
Taghiyar et al.

SOFTWARE

Kronos: a workflow assembler for genome
analytics and informatics
M Jafar Taghiyar1,2, Jamie Rosner1, Diljot Grewal1,2, Bruno Grande3, Rad Aniba1,2, Jasleen Grewal3,

Paul C Boutros4,5, Ryan D Morin3, Ali Bashashati *1,2 and Sohrab P Shah1,2*

*Correspondence: sshah@bccrc.ca

& abashash@bccrc.ca
1Department of Molecular

Oncology, British Columbia Cancer

Agency, 675 West 10th Ave, V5Z

1L3 Vancouver, BC, Canada

Full list of author information is

available at the end of the article

Abstract

Background: The field of next generation sequencing informatics has matured to
a point where algorithmic advances in sequence alignment and individual feature
detection methods have stabilized. Practical and robust implementation of
complex analytical workflows (where such tools are structured into ’best
practices’ for automated analysis of NGS datasets) still requires significant
programming investment and expertise.

Results: We present Kronos, a software platform for automating the
development and execution of reproducible, auditable and distributable
bioinformatics workflows. Kronos obviates the need for explicit coding of
workflows by compiling a text configuration file into executable Python
applications. The framework of each workflow includes a run manager to execute
the encoded workflows locally (or on a cluster or cloud), parallelize tasks, and log
all runtime events. Resulting workflows are highly modular and configurable by
construction, facilitating flexible and extensible meta-applications which can be
modified easily through configuration file editing. The workflows are fully
encoded for ease of distribution and can be instantiated on external systems,
promoting and facilitating reproducible research and comparative analyses. We
introduce a framework for building Kronos components which function as
shareable, modular nodes in Kronos workflows.

Conclusion: The Kronos platform provides a standard framework for developers
to implement custom tools, reuse existing tools, and contribute to the
community at large. Kronos is shipped with both Docker and Amazon AWS
machine images. It is free, open source and available through PyPI (Python
Package Index) and https://github.com/jtaghiyar/kronos.

Keywords: genomics; workflow; pipeline; reproducibility

Background
The emergence of next generation sequencing (NGS) technology has created un-

precedented opportunities to identify and study the impact of genomic aberrations

on genome-wide scales. Data generation technology for NGS is stabilizing and ex-

ponential declines in cost have made sequencing accessible to most research and

clinical groups. Alongside progress in data generation capacity, a myriad of an-

alytical approaches and software tools have been developed to identify and inter-

pret relevant biological features. These include computational methods for raw data

pre-processing, sequence alignment and assembly, variant identification, and variant

annotation. However, major challenges are induced by rapid development and im-

provement of analytical methods. This makes construction of analytical workflows

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 2 of 15

a near dynamic process, creating a roadblock to seamless implementation of linked

processes that navigate from raw input to annotated variants. Most workflow so-

lutions are bespoke, inflexible, and require considerable programming and software

development for their implementation. Consequently, the field currently lacks soft-

ware platforms that facilitate the creation, updating, and distribution of workflows

for advanced and reproducible data analysis by clinical and research labs. Robust

analysis of large sets of sequencing data therefore remains labor intensive, costly,

and requires considerable analytical expertise. As best practices (e.g., [1]) remain

a moving target, software systems that can rapidly adapt to new (and optimal)

solutions for domain-specific problems are necessary to facilitate high-throughput

comparisons.

Several tools and frameworks for NGS data analysis and workflow management

have been developed to address these needs. Galaxy [2], is an open, web-based plat-

form to perform, reproduce and share analyses. Using the Galaxy user interface,

users can build analysis workflows from a collection of tools available through the

Galaxy toolshed (https://toolshed.g2.bx.psu.edu). The Taverna suite [3] allows the

execution of workflows that typically mix web services and local tools. Tight integra-

tion with myExperiment [4] gives Taverna access to a network of shared workflows,

including NGS data processing. The above tools are mainly aimed at users with

minimal programming experience. In addition, Galaxy imposes considerable prepa-

ration and installation overhead, lacks explicit representation of workflows (such

as in XML format) [5] and imposes some restrictions (such as in file management).

Taverna mainly provides a way to run web services and lacks support for scheduling

in high performance computing clusters [5].

