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Abstract 34 

Monitoring changes in infectious disease incidence is fundamental to outbreak detection and 35 

response, intervention outcome monitoring, and identifying environmental correlates of 36 

transmission. In the case of dengue, little is known about how consistently surveillance data track 37 

disease burden in a population over time. Here we use four years of monthly dengue incidence 38 

data from three sources – population-based (‘passive’) surveillance including suspected cases, 39 

‘sentinel’ surveillance with 100% laboratory confirmation and complete reporting, and door-to-40 

door (‘cohort’) surveillance conducted three times per week - in Iquitos, Peru, to quantify their 41 

relative consistency and timeliness. Data consistency was evaluated using annual and monthly 42 

expansion factors (EFs) as cohort incidence divided by incidence in each surveillance system, to 43 

assess their reliability for estimating disease burden (annual) and monitoring disease trends 44 

(monthly). Annually, passive surveillance data more closely estimated cohort incidence (average 45 

annual EF=5) than did data from sentinel surveillance (average annual EF=19). Monthly passive 46 

surveillance data generally were more consistent (ratio of sentinel/passive EF standard 47 

deviations=2.2) but overestimated incidence in 26% (11/43) of months, most often during the 48 

second half of the annual high season as dengue incidence typically wanes from its annual peak. 49 

Increases in sentinel surveillance incidence were correlated temporally (correlation coefficient = 50 

0.86) with increases in the cohort, while passive surveillance data were significantly correlated at 51 

both zero-lag and a one-month lag (0.63 and 0.44, respectively). Together these results suggest 52 

that, rather than relying on a single data stream, a clearer picture of changes in infectious disease 53 

incidence might be achieved by combining the timeliness of sentinel surveillance with the 54 

representativeness of passive surveillance.  55 

Introduction 56 
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 Infectious disease surveillance in developing countries is often challenged by limited 57 

public health resources, insufficient laboratory capacity, and incomplete reporting [1]. In order to 58 

obtain high-quality data in the face of these and other challenges, the World Health Organization 59 

(WHO) has recommended sentinel surveillance for many infectious diseases [2,3]. In sentinel 60 

surveillance systems, resources are focused on collecting complete, timely data from a subset of 61 

healthcare facilities or laboratories [4], thus requiring fewer resources than would be needed to 62 

actively collect the same quality of data from all facilities (population-based active surveillance). 63 

Passive surveillance systems, in which data collection is dependent on reporting by healthcare 64 

facilities, are representative by virtue of being population-based, but are also subject to under-65 

detection and underreporting [5]. The goal of this study is to evaluate the public health utility of 66 

sentinel surveillance compared to passive surveillance for measuring changes in an endemic 67 

infectious disease, using dengue as a case study. 68 

 While it is well-established that data from passive surveillance underestimate the 69 

incidence (in this study: the number of new symptomatic cases per 100,000 persons per month) 70 

of infectious diseases [5] including dengue [6], the nature of temporal variation in underdetection 71 

is less clear. Such variation could have significant public health implications if the meaning of 72 

surveillance-based incidence changes over time. Here we express variation using a monthly 73 

expansion factor (EF) (i.e., the ratio of incidence in cohort surveillance to incidence in sentinel or 74 

passive surveillance). This method has been used in previous dengue studies [7,8] to estimate 75 

annual disease burden, but there is no published evidence regarding the consistency of inter-76 

annual EFs are and thus how effectively they might be applied to estimating finer-scale changes 77 

in dengue incidence.      78 
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Although laboratory-based sentinel surveillance has been recommended for dengue [9], 79 

the WHO urges caution in over-interpreting these data [10] because sentinel surveillance may 80 

not adequately represent broader population trends in incidence. Assessing the added value of 81 

sentinel surveillance over passive surveillance for capturing a consistent proportion of cases and 82 

detecting seasonal increases in incidence would require that both be compared against data from 83 

a third ‘gold-standard’ system that provides an objective baseline measure of incidence [11]. 84 

Thus we compared data from both systems to reference data gathered from community-based 85 

surveillance in a longitudinal cohort. 86 

 Dengue is an acute febrile illness (AFI) caused by any one of four serotypes of the 87 

dengue virus (DENV). It is the most prevalent mosquito-borne virus globally and is a growing 88 

health concern, with an estimated incidence of 96 million symptomatic infections per year [12]. 89 

