulation of genes involved in hemostasis and blood coagulation, a key
clinical presentations of AML. Furthermore, GTPase activity/binding and SH3/SH2 adaptor activity were
enriched among DISCERN genes (see Supporting Information). These are pertinent to AML due to previously
noted high expression in AML leukemic stem cells of GUCY1A3 and SH3BP2, both identified as perturbed genes
by DISCERN [55]. However, their function has not been examined in detail, suggesting that they are potential
targets for further investigation as to their role in AML disease mechanisms. Several other highly significant
enrichments were for AML subtypes that are driven by specific translocations, including MLL (mixed lineage
leukemia) translocation with various partners, as well as t(8;21) translocations. The latter is of particular interest,
since it is primarily a pediatric AML, whereas our network analysis uses purely adult AML samples — indicating
the potential to uncover putative mechanisms that generalize beyond the context of the immediate disease type.


https://doi.org/10.1101/040394

bioRxiv preprint doi: https://doi.org/10.1101/040394; this version posted February 21, 2016. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Top scoring DISCERN genes in lung cancer reveal biological processes known to
be important in lung cancer

There are 3,836 significantly perturbed genes identified by DISCERN in lung cancer (LUAD) (S2 Table). The
3rd and 4th highest ranked genes in LUAD are ICOS (inducible costimulator), YWHAZ (14-3-3-zeta). Both have
described roles in disease initiation or progression in lung cancer. Polymorphisms in ICOS have been associated
with pre-disposition to non-small cell lung cancer [62]; while over-expression of YWHAZ is known to enhance
proliferation and migration of lung cancer cells through induction of epithelial-mesenchymal transitions via
beta-catenin signaling [63]. GIMAP5 (GTPase IMAP Family Member 5), another high scoring LUAD gene
(11th), is consistently repressed in paired analyses of tumor vs normal lung tissue from the same patient, and
encodes an anti-apoptotic protein [64]. Down-regulation of GIMAPS in lung tumors therefore potentially
facilitates their evasion of programmed cell death, one of the hallmarks of cancer.

Several of the GO biological categories enriched in 3,836 high-scoring DISCERN genes in LUAD
(FDR-corrected p-value < 0.05) reflected metabolic and proliferative processes that are commonly de-regulated in
solid tumors such as lung adenocarcinoma. Among these were cellular response to stress, mitotic cell cycle,
amino acid metabolism, and apoptosis (see Supporting Information). In fact the top-ranked gene was MCMT7
(minichromosome maintenance protein 7), an ATP-dependent DNA helicase involved in DNA replication which
has been implicated in carcinogenesis previously due to its function as a binding partner of PRMT6 [65].
Moreover, it was specifically identified as being a potential therapeutic target due to its over-expression in solid
tumors relative to normal tissues. The high ranking of genes associated with apoptosis is consistent with the fact
that there is often high rate of tumor cell death. Although the highly-ranked CARDG (caspase recruitment
domain family member 6) functions in apoptotic processes, it is also known as a regulator of downstream NF-x/3
signaling. Indeed, consistent with this, we found enrichment for NF-£0 signaling pathway genes among high
DISCERN-scoring genes in LUAD including NFKBIB (NF-x4 inhibitor ) which inhibits the NF-x3 complex by
“trapping” it in the cytoplasm, preventing nuclear activation of its downstream targets. Although the role of
NFKBIB in lung cancer has not been studied extensively, its related family member NFKBIA is known to be a
silencer in non-small-cell lung cancer patients with no smoking history, suggesting that it could play some role in
LUAD that arises through inherent genetic influences, or environmental insults other than smoking [66]. Levels
of -catenin have been known for some time to influence progression and poor prognosis in LUAD, potentially
through its role in differentiation and metastasis from primary tumor sites [67]. We found that components of
B-catenin degradation pathways - including most notably CTNNBIP1 (-catenin interacting protein 1) - ranked
among the most significant DISCERN genes in our LUAD analysis.

When comparing to other sets of genes in MSigDB, we also found targets of transcription factors including
MYC, which is often de-regulated in solid tumors (either by mutation or copy number variation), and targets of
the polycomb repressive complex gene EZH2. The developmental regulator EZH2 functions through regulation of
DNA methylation [68], and has been implicated in B-cell lymphomas through somatic mutations [69], promotion
of transformation in breast cancer [70], as well as progression in prostate cancer [71]. Interestingly, the most
highly dys-regulated gene set identified by comparison to GO categories in LUAD was one related to NGF (nerve
growth factor)-TrkA signaling. There are a few reports of the relevance of this axis to cancers including
neuroblastoma, ovarian cancer, and a possible role in promoting metastasis in breast cancer. However, its striking
appearance as the most significant hit for high-ranking DISCERN genes suggests that it merits study in LUAD.