Due to these limitations, experienced bioinformaticians commonly work at a lower

programming level and write their own workflows in scripting languages such as

Bash, Perl, or Python [6]. A number of lightweight workflow management tools have

been specifically developed to simplify scripting for these target users, including

Ruffus [7], Bpipe [8], and Snakemake [9]. While these workflow management tools

reduce development overhead, users still need to write a substantial amount of

code to create their own workflows, maintain the existing ones, replace subsets of

workflows with new ones, and run subsets of existing workflows.

To further facilitate the process of creating workflows by power users, Omics-

Pipe proposed a framework to automate best practice multi-omics data analysis

workflows based on Ruffus [10]. It offers several pre-existing workflows and reduces

the development overhead for tracking the run of each workflow and logging the

progress of each analysis step. However, it is remains cumbersome to create a custom

workflow with Omics-pipe as users need to manually write a Python script for

the new workflow by copying/pasting a specific header to the script and writing

the analyses functions using Ruffus decorators. The same applies when adding or

removing an analysis step to an existing workflow.

We introduce a highly flexible open-source Python-based software tool (Kronos),

that significantly reduces programming overhead for workflow development. Kro-

nos has a built-in run manager that parallelizes subsets of the workflow specified

by the user, logs the runtime events (provides full analysis chain of custody), and

relaunches a workflow from where it left off. It can also execute the resulting work-

flow locally, on a compute cluster or cloud. The workflows generated by this tool are

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 3 of 15

highly modular and flexible. Changing a workflow by adding, removing or replacing

analysis modules (referred to as components), or altering the analysis parameters

can be easily achieved by reconfiguring the configuration file (without having to

manually modify the source code of the workflow). The configuration files and com-

ponents are shareable; therefore, users can readily regenerate a workflow elsewhere,

facilitating reproduciblity. In addition, Kronos has a framework for creating new

components that can be easily shared and reused by collaborators or others in the

bioinformatics community. Kronos is shipped with Docker and Amazon Machine

images to further facilitate its use locally, on high performance computing clusters

and in the cloud infrastructures. Instantiated workflows and components for the

analysis of single human genomes and cancer tumour-normal pairs following best

analysis practices accompany Kronos and are freely available.

Results
Kronos transforms a set of existing components (i.e., analysis modules; described

later) along with a configuration file into a modular workflow without having to

write code. It also provides a functionality to create component templates which

greatly facilitates developing components by experienced bioinformaticians.

As shown in Figure 1, users can conveniently create a workflow by following three

steps listed below (referred to as Steps 1, 2 and 3 in the remainder of this paper).

Section 2 of Additional file 1 provides an example of how to make a variant calling

workflow.

• Step 1. Given a set of existing components, create a configuration file template

by running the following Kronos command:

kronos make conf ig
[l i s t o f components] −o <output name>

where [list of components] refers to the component names that we aim at using

in our workflow.

• Step 2. In the configuration file template, specify the order by which the

components in the workflow should be run. This does not require programming

skills and is merely text-based.

• Step 3. Create the workflow by running the following Kronos command with

the configuration file as its input:

kronos i n i t −y < c o n f i g f i l e . yaml>
−o <workflow name>

The output is an executable Python script that uses the built-in run manager of

Kronos. The run manager provides scalability by enabling users to run the workflow

on a single machine, on a cluster of computing nodes or in the cloud . In fact, each

component in the workflow can individually be run either locally, on a cluster.

In addition, it allows users to independently set native specifications such as free

memory, maximum memory or the number of CPU’s, for each task.

The run manager also provides the following features for the resulting workflow:

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 4 of 15

• generates a unique run-ID for each run

• re-runs the workflow from where it left off using the run-ID

• runs intermediate workflows in parallel

• limits the number of concurrent jobs and workflows as desired

• creates a detailed log file for each run tagged with the run-ID

Kronos components

In order for different software tools, referred to as seeds, to be used as input to

the make config command (Step 1), users need to wrap them with a number of

particular files. We call a wrapped seed a component. A seed can be as simple as

a command copying a file or it can be a more complicated tool such as a single

nucleotide variant (SNV) caller.

Regardless of how complicated a seed is, its corresponding component has a stan-

dard directory structure composed of specific wrappers and sub-directories. The

wrappers are independent of the programming language used for developing the

seed and essentially all tools can be wrapped as components. In addition, Kronos

provides a functionality (through make component command) to create a compo-

nent template which helps developing a new component in a few minutes (Figure 2)

provided that the seed exists. This process is straight-forward and requires minimal

programming, yet it provides a powerful framework for experienced programmers to

fully customize their workflows. Section 1 of Additional file 1 provides an example

creating a component.