Here, dengue incidence measurement is considered in the context of Iquitos, Peru, where the 90 

disease most commonly presents as an undifferentiated, self-limiting AFI with an annual high 91 

transmission season. This scenario highlights two challenges that could potentially be addressed 92 

by sentinel surveillance data. First, because it is often clinically undifferentiated, surveillance 93 

data that include suspected cases will be influenced by physicians’ assumptions about 94 

transmission. These could potentially be improved with laboratory-confirmed sentinel 95 

surveillance, which would provide a more objective measure of the proportion of DENV cases 96 

among febrile individuals who seek treatment. Second, timely indication of increased incidence 97 

is of special concern in dengue because reactive mosquito-control activities are a common public 98 

health intervention. Rapid identification of changes in incidence based on sentinel surveillance 99 

data may result in a more effective response.  100 
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 In Iquitos, there are three concurrent dengue surveillance systems: passive, sentinel, and 101 

door-to-door febrile surveillance in a longitudinal research cohort. Here we use cohort data as a 102 

reference to test the hypothesis that sentinel surveillance data are a more consistent – thus more 103 

‘accurate’ – measure of incidence by month and also a more timely indicator of seasonal 104 

increases in incidence than passive surveillance data.  105 

Methods 106 

Study area and study designs 107 

Iquitos is a geographically isolated city of ~440,000 inhabitants, located in the Amazon 108 

basin of northeastern Peru. DENV was re-introduced into the city in 1990 and was a reportable 109 

disease during our study. Beginning in 1990, each DENV serotype has been introduced and 110 

subsequently dominated transmission for multiple years before being replaced [13]. The current 111 

study includes data from three sources, detailed below: (1) ‘passive surveillance’ (confirmed and 112 

suspected cases reported by all healthcare facilities to the Dirección Regional de Salud Loreto 113 

(DRSL)), (2) sentinel surveillance (laboratory-confirmed cases from a city-wide AFI research 114 

network), and (3) door-to-door febrile surveillance in longitudinal cohorts (‘cohort 115 

surveillance’). 116 

Ethics statement  117 

The de-identified data used in this study were collected under four protocols 118 

(NMRCD2000.0006, NMRCD2010.2010, NMRCD2005.009, NMRCD2007.0007), all approved 119 

by the Institutional Review Boards (IRBs) of the Naval Medical Research Center and Naval 120 

Medical Research Unit No. 6 (NAMRU-6, formerly Naval Medical Research Center 121 

Detachment). The sentinel surveillance protocol (NMRCD 2010.2010) was also approved by the 122 

Ethics Committee for the Peruvian National Institute of Health (INS, acronym in Spanish).  One 123 
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cohort protocol (NMRCD2005.0009) was also approved by IRBs at the University of California, 124 

Davis (UC Davis), Universidad Peruana Cayetano Heredia University in Lima, Peru, and the 125 

second (NMRCD2007.0007) received local approval from NAMRU-6 also registered as a 126 

Peruvian IRB, as well as the UC Davis IRB. All protocols were in compliance with regulations 127 

in the United States and Peru governing the protection of human subjects. 128 

Cohort surveillance 129 

Cohort surveillance data are from two spatially and temporally overlapping longitudinal 130 

cohorts. One cohort was restricted to two neighborhoods and the other cohort was distributed 131 

across the northern portion of the city. There were an average of 4,700 people under febrile 132 

surveillance during the study period. In both cohorts, phlebotomists visited participating houses 133 

three times per week to monitor all individuals ≥ 5 years of age for dengue-like illness. Inclusion 134 

criteria were occurrence of fever (≥ 38°C) for ≤ five days, either by axial measurement or 135 

subject-reported in combination with the use of anti-pyretics, plus at least one other symptom 136 

consistent with DENV infection, including headache, rash, or retro-orbital pain. Positive cases 137 

were defined by DENV RNA detection by reverse transcription polymerase chain reaction (RT-138 