Top scoring DISCERN genes in breast cancer reveal biological processes known to
be important in breast cancer

Here, we did the functional enrichment analysis with 2,137 genes identified by DISCERN to be significantly
perturbed in breast cancer (BRC) (S2 Table). BRC showed perturbation of distinct genes and sets of genes in
comparison to LUAD, as well as similarities. Again, these included GO biological processes that one would
generically expect to be over-activated in a solid tumor, such as translation intiation, cell cycle, proliferation, and
general cellular metabolic processes. As with LUAD, targets of MYC were enriched in high-scoring DISCERN
genes. Another high-scoring group in BRC was comprised of genes that are highly correlated with each other, but
with this relationship de-regulated by BRCA1 mutation [72]. Additional significant overlaps were identified with
luminal A, luminal B, HER2-enriched, and basal-like breast cancer subtype-specific genes that are associated
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with clinical outcomes [73]; and with genes associated with ER-positive breast cancer [74]. The 3rd highest
ranked DISCERN gene was BRF2 (TFIIB-related factor 2). BRF2 is a known oncogene in both breast cancer
and lung squamous cell carcinoma, and a core RNA polymerase III transcription factor that senses and reacts to
cellular oxidative stress [75]. A GO category associated with NGF (nerve growth factor)-TrkA signaling shows
the highest overlap with DISCERN genes in BRC (p-value: 3.16 x 107%%). NGF-TrkA signaling is upstream of
the canonical phosphatidylinositol 3-kinase (PI3K)-AKT and RAS—mitogen-activated protein kinase (MAPK)
pathways, both of which impinge on cell survival and differentiation. In the context of breast cancer,
over-expression of TrkA has been connected to promoting growth and metastasis, as an autocrine factor,
presumably due to its influence on PI3K-AKT and RAS/MAPK [76]. TrkA is reportedly over-expressed in breast
carcinoma relative to normal breast tissue in a majority of cases [77], supporting the high-ranking of genes in this
pathway by DISCERN. Taken together, these results indicate that DISCERN highly ranks genes that are
connected to known phenotypic and survival-associated processes in breast cancer. However, intriguingly the top
DISCERN gene was CLNS1A (chloride nucleotide-sensitive channel 1A). This chloride channel gene has not, to
our knowledge, been implicated in pathogenesis in any cancer, although it is a member of the BRCA1-related
correlation network noted above. In fact there appear to have been few studies of its function although Entrez
gene notes that it “performs diverse functions”.

DISCERN scores reveal survival-associated genes across multiple cancer types

In this section, we focus on the quantitative assessment of DISCERN and the comparison with LNS and D-score
in terms of how much the identified genes are enriched for genes implicated to be important in the disease.
Specifically, genes whose expression levels are significantly associated positively or negatively with survival time
are often considered to be associated with tumor aggression. Identifying such genes has been considered as an
important problem by a number of authors, where breast cancer was one of the first cancers to show promise in
terms of identifying clinically relevant biomarkers [78,79]. Here, we evaluated DISCERN based on how well it
reveals survival-associated genes identified in an available independent dataset.

We chose the datasets with measures of patient prognosis: AML2, BRC2, and LUAD1. AML2 and BRC2
were not used for computing any scores (DISCERN, LNS, D-score, and ANOVA). For each of these datasets we
computed the survival p-values based on the Cox proportional hazards model [80] measuring the association
between each gene’s expression level and survival time. We defined survival-associated genes as the genes whose
expression levels are associated with survival time based on the Cox proportional hazards model (p-value < 0.01)
(S3 Table).

We considered the genes whose DISCERN scores are significantly high at FDR corrected p-value < 0.05 in
each cancer: 1,351 genes (AML), 2,137 genes (BRC), and 3,836 genes (LUAD). We first computed the Fisher’s
exact test p-values to measure the statistical significance of the overlap between these significantly perturbed
genes and survival-associated genes in each of three cancers. For each cancer, we compared with existing methods
to detect network perturbation — LNS and D-score — when exactly the same number of top-scoring genes were
considered (Fig. 3A-C). Since these numbers of genes were chosen specifically for DISCERN, there is a chance
that LNS and D-score would show a higher enrichment for survival-associated genes if different numbers of
top-scoring genes were considered. As discussed in the previous section, performing the gene-based permutation
tests to estimate the confidence of each gene’s score in genome-wide data is not feasible. Instead, we compared
the Fisher’s exact test p-values of the three methods across a range of numbers of top-scoring genes from 0 to N
Fig. 3D-F. It is pretty clear that neither LNS nor D-score would be better than DISCERN in revealing
survival-associated genes, even when different numbers of top-scoring genes were considered across all cancer
types.