Kronos configuration file

The make config command generates a configuration file template. It is a text

file formatted as YAML and contains all the parameters of the input components

which are mostly pre-filled with default values. For each input component, there is

a corresponding section with a unique name in the configuration file called task.

Users should use these sections to specify the order by which each task in the

workflow should be run (Step 2 of creating a workflow). This can be done by a

simple convention called IO-connection. An IO-connection is basically a pair of

values comprising of a task name and one of its parameters. It determines which

task should be followed by the current task and is specified as an argument to one

of the parameters of the current task. For example, in the following configuration

file, (’ TASK 1 ’, ’out file’) is an IO-connection which makes TASK 2 to

follow TASK 1 , i.e. the input to the parameter in file of TASK 2 comes from

the parameter out file of TASK 1 .

TASK 1 :
o u t f i l e : ’ f oo . txt ’

TASK 2 :
i n f i l e : (’ TASK 1 ’ , ’ o u t f i l e ’)

A configuration file has the following blocks (see Additional file 1: Figure S1):

• system-specific which captures the system dependant requirements of the

workflow (such as the paths to the local installations) and includes the

GENERAL and PIPELINE INFO sections.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 5 of 15

• user-specific which contains the input files and arguments and includes the

SHARED and SAMPLES sections.

• workflow-specific which defines the connection between the components in the

workflow. Task sections related to each component are in this group.

This design has the following advantages: i) if users want to run the same workflow

for various sets of input files and arguments, they would only need to update the

user-specific sections. This prevents inadvertent changes in the flow of the workflow

when changing the inputs; and ii) the segregation of system-specific information

from the rest of the sections enables users to run a workflow practically anywhere.

In other words, by simply updating the system-specific sections with proper values,

the requirements of the workflow can be observed on any machine or cluster.

Kronos workflows

Each workflow made by Kronos is a directed acyclic graph (DAG) of components

where every node in the graph corresponds to a task section in the configuration file.

Task sections can independently be added, removed or replaced in the configuration

file (Figure 3). Therefore, to add, remove or replace a component in the workflow

or equivalently a node in the DAG, users simply need to change the corresponding

task section in the configuration file and run the command in Step 3. As a result,

the workflows are highly modular and maintaining them is as easy as updating the

configuration file without having to rewrite the workflow. Finally, a workflow can

be run by simply running the Python workflow script using the command-line as

depicted in Figure 4.

Kronos features and benefits

Full details of how to use each of the following features can be found in the software

documentation.

Parameter sweeping

It is sometimes desired to run a particular tool or algorithm with various sets of

parameters in order to select the parameter set with superior performance for a

given problem. For example, a user may want to find the proper model parameters

(such as mapping quality and base quality thresholds) for a variant calling tool to

accurately detect single nucleotide variants. Kronos provides a mechanism for this

purpose where users can specify all different sets of input arguments (or parame-

ters) in the SAMPLES section of the configuration file. In this case, running Step 3

creates a number of intermediate workflows, each for one set of input arguments,

along with the main workflow. When running the main workflow, Kronos run man-

ager automatically runs the intermediate workflows in parallel, each on one set of

the input arguments. We have provided a variant calling workflow with parameter

sweeping functionality in Section 3 of Additional file 1 to demonstrate this feature.

Tool comparison

In bioinformatics, it is often required to compare the performance of two or more

algorithms or compare a new analysis tool to the existing ones to select the best

that fits the particular goals of a project. For example, it is often helpful to evaluate

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 6 of 15

the performance of different variant calling algorithms [11]. The modularity of the

workflows generated by Kronos facilitates the comparison of different algorithms

and tools. For this purpose, as shown in Figure 3, the user can simply replace a task

section corresponding to an analysis tool with another task section corresponding

to another similar tool and run Step 3.

Reproducibility

The configuration file and components of a workflow made by Kronos are portable.

Therefore, users can readily re-create the same workflow by only replacing the

system-specific section of the configuration file and running the command in Step

3. To show this functionality, we have included an example of a workflow that

performs somatic variant calling on whole genome data of a breast cancer case

using Strelka algorithm [12] and generates a number of plots based on Strelka calls

(Figure 5). Detailed step-by-step instructions to reproduce this figure is in Section

3 of Additional file 1.