PCR) or a ≥ four-fold increase in DENV antibodies between acute and convalescent samples, as 139 

measured by IgM capture enzyme-linked immunosorbent assay (ELISA). RT-PCR and ELISA 140 

protocols were as previously described [14]. 141 

Sentinel surveillance 142 

Sentinel febrile surveillance was carried out by NAMRU-6. Here we include dengue case 143 

counts from two public hospitals and eight public outpatient clinics located throughout Iquitos, 144 

together serving ~208,000 residents (~47% of the population during the study period) (DRSL, 145 

unpub. data). A febrile case was defined as an individual ≥ 5 years old experiencing a fever of ≥ 146 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2016. ; https://doi.org/10.1101/040220doi: bioRxiv preprint 

https://doi.org/10.1101/040220
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

38°C for a maximum of five days. These individuals were invited to participate, regardless of 147 

clinical diagnosis. An acute blood sample was collected at the time of enrollment and a 148 

convalescent sample was collected two to four weeks later, when possible. Criteria for positive 149 

cases were the same as for the cohorts, as described above, and infection detection protocols 150 

were as previously described [15].  151 

Passive surveillance 152 

Passive surveillance data are based on case counts reported to the DRSL. These include 153 

suspected and laboratory-confirmed dengue cases from the four districts that comprise the city of 154 

Iquitos, located in the Department of Loreto. Iquitos is estimated to account for ~64% of all 155 

dengue cases in the region [16]. The total number of reported cases was scaled accordingly. Case 156 

data were restricted to individuals ≥ 5 years of age, to correspond with the cohort and sentinel 157 

surveillance study protocols.  158 

Study period characteristics  159 

Two successive DENV introductions occurred during the study period of 1 July 2008 to 160 

30 June 2012. A virgin-soil invasion of dengue virus 4 (DENV-4) occurred in October 2008 [17] 161 

and a novel genotype of DENV-2 American/Asian lineage II (DENV-2) was introduced in 162 

November 2010 [18]. Both introductions resulted in replacement events, so that by the second 163 

year of circulation (‘interepidemic’ years), the introduced virus accounted for ≥ 90% 164 

symptomatic DENV infections identified in both cohort and health-center based surveillance.  165 

Based on ten years of data, high dengue incidence in Iquitos was observed between 166 

September and April; peak incidence occurred at various points in that interval. We used 167 

trimester transmission season designations: (1) low, May to August, (2) early high, September to 168 

December, and (3) late high, January to April [12]. While these designations do not reflect 169 
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observed incidence pattern for every year, they delineate periods of transmission as perceived by 170 

patients, physicians, and public health officials. 171 

Analyses 172 

All analyses were conducted by month (July to June, annually) to minimize the number 173 

of time periods with zero in the denominator of the incidence rate ratio (i.e., sentinel 174 

surveillance/cohort surveillance). Out of a possible 48 months, 43 were included in the analysis 175 

of passive surveillance data. Five months were excluded because no dengue cases were identified 176 

in the cohorts. Analysis using sentinel surveillance excluded two additional months: one because 177 

no cases were identified by sentinel surveillance and another when the participants were not 178 

enrolled for most of the month. Null months were distributed across transmission season 179 

categories, with three in the low season and two in each of the other seasons. 180 

Cohort incidence was defined as dengue cases per 100,000 persons per month. The 181 

surveillance population included all persons residing in houses monitored three times per week 182 

by door-to-door febrile surveillance in the longitudinal cohorts. Sentinel surveillance incidence 183 

was defined as dengue cases per 100,000 persons per month in the combined catchment 184 

populations of participating hospitals and clinics. Catchment areas were estimated in 2008 by the 185 

DRSL (unpub. data). Passive surveillance incidence included both suspected and confirmed 186 

dengue cases per 100,000 persons per month in the total estimated 2008 population of Iquitos 187 