ANOVA is a well-established method to identify differentially expressed genes across distinct conditions;
DISCERN LNS, and D-score are methods to identify differentially connected genes across conditions. Therefore,
the purpose of the comparison with ANOVA is not to evaluate DISCERN in identifying survival-associated genes
as perturbed genes. The purpose is to compare between differentially expressed genes (that are commonly
considered important) and perturbed genes estimated by the three methods (DISCERN, LNS, and D-score), in
terms of the enrichment for genes with potential importance to the disease. For ANOVA, in Fig. 3A-C, we
considered 8,993 genes (AML), 7,922 genes (BRC) and 13,344 genes (LUAD) that show significant differential
expression between cancer and normal samples at FDR corrected p-value < 0.05. The perturbed genes identified
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by DISCERN are more associated with survival than differentially expressed genes captured by ANOVA in AML
and LUAD (Fig. 3).
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Figure 3. The significance of the enrichment for survival-associated genes in the identified perturbed genes. We
compared DISCERN with LNS and D-score based on the Fisher’s exact test p-value that measures the
significance of the overlap between N top-scoring genes and survival-associated genes in each of three cancers.
(A)-(C) We plotted — log;q(p-value) from the Fisher’s exact test when N top-scoring genes were considered by
each method in 3 datasets: (A) AML (N = 1,351), (B) BRC (N = 2,137), and (C) LUAD (N = 3,836). For
ANOVA, we considered 8,993 genes (AML), 7,922 genes (BRC) and 13,344 genes (LUAD) that show significant
differential expression at FDR corrected p-value < 0.05. (D)-(F) We consider up to 1,500 (AML), 2,500 (BRC),
and 4,000 (LUAD) top-scoring genes in each method, to show that DISCERN is better than LNS and D-score in
a range of N value. The red-colored dotted line indicates 1,351 genes (AML), 2,137 genes (BRC), and 3,836
genes (LUAD) that are identified to be significantly perturbed by DISCERN (FDR < 0.01). We compare among
the 4 methods consisting of 3 methods to identify network perturbed genes (solid lines) and ANOVA for
identifying differentially expressed genes (dotted line) in 3 cancer types.

In addition to the comparison with other methods — LNS and D-score — we also compare with frequently
mutated genes and genes annotated to be involved in the respective cancer. We considered the following three
gene sets: 1) a gene set constructed based on the gene-disease annotation database, Malacards [81], 2) genes
known to have cancer-causing mutations based on the Cancer Gene Census [82], and 3) genes predicted to have
driver mutations identified by MutSig [5] applied to The Cancer Genome Atlas (TCGA) data for the respective
cancer type. The Malacards (gene set #1) and TCGA driver gene sets (#3) are generated for each cancer type —
AML, breast cancer, or lung cancer. For example, for Malacards, we used the genes that are annotated to be
involved in AML in Malacards to compare it with DISCERN genes identified in AML. Similarly, for the TCGA
driver gene sets (#3), we used the AML TCGA data to identify the frequently mutated genes that are likely
driver genes, and compared with high DISCERN-scoring genes in AML. We used the breast cancer TCGA data
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for BRC, and lung cancer TCGA data for LUAD. The Cancer Gene Census (CGC) gene set is a rigorously defined
set of genes with multiple sources of evidence that its genes are cancer drivers in a single or multiple cancers.

For each cancer type, we compared these three sets of genes with the perturbed genes identified by DISCERN
- 1,351 (AML), 2,137 (BRC), and 3,836 (LUAD) genes with high DISCERN scores — on the basis of the
significance of the enrichment for survival-associated genes. S2 Fig shows that the perturbed genes identified by
DISCERN are more significantly enriched for survival-associated genes.

Prognostic model based on high DISCERN-scoring genes

In this section, we evaluated the DISCERN score based on how well it identifies genes that are predictive of
patient prognosis. Here, we test the possibility of using the network perturbed genes identified by DISCERN as
prognostic markers. For the cancer types with at least three data sets (AML and BRC; see Table 1), we
construct a survival time prediction model using the genes with significant DISCERN scores (AML: 1,351 genes,
BRC: 2,137 genes) identified based on one data set (Data # 1: AML1 and BRC1) as described in the previous
subsection. Then, we trained the prediction model using one of the other datasets (Data #2: AML2 and BRC2)
not used for the computation of the DISCERN score. Finally, we tested the prediction accuracy on the third data
set (Data #3: AML3 and BRC3).

We controlled for clinical covariates whose data are available — age in case of AML and age, grade and
subtype in case of BRC — by adding them as unpenalized covariates into our elastic net Cox regression model.
We trained the Cox regression model using Data #2 and tested the survival prediction model on Data #3. Since
we evaluated the survival prediction in separate data (AML3 and BRC3) that were not used in training the
survival prediction model, using more predictors, e.g., by adding clinical covariates, does not necessarily improve
the prediction performance. Adding more predictors often leads to a higher chance of overfitting. Our survival
prediction model based on the high DISCERN-scoring genes works at least as well as models based on the genes
contained in the previously established prognosis markers, such as Leukemic Stem Cell score (LSC) [54] for AML
and MammaPrint signature (with ~70 genes) [83] for BRC, as shown in Fig. 4. The c-index in AML is 0.669
with standard error (se) being 0.031 (Fig. 4B); in BRC, the c-index is 0.668 (se: 0.027) (Fig. 4D). The
DISCERN-based expression marker with clinical covariates makes better predictions than when clinical covariates
alone are used.