Automatic parallelization and merge

Most of the recent tools developed in bioinformatics field are parallelizable or have

the potential to run in parallel. However, majority of these tools are shipped with-

out the built-in functionality and require the users to manually break the analysis

into smaller analyses. For example, many variant calling algorithms are capable of

running on user-specified coordinates of the genome but are not shipped with par-

allelization functionality. However, a user can analyze a whole genome sequencing

data chunk by chunk in parallel with the caveat of manually scripting the par-

allelization steps. Due to the cumbersome nature of manual parallelization, many

users might avoid running the tools in parallel which considerably increases the run-

time of the analysis. To resolve this issue, Kronos automatically parallelizes tasks

in the workflow if feasible. Then, it aggregates the outputs of all child tasks and

merges them if necessary.

Cloud support

The massive scale of genomic data is justifying a move to the cloud for storage and

analyses in order to minimize cost and handle the ebb and flow of computational

demands. Kronos’ flexibility addresses the emerging need for rapid deployment of

analysis workflows in the cloud. Several command-line tools exist for managing

fleets of compute nodes on cloud platforms such as Amazon Web Services (AWS),

including StarCluster, CfnCluster and Elasticluster. Similarly, the Galaxy project

provides CloudMan, a graphical interface for launching so-called “cloud clusters”.

Kronos is scheduler-agnostic; therefore, developers can leverage its powerful features

in combination with any of these tools. A guide on creation and management of a

cloud cluster using the StarCluster software and deployment of Kronos is provided

in the online documentation and an Amazon Machine Image (AMI) is provided for

convenience.

Controlled pause/resume by breakpoints

When running a workflow, certain blocks of the workflow may need to run multiple

times, for example to tune a particular parameter of a component or to inspect the

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 7 of 15

results of the previous tasks in the workflow before the next tasks are triggered.

Analogous to the debuggers, Kronos provides users with breakpoints to perform a

controlled pause/resume action.

In addition, with the breakpoint mechanism, users can break the flow of a workflow

into several sub-workflows and run each part on a different machine or cluster. In

other words, once a breakpoint happens, i.e. one sub-workflow is complete, the main

workflow can be transferred to a different machine and it will pick up running from

where it left off on the previous machine provided that all the intermediate files are

present. For example, a workflow can contain a component as its last step that loads

the final results to a local database which can be reached only from a specific IP or

machine. In this case, the user can run the workflow on a powerful computing node

or a cluster with a breakpoint set for the component prior to the last component,

i.e. database loader in this example. Once the breakpoint is applied, the user can

resume the workflow on the other machine, so that the results can be loaded to the

local database.

Forced dependency

Often in a workflow, a task requires the output of the previous one. As explained

earlier, Kronos handles this explicit dependency by IO-connection. However, some-

times a task might need to wait for one or more other steps in the workflow to

finish although there are no explicit IO-connections between them. For example,

when two tasks intend to write results in the same file, one needs to make sure

that both tasks do not run at the same time. Another example would be a variant

calling algorithm (e.g., GATK) which accepts a bam file as input. However, it also

expects the index of the bam file to be present in the same directory as the bam

file. If the index is created in one of the previous tasks in the workflow, then the

current task that needs the bam file and its index, would depend implicitly on the

other task that creates the index file. In this case, a mechanism is required to force

the variant calling task to wait until the index file is ready. Kronos provides forced

dependency feature to overcome this problem (see Additional file 1: Figure S2).

Results directory customization

It is desirable to have full control of the structure of the results directory when

running a workflow. With Kronos, users can readily determine the structure of the

results directory in the configuration file. This provides an easy file management for

the users. Figure 4 shows an example of the tree structure of the results directory

generated for a workflow.

Boilerplates

Users can use this feature to insert a command or a script into the begining of the

command used to run a task in a workflow. This is particularly useful for setting up

the environments using the Environment Modules package [13]. It also provides a

means to run preprocessing steps for a specific task prior to running the task itself.

Keywords

There are several specific keywords that users can use in the configuration file which

will be automatically replaced by proper values in runtime. This enables users to

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 8 of 15

customize the paths and file names based on the workflow-specific values in runtime

such as run-ID, workflow name or sample ID.

Workflows
We have developed a number of standard genome analysis workflows using Kronos.