[19]. To match the restrictions in cohort case data, population estimates used to calculate 188 

incidence for sentinel and passive surveillance were restricted to persons ≥5 years of age. All 189 

individuals under surveillance by any of the three methods were assumed to contribute person-190 

time to the incidence estimate 191 
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We calculated annual and monthly EFs for passive and sentinel surveillance to describe 192 

the range of healthcare based case detection, relative to cohort surveillance, within each year and 193 

between years. EFs were calculated as cohort incidence divided by either passive or sentinel 194 

incidence. Ratio of standard deviations was used to compare variation in data by year and 195 

season. 196 

To compare the relative timing of passive versus sentinel surveillance systems for early 197 

identification of seasonal increases in dengue incidence, we performed a cross-correlation 198 

analysis of both systems with cohort surveillance for the full time series and by transmission 199 

season. This method quantifies the strength of the temporal association between the cohort 200 

surveillance incidence rate at month t and the passive or sentinel surveillance incidence rate at 201 

month t+h (where the sign of h indicates a temporal lag or lead).  202 

Statistical analysis was performed using R version 3.1.1 [20]. Statistical significance was 203 

assessed at α = 0.05. 204 

Results 205 

Incidence 206 

In each of the four transmission years (July to June) studied, the highest annual and 207 

seasonal incidence occurred in cohort surveillance, followed by passive surveillance, and the 208 

lowest incidence occurred in sentinel surveillance (Figure 1, Table 1). An exception was the 209 

DENV-2 introduction (2010-11), when passive surveillance case numbers surpassed cohort 210 

surveillance in the late high season (January-April).   211 

At least 80% of cases were identified between September and April in each surveillance 212 

system.  Peak incidence generally occurred in the early high season (September-December) or 213 

early in the late high season (January-April) (Figure 1, Table 1). 214 
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Time-varying incidence 215 

Annual EFs from 2008-2012 based on passive surveillance relative to cohort surveillance 216 

were consistently lower than those based on sentinel surveillance data: 1.9 vs. 6.8, 14.2 vs. 25.0, 217 

1.2 vs 14.2, 2.4 vs. 30.7 (Table 1). Both data series were highly variable by month, compared to 218 

annual figures (Figure 2, Table 1). The overall relationship of sentinel surveillance data to cohort 219 

data was more variable than that of passive surveillance data to cohort data, as measured by the 220 

relative standard deviation of monthly EFs (ratio of sentinel/passive EF standard deviations = 221 

2.2). This pattern was also observed by year (ratio of standard deviations = 1.1, 1.4, 2.2, 10.8) 222 

and season (ratio of standard deviations = 13.2, 2.6, 1.8 for low, early high, and late high 223 

seasons, respectively). 224 

Passive surveillance overestimated dengue incidence in 26% (11/43) of months (indicated 225 

by EF values <1). Low (May-August), early high (September-December), and late high 226 

(January-April) seasons contained four, one and six of these overestimated months, respectively. 227 

Sentinel surveillance always underestimated incidence (i.e., EF >1).  228 

Monthly increases in sentinel surveillance incidence were correlated with increases in 229 

cohort surveillance cases during the same month, across the time series (correlation coefficient = 230 

0.86), as well as early (0.87) and late (0.84) high transmission seasons (Figure 3). Increases in 231 

passive surveillance incidence were also associated with increases in cohort incidence overall 232 

and by transmission season. The full time series showed statistically significant associations both 233 

in the same month and with a one-month lag (0.63 and 0.44, respectively). The strongest 234 

association in the early high season was at a one-month lag (correlation=0.57). In the late high 235 

season, incidence was highly correlated without any lag (correlation=0.65). Both systems 236 
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showed mixed positive and negative correlations in the low season, none of which were 237 

significant. 238 

Discussion 239 
 240 

Here we use four years of data from three concurrent dengue surveillance systems in 241 

Iquitos, Peru, to assess the relative performance of monthly data from sentinel surveillance and 242 

passive surveillance, based on the criteria of consistency and timeliness in relation to a referent 243 

cohort incidence time series. Sentinel surveillance data generally reflected seasonal increases in 244 

dengue incidence earlier than in passive surveillance – in the same month as the cohort, as 245 

opposed to a lag of up to two months – but were not a reliable indicator of the magnitude of the 246 

increase. Data from passive surveillance, on the other hand, were generally more consistent, in 247 

that they had a lower range of EF values, but overestimated incidence in 26% (11/43) of months, 248 

most often during the second half of the annual high transmission season.  249 

An annual EF, calculated by comparing cohort incidence to population-based 250 

surveillance data, can be used to estimate total disease burden and set public health priorities. 251 