DISCERN explains epigenomic activity patterns in cancer and normal cell types
more accurately than alternative methods

One of the possible mechanisms underlying network perturbation identified in gene expression datasets
representing different conditions (e.g., cancer and normal) is the following: A transcription factor (TF) ‘X’ binds
to a gene “Y’s promoter or its enhancer region in cancer but not in normal (or vice versa). Then, ‘X’ or its
co-regulator could be an expression regulator for Y’ in cancer but not in normal (or vice versa), and Y would be
identified as a perturbed gene (i.e., a high DISCERN-scoring genes). It is possible that ‘X”s binding information
is not available and ‘X”s protein level is not reflected in its mRNA expression level; thus we cannot expect the
DISCERN score of a gene inferred from expression data to be perfectly correlated with whether the gene has a
differential biding of a certain TF, inferred from ChIP-seq or DNase-seq data. However, the degrees of correlation
between the network perturbation score (DISCERN, LNS or D-score) of a gene and whether a TF differentially
bind to the gene can be a way to evaluate the network perturbation scoring methods.

To determine whether or how much our statistical estimates of network perturbation reflect perturbation of
the underlying TF regulatory network, we queried epigenomic data from ENCODE project. Two of the
ENCODE cell lines — NB4 (an AML subtype [84]) and CD34+ (mobilized CD34 positive hematopoietic
progenitor cells) — are closest to AML and normal conditions, and the DNase-seq data from these cell lines are
available. We used the DNase-seq data from NB4 and the position weight matrices (PWMs) of 57 TFs available
in the JASPAR database [85] to find the locations of the PWM motifs that are on the hypersensitive regions.
This is a widely used approach to estimate active binding motifs using DNase-seq data, when ChIP-seq data are
not available. We identified the locations of these PWM motifs on the hg38 assembly by using the FIMO [86]
method (p-value < 107°). We then intersected these motif locations with hypersensitive regions identified by the
DNase-seq data for each TF. We repeated for the other cell line CD34+.
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Figure 4. The Kaplan-Meier plot showing differences in the survival rate measured in AML3 (A and B) and
BRC3 (C and D) between the two patient groups with equal size, created based on the predicted survival time
from each prediction model. We consider the model trained based on the top N (=1,351 for AML; =2,137 for
BRC) DISCERN-scoring genes and clinical covariates (blue), and the model trained based on only clinical
covariates (red) (panels A and C for AML3 and BRC3, respectively). (B) The panel shows the comparison with
the model trained using genes comprising 22 genes previously known prognostic marker, called LSC [54], along
with the clinical covariates (red). (D) The panel shows the comparison with the model trained using 67 genes
from the MammaPrint prognostic marker (70 genes) [83] along with the clinical covariates. We used 67 genes out
of 70 genes that are present in our BRC expression datasets. P-values shown in each plot are based on the
logrank test (red).

For each TF, we measured how well the DISCERN score of a gene can predict the differential binding of the
TF in active enhancer regions (marked by H3K27Ac) within 15kbs of the transcription start site (TSS) of the
gene (Fig. 5A-C) and 5kb of the gene between blood cancer and normal cell lines (NB4 and CD34+) (Fig. S3
FigA-C). We show that the DISCERN score can reflect differential binding of most of the TFs better than
existing methods to identify network perturbation (LNS and D-score) and a method to identify differentially
expressed genes (ANOVA). As a way to summarize these results across all 57 TFs, we computed the Pearson’s
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correlation between the score of each gene and the proportion of TFs that differentially bind to that gene out of
all TFs that bind to that gene. Fig. 5D shows that DISCERN detects genes with many TFs differentially bound
between cancer and normal better than the other network perturbation detection methods (LNS and D-score)
and ANOVA.

Considering hypersensitive sites identified by Dnase-seq data as the indication of “general” binding of TF's or
other DNA-associated proteins, we assume that a gene is differentially bound if there is a DNase signal within a
150bp window around its TSS in one condition (cancer or normal), but not in the other condition. We observe
that the DISCERN scores of the genes that are differentially bound are significantly higher than those of the
genes that are not (Fig. 5E). These results suggest that DISCERN identifies possible regulatory mechanisms
underlying network perturbation more accurately than existing network perturbation detection methods (LNS
and D-Score) and a method for identifying differential expression levels (ANOVA).

As a specific example, STAT3 has been shown to differentially regulate the mRNA expression of BATF in
myeloid leukemia but not in normal condition [87]. We found that STAT3 differentially binds to BATF in the
AML cell line but not in the normal cell line based on our differential binding analysis using the DNase-seq/motif
data, as described above (S4 Table). Interestingly, DISCERN identifies BATF as a perturbed gene in AML
(FDR corrected p-value < 0.05). DISCERN also identifies STAT3 as the strongest regulator for BATF in AML
expression data, but STAT3 is not selected as an expression regulator in normal expression data (Supporting
Information). Interestingly, LNS and D-Score detect STAT3 as an expression regulator of BATF in both
conditions, not as a differential expression regulator.