These workflows utilize many of the Kronos features introduced earlier and are

publicly available.

Alignment workflow This workflow accepts paired-end FASTQ files as input and

aligns them using the Burrows-Wheeler aligner [14]. It also sorts the aligned bam

file, flags the duplicates, indexes the file and generates statistics for the final bam

file.

Germline variant calling workflow This workflow is an implementation of the best

practices guide established by the Broad Institute [1] applied to variant discovery

using haplotypecaller. In short, it runs the Bowtie2 aligner, creates targets using

GATK RealignerTargetCreator, and calls SNVs and indels using GATK.

Copy number estimation workflow HMMcopy is a suite of tools for copy number

estimation of whole genome sequencing data [15]. This workflow takes a bam file as

an input and estimates the copy number with GC and mappability correction using

HMMCopy. It also segments and classifies the copy number profiles with a robust

Hidden Markov Model.

Somatic variant calling workflow This workflow takes a pair of tumour/normal

bam files as inputs and detects the somatic SNVs and indels using Strelka algorithm

[12], annotates the resulting VCF files using SnpEff [16], and flags the variants

observed in 1000 genomes and dbSNP databases.

RNA-seq analysis workflow This workflow aligns RNA-seq FASTQ files using

STAR aligner [17] followed by Cufflinks which assembles transcriptomes from RNA-

Seq data and quantifies their expression [18].

Conclusions
A foundation for rapid and reliable implementation of genomic analysis workflows

is an essential need as a myriad of potential applications of genomics (ranging from

personalized cancer therapies to monitoring the evolution and spread of infectious

diseases) are projected to produce massive amount of genomic data in the next few

years. We have developed Kronos to address this need and standardize reproducibil-

ity of genome analysis tasks. Kronos minimizes the cumbersome process of writing

code for a workflow by transforming a YAML configuration file into a Python script

and manages workflow execution locally, on a cluster or in the cloud. Given a set of

pre-made components, constructing a workflow by Kronos does not need program-

ming skills as the user only needs to fill out specific sections of a YAML configuration

file. Making components still requires programming. However, component develop-

ment time and effort is minimal given the design structure of Kronos’ components.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 9 of 15

In addition, Kronos provides a functionality to create a component template that

can be used to wrap an existing software (seed) with minimal coding intervention.

This provides a powerful and highly flexible framework for bioinformaticians to fully

customize their workflows. A number of standard genomic analysis workflows along

with their building components that have been made by Kronos accompany this

software and are available to public. This resource not only provides users with a

suite of workflows for standard genomics analysis, but also introduces a framework

for power users to develop custom components, reuse or tweak existing ones, and fi-

nally share them with their collaborators and community at large. Kronos has been

developed for genomics applications but it can be readily utilized in other scientific

and non-scientific fields.

In conclusion, this work provides a framework towards rapid integration of new

(and optimal) genomic analysis advances in high-throughput studies. The flexibility,

customization, and modularity of Kronos make it an attractive system to use in

any high-throughput genomics analysis endeavour. We expect Kronos will provide

a foundational platform to accelerate towards the need to standardize and distribute

NGS workflows in both clinical and research applications.

Availability and requirements
Kronos is a free and open-source Python package available through PyPI (Python

Package Index) under the MIT license. Documentation can be found at https:

//readthedocs.org/projects/kronos/ and the workflows and their components

accompanying this paper are available at https://github.com/MO-BCCRC?tab=

repositories.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

J.T. developed the software, wrote the documentation and contributed to manuscript writing. J.R. assisted in

developing part of the logger and a few of the helper functions for the software, testing software features and

providing feedback on the manuscript. D.G. developed a number of pipelines accompanying the manuscript, tested

the software and provided feedback on the software features and manuscript. B.G. deployed and tested Kronos in

the cloud, wrote the documentation for cloud deployment, tested software and provided feedback on the software

features and manuscript. R.A. developed the germline variant calling workflow and provided feedback on the

manuscript. J.G. tested and provided feedback on the software. P.B. provided feedback on the manuscript. R.M.

provided resources and supervised testing Kronos in the cloud, and provided feedback on the manuscript. A.B.

contributed to the design and development of the software. A.B. and S.S. co-supervised, provided intellectual

contributions to the work and contributed to manuscript writing. A.B. and S.S. are joint senior authors.