Here, we found that passive surveillance data were a closer estimate of annual disease burden as 252 

measured using cohort data. In three of the four years, passive surveillance data included 253 

approximately half of all cases expected based on the cohort incidence, resulting in an EF of ~2. 254 

During 2009-2010, the EF rose to ~1. This change may have been driven by a lower sense of 255 

reporting urgency because DENV-4 had circulated in the previous year and was perceived to 256 

cause only mild illness. We extended the analysis to consider monthly EFs, with the goal of 257 

understanding how consistently sentinel surveillance data captures finer-scale trends when the 258 

objective is to monitor intervention outcomes or understand temporal changes in transmission 259 
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patterns. Compared to passive surveillance, monthly data from the sentinel study had an overall 260 

wider range of EF values (ratio of sentinel/passive standard deviations = 2.2).  261 

The temporal relationship between increased case counts in surveillance data and what 262 

actually happens in the population is of primary interest when the surveillance objective is to 263 

detect and rapidly respond to potential outbreaks. For infectious diseases with a seasonal pattern, 264 

such as influenza and dengue, the period of greatest interest is early in the annual high season. 265 

We found that sentinel surveillance data show a strong positive correlation to cohort data (i.e., 266 

both have rising case counts) within the same month during the trimester when increased 267 

incidence might first be expected. Conversely, the strongest correlation for passive surveillance 268 

was observed at a one-month lag, although there were similar correlations at zero and two 269 

months.  Our finding that > 50% (6/11) of the months in which incidence was overestimated by 270 

passive surveillance data occurred later in the ‘expected’ high season suggests that this temporal 271 

variation in identifying increased incidence may be due to seasonal differences in case reporting 272 

and/or physicians’ index of suspicion, so that detection rates are a product of both expectation of 273 

dengue and actual incidence.  274 

The advantage of early indication of potential outbreaks provided by sentinel surveillance 275 

data is tempered by their inconsistent proportional relationship to incidence in the community. In 276 

the early high season, the monthly EF for sentinel surveillance data varied much more than for 277 

passive surveillance data (ratio of sentinel/passive standard deviations = 2.6). Identifying 278 

increased incidence, when that might typically be expected, is necessary but likely not sufficient 279 

for triggering a costly vector control response in most dengue-endemic areas, depending on 280 

public health resources a public health department for responding to what may be a false alarm.  281 
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Observational study data only approximate ‘true’ surveillance or population incidence 282 

data. While this analysis is the first comparison of sentinel surveillance data with cohort data for 283 

dengue, the sentinel surveillance data considered here are based on hospital and clinic patients 284 

agreeing to participate in the study, rather than the total number of those seeking medical 285 

treatment. However, this sampling effect may be offset by complete data reporting in the context 286 

of a scientific study. These sentinel data might also introduce an age-related bias by consistently 287 

capturing a lower proportion of pediatric patients, based on observations by our study 288 

phlebotomists that children are generally less willing than adults to consent to a venous blood 289 

draw (unpub. data).  290 

Another limitation is that cohort surveillance may not be measuring the same population 291 

as was sampled by the other two surveillance systems. Passive and sentinel surveillance data in 292 

Iquitos are drawn from healthcare facilities throughout the city, whereas one of the cohorts was 293 

distributed across the northern portion of the city and the other focused in two neighborhoods. 294 

However, strong temporal correlation between increased incidence in the cohort and in sentinel 295 

surveillance suggests that, at least early in the high transmission season, these data are not being 296 

significantly biased by the spatial heterogeneity of DENV transmission that has been observed in 297 