Two of the Tier 1 ENCODE cell lines — K562 (chronic myeloid leukemia cell line) and GM12878 (a
lymphoblastoid cell line) — correspond to blood cancer and normal tissues as well [88]. Tier 1 data contains the
largest number of TFs with ChIP-seq datasets, which allows us to perform this kind of analyses using ChIP-seq
datasets for these TFs. We repeated the same analysis with these cell lines and showed similar results (see S4
Fig and S5 Fig).

Combining DISCERN with ENCODE data improves the enrichment of known
pathways

Additionally, we investigated whether one can use DISCERN as a filtering step to increase the power for a
pathway enrichment analysis. We consider hypersensitive sites identified by DNase-seq data as the indication of
“general” binding of TFs or other DN A-associated proteins, and important regulatory events. As describe above,
we identified differentially regulated genes between AML and normal cell lines (NB4/ CD34+) by identifying
gene that have DNase-seq peaks within 150bp around the T'SS in one condition (cancer or normal), but not in
the other condition. There are 3,394 differentially regulated genes selected based on the DNase-seq data, of which
339 are significant DISCERN genes (Supporting Information). Presumably, these disease specific targets should
be enriched for pathways or categories that will help us understand mechanisms underlying the disease.
Alternatively, some targets may be spurious, especially considering the use of cell lines that are not a perfect
match to healthy and diseased bone marrow samples and experimental noise.

Here we attempt to identify differentially regulated genes between AML and normal samples, by integrating
the information on the DNase-seq data (i.e., differentially bound genes) and significantly perturbed genes
identified by DISCERN based on the expression datasets from AML samples and normal non-leukemic bone
marrow samples. To show that combining these two pieces of information helps us to identify pathways that are
specifically active in one condition not in the other, we compared the significance of the enrichment for Reactome
pathways measured in fold enrichment between 1) 339 differentially bound DISCERN genes (intersection of 3,394
differentially bound genes and high DISCERN-scoring genes), and 2) 3,394 differentially bound genes. S6 Fig
shows that for most of the pathways, using the intersection of differentially bound and perturbed genes increases
the fold enrichment compared to when differentially bound genes were used (Wilcox p-value < 7 x 107°).

Among the pathways, ‘platelet activation signalling and aggregation’ shows significant improvement in fold
enrichment: 1) when differentially bound DISCERN genes were used (f = 2.9 ;FDR g-value = 0.01), compared to
2) when differentially bound genes were used (f = 1.03). It has been shown that the interactions between
platelets and AML cells have considerable effects on metastasis, and the various platelet abnormalities have been
observed in AML and other leukemias [89]. G-alpha signalling-related pathways also show significant boost in
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Figure 5. Kolmogorov-Smirnov test p-value measuring the significance of the difference in score between genes
differentially bound by the corresponding transcription factor (TF) (x-axis) and those not differentially bound by
the corresponding TF. We performed the one-sided test with an alternative hypothesis that differentially bound
genes have higher scores; thus high —log;,(p-value) means that high-scoring genes tend to show differential
binding. The TFs are divided into the 3 sets: (A) TFs that are known to be associated with leukemia, (B) TFs
that are known to be associated with cancer, and (C) TFs that are currently not known to be associated with
cancer or leukemia, based on the gene-disease annotation database Malacards [81]. (D) Comparison of the
p-values from the Pearson’s correlation between the score of each gene and the proportion of differential TFs out
of all TFs bound to the genes. (E) Kolmogorov-Smirnov test (one-sided as above) p-value measuring the
significance of the difference in score between the genes with differential binding purely based on the DNase-seq
data and those not. Here, a differentially bound gene is defined as a gene that has a DNase signal within a 150bp
window around its T'SS in one condition but not in the other condition.

fold enrichment when DISCERN was used as a filtering mechanism for differentially bound genes. ’G signalling
pathway’ shows significant increase in fold enrichment: 1) when differentially bound DISCERN genes were used
(f =2.16 ;FDR g-value = 0.05), compared to 2) when differentially bound genes were used (f = 0.92). 'G12/13
signalling pathway’ shows significant improvement in fold enrichment: 1) when differentially bound DISCERN
genes were used (f = 3.4; g-value < 0.03), compared to 2) when differentially bound genes were used (f = 1.5).
These pathways have been implicated in leukemias [90].

Discussion

We presented a general computational framework for identifying the perturbed genes, i.e., genes whose network
connections with other genes are significantly different across conditions, and tested the identified genes with
statistical and biological benchmarks on multiple human cancers. Our method outperforms existing alternatives,
such as LNS, D-score, and PLSNet, based on synthetic data experiments and through biological validation
performed using seven distinct cancer genome-wide gene expression datasets, gathered on five different platforms
and spanning three different cancer types — AML, breast cancer and lung cancer. We demonstrated that
DISCERN is better than other methods for identifying network-perturbation in terms of identifying genes known

14


https://doi.org/10.1101/040394

bioRxiv preprint doi: https://doi.org/10.1101/040394; this version posted February 21, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

to be or potentially important in cancer, as well as genes that are subject to differential binding of transcription
factor according to the ENCODE DNase-seq data. We also demonstrated a method to use DISCERN scores to
boost signal in the enrichment test of targets of differential regulation constructed using DNase-seq data available
through the ENCODE Project.