Acknowledgements

The authors would like to thank Shadrielle Melijah G. Espiritu and Andre Masella for their feedback on the

manuscript/software. This project has been supported by funding from Genome Canada/Genome British Columbia

(grant No. 173CIC), Natural Science & Engineering Research Council of Canada (grant No. RGPGR 488167-2013),

and Terry Fox Research Institute - Program Project Grants (grant No. 1021).

Author details
1Department of Molecular Oncology, British Columbia Cancer Agency, 675 West 10th Ave, V5Z 1L3 Vancouver,

BC, Canada. 2Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook

Mall, V6T 2B5 Vancouver, BC, Canada. 3Department of Molecular Biology and Biochemistry, Simon Fraser

University, 8888 University Drive, V5A 1S6 Burnaby, BC, Canada. 4Ontario Institute for Cancer Research (OICR),

661 University Avenue, M5G 0A3 Toronto, ON, Canada. 5Department of Medical Biophysics, University of

Toronto, 101 College Street, M5G 1L7 Toronto, ON, Canada.

References
1. GATK Best Practices - Recommended Workflows for Variant Analysis with GATK.

https://www.broadinstitute.org/gatk/guide/best-practices

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 10 of 15

2. Goecks, J., Nekrutenko, A., Taylor, J., Galaxy Team, T.: Galaxy: a comphrehensible approach for supporting

accessible, reproducible, and transparent computational research in the life sciences. Genome biology 11(R86),

1–13 (2010)

3. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I.,

Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F., Hardisty, A., Nieva de la Hidalga, A.,

Balcazar Vargas, M., Sufi, S., Goble, C.: The taverna workflow suite: designing and executing workflows of web

services on the desktop, web or in the cloud. Nucleic acids research 41, 557–561 (2013)

4. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D., Borkum, M.,

Bechhofer, S., Roos, M., Li, P., De Roure, D.: myexperiment: a repository and social network for the sharing of

bioinformatics workflows. Nucl. Acids Res 38(2), 677–682 (2010)

5. Abouelhoda, M., Alaa, S., Ghanem, M.: Meta-workflows: Pattern-based interoperability between galaxy and

taverna. In: Proceedings of the 1st International Workshop on Workflow Approaches to New Data-centric

Science. Wands ’10, pp. 2–128. ACM, New York, NY, USA (2010). doi:10.1145/1833398.1833400.

http://doi.acm.org/10.1145/1833398.1833400

6. Spjuth, O., Bongcam-Rudloff, E., Hernández, G.C., Forer, L., Giovacchini, M., Guimera, R.V., Kallio, A.,

Korpelainen, E., Kańdu la, M.M., Krachunov, M., et al.: Experiences with workflows for automating

data-intensive bioinformatics. Biology direct 10(1), 1–12 (2015)

7. Goodstadt, L.: Ruffus: A lightweight python library for computational pipelines. Bioinformatics 26(21),

2778–2779 (2010)

8. Sadedin, S., Pope, B., Oshlack, A.: Bpipe: A tool for running and managing bioinformatics pipelines.

Bioinformatics 28(11), 1525–1526 (2012)

9. Koster, J., Rahmann, S.: Snakemake - a scalable bioinformatics workflow engine. Bioinformatics 28(19),

2520–2522 (2012)

10. Fisch, K.M., Meißner, T., Gioia, L., Ducom, J., Carland, T.M., Loguercio, S., Su, A.I.: Omics pipe: a

community-based framework for reproducible multi-omics data analysis. Bioinformatics (2015)

11. Ewing, A.D., Houlahan, K.E., Hu, Y., Ellrott, K., Caloian, C., Yamaguchi, T.N., Bare, J.C., P’ng, C., Waggott,

D., Sabelnykova, V.Y., et al.: Combining tumor genome simulation with crowdsourcing to benchmark somatic

single-nucleotide-variant detection. Nature methods (2015)

12. Saunders, C.T., Wong, W.S., Swamy, S., Becq, J., Murray, L.J., Cheetham, R.K.: Strelka: accurate somatic

small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28(14), 1811–1817 (2012)

13. Environment Modules Project - Software Environment Management. http://modules.sourceforge.net/

14. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25,

1754–60 (2009)

15. Ha, G., et al.: Integrative analysis of genome-wide loss of heterozygosity and mono-allelic expression at

nucleotide resolution reveals disrupted pathways in triple negative breast cancer. Genome Research 22(10),

1995–2007 (2012)