Iquitos [21]. 298 

Passive surveillance data are generally a more consistent measure of dengue incidence in 299 

the community, compared to sentinel surveillance, while sentinel surveillance data provide a 300 

more timely indicator of potential seasonal outbreaks, in the context of Iquitos. In other places 301 

where data from both types of surveillance systems are available, these findings can guide 302 

decisions about which data to use for specific public health objectives. For example, sentinel 303 

surveillance data may be useful in the context of an early outbreak warning system, but do not 304 
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appear to be reliable for monitoring long-term pathogen transmission trends, due to their overall 305 

inconsistent relationship with population-based incidence. On the other hand, passive 306 

surveillance data more accurately measure overall incidence trends, yet often overestimate 307 

monthly incidence late in the transmission season when they include suspected cases, suggesting 308 

that physician suspicion and reporting are driving surveillance measures. An integrated 309 

surveillance system could trigger low-resource public health actions based on sentinel 310 

surveillance, such as alerting all healthcare facilities specifically to encourage timely reporting 311 

and increase healthcare awareness. This could reduce delays in passive surveillance data, while 312 

retaining their population-level representativeness. To improve the understanding, and thus the 313 

application, of surveillance data there is a need for objective measures of how human behavioral 314 

factors such as physician suspicion, case reporting, and treatment seeking influence 315 

measurements of incidence. Results of this study highlight the need to explicitly consider the 316 

implications of inconsistent detection when using infectious disease incidence data for outbreak 317 

detection and trend monitoring. 318 
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Table 1: Incidence per 100,000 persons per time period, and associated expansion factors (EFs). 437 
 438 
 Cohort 

surveillance 
Sentinel 
surveillance 

Passive 
surveillance  

2008-09    
    
Annual total  2324.6 339.9 1220.4 
Low season total 90.5  27.6 82.1 
Early high season total 1725.3  204.6 691.3 
Late high season total 508.8  107.7 447.1 
    
Monthly rangeb 16.6 – 1128.1 5.3 – 106.9 4.6 – 233.3 
Peak incidence month October October December 
    
Annual EF NA 6.8 1.9 
Monthly EF range NA 2.1 – 10.6 0.14 – 7.2 
    
2009-10    
    
Annual total  3341.4 133.5 236.08 
Low season total 363.5 25.0 72.7 
Early high season total 1020.5 19.2 97.5 
Late high season total 1957.4 89.3 65.9 
    
Monthly rangea 18.2 – 788.0 1.4 – 29.8 11.2 – 33.2 
Peak incidence month March February November 
    
Annual EF NA 25.0 14.2 
Monthly EF range NA 4.2 – 75.9 0.60 – 55.2 
    
2010-11    
Annual total  3461.8 244.0 2810.0 
Low season total 400.4 13.9 81.5 
Early high season total 836.0 51.9 76.5 
Late high season total 2225.4 177.7 2651.9 
    
Monthly rangeb 19.2 – 1554.0 1.4 – 128.7 4.6 – 1272.8 
Peak incidence month January January January 
    
Annual EF NA 14.2 1.2 
Monthly EF range NA 2.5 – 93.6 0.20 – 31.4 
    
2011-12    
Annual total  1015.8 33.1 427.3 
Low season total 128.0 6.2 141.0 
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Early high season total 135.3 12.0 38.6 
Late high season total 752.5 14.9 247.7 
    
Monthly rangeb 19.3 – 501.7 1.4 – 4.3 8.8 – 120.7 
Peak incidence month January December-Marchb April 
    
Annual EF NA 30.7 2.4 
Monthly EF range NA 13.4 – 116.1 0.4 – 11.3 

 439 
a Does not include months in which no cases were detected   440 
b Equal incidence across four months  441 
 442 

 443 

 444 

 445 

 446 

 447 

 448 
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 450 

  451 

Figure 1: Incidence measured as per 100,000 population per month by sentinel, passive, and 452 
cohort surveillance. Bars are grouped by month to represent incidence as measured by each of 453 
the three surveillance systems. 454 
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 455 
Figure 2: Monthly and annual expansion factors calculated as the ratio of cohort to passive (top 456 
panel) and sentinel (bottom panel) incidence (monthly or annual cases per 100,000 population). 457 
 458 

 459 
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 463 

 464 

Figure 3: Temporal correlation of case detection for passive surveillance and sentinel 465 
surveillance relative to cohort surveillance. Positive numbers on the x-axis indicate a delayed 466 
increase in cases. Positive numbers on the y-axis indicate a positive relationship (i.e., sentinel or 467 
passive surveillance case numbers increase as active surveillance case numbers increase). 468 
Horizontal dotted lines represent statistical significance at α = 0.05 469 
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