Methods

Data Preprocessing

Raw cell intensity files (CEL) for gene expression data in AML1, AML2, and AML3 were retrieved from GEO [91]
and The Cancer Genome Atlas (TCGA). Expression data was then processed using MAS5 normalization with the
Affy Bioconductor package [92], and mapped to Enztrez gene annotations [93] using custom chip definition files
(CDF) [94], and batch-effect corrected using ComBat [95] implemented in package sva from CRAN.

BRC1 was accessed through Broad Firehose pipeline (build 2013042100). We checked whether BRC1
processed by Firehose shows evidence of batch effects. We confirmed that the first three principal components
are not significantly associated with the plate number (which we assumed to be a batch variable), which indicates
no strong evidence of batch effects. BRC2 and BRC3 were accessed through Synapse (syn1688369, syn1688370).
All probes were then filtered and mapped using the illuminaHumanv3.db Bioconductor package [96]. Probes
mapped into the same genes were then collapsed by averaging if the probes being averaged were significantly
correlated (Pearson’s correlation coefficient greater than 0.7).

LUADI1 was accessed through Broad Firehose pipeline (build 2015110100). Genes which had a very weak
signal were filtered out of the LUAD1 data. We then applied the voom normalization method that is specifically
designed to adjust for the poor estimate of variance in count data, especially for genes with low counts [51]. The
voom algorithm adjusts for this variance by estimating precision weights designed to adjust for the increased
variance of observations of genes with low counts. This would stabilize the estimated distribution of RSEM
values in the LUAD data, making it more normally distributed. Noting that LUAD data comes from different
tissue source sites, we have applied batch-effect correction using ComBat.

For all datasets, only probes that map into genes that have Entrez gene names were considered. Table 1
shows the number of samples and genes used in each dataset. For AML1, BRC1, and LUAD1 that were used for
score computationa, we splited each dataset into two matrices, one with only cancerous patients and one with
normal patients. These matrices are normalized to 0-mean, unit-variance gene expression levels for each gene,
before each network perturbation score (DISCERN, LNS, and D-score) was computed, which is a standard
normalization step for accurately measuring the difference in the network connectivity. For methods that
measure the differential expression levels (ANOVA), such normalization was not applied.

Lastly, candidate regulators are identified from a set of 3,545 genes known to be transcription factors,
chromatin modifies, or perform other regulatory activity, which have been used in many studies on learning a
gene network from high-dimensional expression data [43-46] (S1 Table).

DISCERN score

DISCERN uses a likelihood-based scoring function that measures for each gene how much likely the gene is

differently connected with other genes in the inferred network between two conditions (e.g., cancer and normal).

(s)

We model each gene’s expression level based on the sparse linear model. Let y,”” be a standardized expression

levels of gene 4 in an individual with a condition s (cancer or normal) modeled as: y ~ Z w; %,ﬁ , where

x(l ), . .a:ps denote standardized expression levels of candidate regulator genes in a condltlon s. Standardization is

a standard practice of normalizing expression levels of each gene to be mean zero and unit stadard deviation

(s)

before applying penalized regression method [47-50]. To estimate Weight vector w,;’ lasso [47] optimizes the

P
following objective function: argminw<s) W Z (yl(;) Z w( *) (s)> - Z |wl(:)|, where the subscript j in
il . —

Wip j=1

()

the formula iterates over all patients, used as training instances for lasso. Here, y;;" corresponds to the
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(s)
ij
level of the i*" regulator in the j** patient in the s*" state. The second term, the L; penalty function, will zero
out many irrelevant regulators for a given gene, because it is known to induce sparsity in solution [47].

expression level of the i*" gene in the j** patient in the s state and z;:’ similarly corresponds to the expression

After estimating wgs) for each s , the DISCERN score measures how well each weight vector learned on one
condition explains the data in the other condition, by using a novel model selection criteria defined as:

—

per sample -log-likelihood based on w'® on data in the other condition s’

per sample -log-likelihood based on w!® on data in the same condition s

DISCERN,; =

|

N

_ 67’7’1'(6, TL) + 67’7"2'(71,0) (1)

erri(c,c) +erri(n,n)’

(s

p
where err;(s,s') = %Hyfs) - > w;, x$5)||% Here ng is the number of samples in the data from condition s. The
r=1

numerator in Eq (1) measures the error of predicting gene i’s expression levels in cancer (normal) based on the
weights learned in normal (cancer). If gene i has different sets of regulators between cancer and normal, it would
have a high DISCERN score. The denominator plays an important role as a normalization factor. To show that,
we defined an alternative score, namely the D° score that uses only the numerator of the DISCERN score, Eq (1):

DY = erri(c,n) + erri(n,c)
L@ N~ () L) N~
= i~ D wlPeE + -l — D w3 2
¢ r=1 n r=1

The first step of calculating the DISCERN score, and D score is to fit a sparse linear model (such as
lasso [47]) for each gene’s expression level. We used the scikit-learn Python package (version 0.14.1) to calculate
these scores with the values of the sparsity tuning parameters A chosen by using the 5-fold cross-validation tests.