16. Cingolani, P., Platts, A., le Wang, L., Coon, M., Nguyen, T., Wang, L., et al.: A program for annotating and

predicting the effects of single nucleotide polymorphisms, snpeff: Snps in the genome of drosophila

melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012)

17. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras,

T.R.: Star: ultrafast universal rna-seq aligner. Bioinformatics 29(1), 15–21 (2013)

18. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L.,

Pachter, L.: Differential gene and transcript expression analysis of rna-seq experiments with tophat and

cufflinks. Nature protocols 7(3), 562–578 (2012)

Figures

Additional Files
Additional file 1 — Supplementary information

The supplementary information is in pdf format and expalins a) how to make a component, b) how to make a

workflow, c) how to run a workflow, and d) Figure S1 and Figure S2.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 11 of 15

Figure 1 Make a workflow. Making a new workflow with Kronos includes three steps: i) make a
configuration file template: given a set of existing components, users can generate this file by
running the command make config; ii) configure the workflow: users can specify the desirable
flow of their workflow using the connections and dependencies, customize output directory names,
and specify input arguments and data to the required fields in the configuration file template; iii)
initialize the workflow: this is achieved by running the command init on the configuration file
which transforms the YAML file into the Python workflow script.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 12 of 15

Figure 2 Make a component. Making a new component for Kronos includes the following steps:
i) make a new component template by running the command make component; ii) fill in the
resulting template accordingly; iii) copy or link the source code of the seed used in the
component; iv) optionally create README.md and tests for the component.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 13 of 15

Figure 3 Replace a component in a workflow. The configuration file has different sections as
shown in the figure. These sections are: GENERAL, PIPELINE INFO, SHARED, SAMPLES, and
TASKs. The modular organization of the configuration file allows for easy customization of
workflows which can serve different purposes such as tool comparison. Adding, removing or
replacing nodes in the DAG of the workflows can be easily done by adding, removing or replacing
the corresponding TASK sections in the configuration file. For instance, to go from workflow DAG1
to workflow DAG2, i.e. to replace comp 1 (e.g., variant caller 1) in the first workflow by comp 5
(e.g., variant caller 2) in the second, the user only needs to replace TASK 1 section by TASK 5
section in the configuration file and perform Step 3.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 14 of 15

Figure 4 Run a workflow. Workflows generated by Kronos are ready to run locally, on a cluster of
computing nodes, and in the cloud. To run a workflow, users only need to run the Python
workflow script. Each run of a workflow generates a specific directory structure tagged with a
run-ID. When running a workflow for multiple samples, a separate directory is made for each
sample to make it convenient to locate the results corresponding to each sample. This figure
shows the tree structure of the resulting directory. There are four sub-directories that are always
generated for each sample: i) logs: to store the log files; ii) outputs: to store all the output files
generated by all the components in the workflow ; iii) scripts: to store the scripts automatically
generated by Kronos to run each component in the workflow ; iv) sentinels: to store sentinel files
used by Kronos to pick up the workflow from where it left off in a previous run.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

Taghiyar et al. Page 15 of 15

C>A C>G C>T T>A T>C T>G

Base Substitution

Pr
op

or
tio

n
of

 S
N

Vs
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Total Number of SNVs = 5364

Quality Score for Somatic SNVs (QSS)

Fr
eq

ue
nc

y

Chromosome

N
um

be
r o

f S
N

Vs

TASK 1 - Run Strelka

TASK 2 - Plot Strelka

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Al
le

lic
 R

at
io

C
ov

er
ag

e

A

B

C

D

E

0
50

0
10

00
15

00
20

00

0 100 200 300

1 3 5 7 9 11 13 15 17 19 21 X

0
10

0
20

0
30

0
40

0

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 5 Strelka workflow. Results from the tumour-normal variant calling workflow on whole
genome data of a breast cancer case (SA500 - EGA accession number EGAS00001000952). (A)
schematic of the workflow which is comprised of two tasks. The plots generated by the workflow is
in fact the output of TASK 2, (B) box plot of coverage and variant allelic ratios for the SNVs
detected by Strelka, (C) base substitution patterns for the somatic SNVs, and (D) total number
of SNVs and their histogram based on the quality score (QSS), (E) Distribution of the number of
SNVs across different chromosomes.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040352doi: bioRxiv preprint

https://doi.org/10.1101/040352