ANOVA score computation

Analysis of Variance (ANOVA) is a standard statistical technique to measure the statistical significance of the
difference in mean between two or more groups of numbers. For each gene, the 1-way ANOVA test produces a
p-value from the F-test, which measures how significantly its expression level is different between conditions (e.g.,
cancer and normal). The ANOVA score was computed as negative logarithm of a p-value, obtained from 1-way
ANOVA test using f_oneway function in scipy.stats Python package.

PLSNet score computation

PLSNet score attempts to measure how likely each gene is differently connected with other genes between
conditions. It was computed using dna R package version 0.2_1 [34]. The network perturbation score for each
gene is computed based on the empirical p-value from 1,000 permutation tests.

LNS score computation

In Guan et al. (2013) [35], the authors defined the local network similarity (LNS) score for gene ¢ that is defined
as correlation of the Fisher’s z-transformed correlation coefficients between expression of gene ¢ and all other
genes between two conditions:

LN S; = corr(arctanh(c;;), arctanh(cy; ), (3)

where cf; represents the correlation coefficient between expression levels of genes ¢ and j in condition s = n for

normal and s = ¢ for cancer.
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D-score score computation

For synthetic data analysis, we have also introduced a D-score, computed as following (as used in Wang et al.
(2009) [36)):
D; = [|df; — dijll1, (4)

where df; is a normalized correlation (normalized to have zero mean and unit variance across genes) between
genes ¢ and j in condition s, also known as Glass’ d score [97].

Synthetic data generation

We generated 100 pairs of datasets, each representing disease and normal conditions. Each pair of datasets
contains 100 variables drawn from the multivariate normal distribution with zero mean and covariance matrices
Y1 and ¥5. Each dataset contains n; and ns, respectively, where ny is randomly selected from uniform
distribution between 100 and 110, and no is from uniform distribution between 16 and 26. This difference in n4
and no reflects the ratio of the cancer samples and normal samples in the gene expression data (Table 1).

For each of the 100 pairs of datasets, we divided 100 variables into the following three categories: 1) variables
that have different sets of edge weights with other variables across two conditions, 2) variables that have exactly
the same sets of edge weights with each other across the conditions, and 3) variables not connected with any
other variables in the categories 2) and 3) in both conditions. For example, in Fig. 1A, ‘1’ is in category 1) (i.e.,
perturbed genes). 2, ‘4’ ‘6’, and ‘7’ are in category 2), and ‘3’ and ‘5’ is in category 3). In each of the 100
pairs of datasets, the number of genes in category #1 (perturbed genes), p, is randomly selected from uniform
distribution between 5 and 15. The number of genes in each of the other two categories #2 and #3 is determined
as (100 — p)/2.

We describe below how we generated the network edge weights (i.e., elements of Zfl and Xy 1) among the 100
variables. To ensure that only the genes in #1 have differing edge weights between two conditions, we generated
two p X p matrices, X; and X5, with elements randomly drawn from a uniform distribution between -1 and 1.
Then, we generated symmetric matrices, X] X; and XJ X5, and added positive values to the diagonal elements to
these symmetric matrices, if its minimum eigenvalue is negative — a commonly used method to generate positive
definite matrices [98]. They become submatrices of Zfl and X5 ! for these p variables. Similarly, we generate a
common submatrix for the variables in category #2 — variables that have the same edge weights with other
variables across conditions. Variables in category #3 have identify matrix as the inverse covariance matrix among
the variables in that categories. Finally, we added mean zero Gaussian noise to each element of 21_1 and X5 L
where the standard deviation of the Gaussian noise is randomly selected between 0.5 and 5.

This procedure allows having datasets of varying levels of difficulty in terms of high-dimensionality and
network perturbation, which provides an opportunity to compare the average performances of the methods in
various settings.

Conservative permutation tests

To generate a conservative null distribution, we performed permutation tests by randomly reassigning
cancer/normal labels to each sample, preserving the total numbers of cancer/normal samples. The correlation
structure among genes would be preserved, because every gene is assigned the same permuted label in each
permutation test. We then computed the DISCERN score for a random subset of 300 genes. We repeated this
process to get over one million DISCERN scores to form a stable null distribution, which was used to compute
empirical p-values.

Identifying survival associated genes

For the survival-associated genes enrichment analysis, we first computed the association between survival time
and each gene expression level. Genes that had a p-value from the Cox proportional hazards model (computed
using survival R package) smaller than 0.01 were considered significantly associated with survival. These include
1,280 genes (AML), 1,891 genes (BRC) and 1,273 genes (LUAD) (S3 Table). Enrichment of overlap with top N
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DISCERN, LNS, D-score and ANOVA -scoring genes was computed by using the Fisher’s exact test based on the
hypergeometric distribution function from scipy.stats Python package [99].

Gene sets previously known to be important in cancer

We presented the results on the comparison with three sets of genes that are known to be important in cancer
(S2 Fig). Here, we describe how we obtained these gene sets. First, Malacards genesets were constructed based
on malacards.org website accessed in September 2012. Second, we used a set of 488 genes we downloaded from
Catalogue of Somatic Mutations in Cancer website (CGC) [82]. For each cancer type, we considered the
intersection between this list and the genes that are present in the expression data. Finally, a set of genes likely
to contain driver mutations selected by MutSig was defined as those that pass g < 0.5 threshold based on
20141017 MutSig2.0 report from Broad Firehose.

Cross-dataset survival time prediction

To evaluate the performance of the DISCERN score on identifying genes to be used in a prognosis prediction
model, we trained the survival prediction model using one dataset and tested the model on an independent
dataset (Fig. 4). To train the survival prediction model, we used the elastic net regression (o = 0.5) using
glmnet CRAN package (version 1.9-8). Available clinical covariates — age for AML, and age, grade and subtype
for BRC — were added as unpenalized covariates. Regularization parameter A\ was chosen by using the built-in
cross-validation function. Testing was always performed in the independent dataset with held-out samples from
the dataset that was not used for training.For comparison, we trained the prediction model using 22 LSC
genes [54] with age in AML, and 67 genes from the 70-gene-signature [83] (3 genes from the signature were
missing in the dataset we were using) with clinical covariates (age, stage, and subtype) in BRC, as shown in
Fig. 4B and Fig. 4D, respectively.

Epigenomics analysis

The Encyclopedia of DNA Elements (ENCODE) is an international collaboration providing transcription factor
binding and histone modification data in hundreds of different cell lines [100]. Data for ENCODE analysis were
accessed through the UCSC Genome Browser data matrix [101] and processed using the BedTools and
pybedtools packages [102,103]. Two of the ENCODE cell lines — NB4 (an AML subtype [84]) and CD34+
(mobilized CD34 positive hematopoietic progenitor cells) — are closest to AML and normal conditions, and the
DNase-seq data from these cell lines are available.

For each cell line, we used the DNase-seq data and the position weight matrices (PWMs) of 57 transcription
factors (TFs) available in the JASPAR database [85] to find the locations of the PWM motifs that are on the
hypersensitive regions. We identified the locations of these PWM motifs on the hg38 assembly by using
FIMO [86] (p-value < 1075). We then intersected these motif locations with hypersensitive regions identified by
the DNase-seq data for each TF. We repeated this process to identify active binding motifs of the 57 TF's in each
of the cell lines, NB4 and CD34+.

For each TF, we identified the genes the TF differentialy binds to between cancer and normal cell lines. We
assumed that a certain TF is bound near a gene if the center of the peak is in the active enhancer regions
(marked by H3K27Ac) within 15kbs of the transcription start site (TSS) of the gene or the 5kb around the gene’s
transcription start site. We show that for most of the TF's, differentially bound genes have significantly high
DISCERN scores than those not (Fig 5A-C).

The differential regulator score for each gene was computed by taking the number of differentially bound TF's
and dividing it by the total number of TFs bound to the gene in any condition. We show that the differential
regulator score is highly correlated with the DISCERN score (Fig 5D). For DNase-based analysis (Fig 5E), we
defined a gene to be differentially regulated if hypersensitive sites detected by DNase-seq are within 150bp
upstream of the gene in one condition and not in another.
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Reactome enrichment and DISCERN filtering

A set of 605 Reactome pathways was downloaded through Broad Molecular Signature Database (MSigDB) [59].
We postulate that hypersensitive sites identified by DNase-seq in a particular cell line indicate the regions where
important regulatory events occur, such as transcription factor binding. We constructed the list of differentially
regulated genes by comparing the hypersensitive sites identified by DNase-seq data between cancer and normal
cell lines within 150bp upstream from TSS of each gene. For each pathway, we computed the fold enrichment

(= nuﬁl;fﬁec;fogfegjzefiflhfhlentifliseizzlcot?ozfgyiﬁ;gﬁiﬁgiig“) that measures the significance of the overlap between genes
in the pathway and the identified differentially regulated genes. We compared the fold enrichment with when the
genes in the intersection of differentially regulated genes and 1,351 significantly perturbed genes identified by

DISCERN were used (S6 Fig). To reduce the noise, we only considered the pathways that had > 5 genes in the
overlap before filtering. The p-values were then FDR corrected for multiple hypothesis testing. Although p-values
would measure the significance of the overlap between a gene set with a pathway, we used the enrichment fold as a
measure of the significance of the overlap because we compared a set of genes with another set much smaller size.
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