
Plant diversity accurately predicts insect diversity in two 

tropical landscapes 

Kai Zhang, * † 1 Siliang Lin, ‡ 1 Yinqiu Ji, * Chenxue Yang, * Xiaoyang Wang, 

* † Chunyan Yang, * Hesheng Wang, § Haisheng Jiang, ‡ Rhett D. Harrison ¶ 

** $ and Douglas W. Yu * †† 

* State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy 

of Sciences, Kunming 650223, China 

† Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China 

‡ School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China 

§ Hainan Yinggeling National Nature Reserve, Baisha, Hainan 572800, China 

¶ World Agroforestry Center, East and Central Asia Regional Office, Kunming 650201, China 

** Center for Mountain Ecosystem Studies (CMES), Kunming Institute of Botany, Chinese Academy of 

Sciences, Kunming 650201, China 

$ Current address: World Agroforestry Centre, East & Southern Africa Region, 13 Elm Road, Woodlands, 

Lusaka, Zambia. 

†† School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, 

UK  

 

Key-words: Arthropoda, biodiversity, biomonitoring, host specificity, insect-plant interactions, 

surrogate species 

co-corresponding authors. DWY +86 871 68125438 (ofc), 86 871 65110887 (fax), 

dougwyu@gmail.com; RDH +86 18687136498 (ofc), 86 871 65223377 (fax), r.harrison@cgiar.org 

Send proofs to DWY. 

Running title: Plants accurately predict insects 

1 Shared first-authorship.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/040105doi: bioRxiv preprint 

https://doi.org/10.1101/040105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhang et al.  Plants accurately predict insects 

2 

Abstract 

Plant diversity surely determines arthropod diversity, but only moderate correlations between 

arthropod and plant species richness had been observed until Basset et al. (2012, Science 338: 

1481-1484) finally undertook an unprecedentedly comprehensive sampling of a tropical forest 

and demonstrated that plant species richness could indeed accurately predict arthropod species 

richness. We now require a high-throughput pipeline to operationalize this result so that we 

can (1) test competing explanations for tropical arthropod megadiversity, (2) improve 

estimates of global eukaryotic species diversity, and (3) use plant and arthropod communities 

as efficient proxies for each other, thus improving the efficiency of conservation planning and 

of detecting forest degradation and recovery. We therefore applied metabarcoding to Malaise-

trap samples across two tropical landscapes in China. We demonstrate that plant species 

richness can accurately predict arthropod (mostly insect) species richness and that plant and 

insect community compositions are highly correlated, even in landscapes that are large, 

heterogeneous, and anthropogenically modified. Finally, we review how metabarcoding 

makes feasible highly replicated tests of the major competing explanations for tropical 

megadiversity.  
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Introduction 

The relationship between plant diversity and insect diversity is fundamental to ecology 

because (1) it underpins global species estimates of arthropods based on plant diversity 

(Condon et al. 2008; Hamilton et al. 2013; Stork et al. 2015); (2) it improves our 

understanding of the drivers of arthropod diversity and assembly structure (Novotny et al. 

2006; Lewinsohn & Roslin 2008; Pellissier et al. 2013); and (3) a strongly predictive 

relationship could open the way to using plant community metrics as surrogates for arthropod 

communities (and vice versa), thus improving the efficiency of efforts to conserve 

biodiversity, and ecosystem functions and services (Castagneyrol & Jactel 2012). In 

particular, arthropod species richness and community composition (i.e. species identities and 

frequencies) could serve as a sensitive method for detecting and quantifying the degree of 

forest degradation and recovery (Ji et al. 2013; Edwards et al. 2014), which is especially 

needed for the monitoring and verification of contracts to pay local populations and 

governments to protect and restore standing forest, also known as PES (Payments for 

Environmental Services) and REDD+ schemes (Reduction in Emissions from Deforestation 

and Degradation) (Bustamante et al. 2016).  

A priori, plant diversity must surely predict insect diversity (Lewinsohn & Roslin 2008; 

Haddad et al. 2009), because insects depend directly (via herbivory, pollination, and housing) 

and indirectly (via consumption of herbivores) on plant species, and insect herbivores show 

dietary specialization to subsets of plant taxa (Novotny & Basset 2005). In addition, plant and 

insect coevolutionary interactions have driven the evolution of the vast diversity of plant and 

insect species today (Thompson 1994; Cruaud et al. 2012; Edger et al. 2015). (N.B. In 

practice, studies of terrestrial arthropod diversity tend to focus on insects, because insects 
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make up the majority of described arthropods and can be easier to sample. This study will 

also follow this practice.) 

Not surprisingly, many papers have reported significant correlations between arthropod 

(mostly insect) and plant beta and alpha diversities (reviews in Lewinsohn & Roslin 2008; 

Castagneyrol & Jactel 2012; Pellissier et al. 2013). In particular, work by Novotny et al. 

(2002, 2006, 2007) has strongly suggested that the primary driver of high species richness 

among herbivorous insects in tropical forests is simply the greater number of plant species in 

the tropics, rather than either higher levels of host specificity and beta diversity or more insect 

species per area of foliage. In short, the local number of insect species should increase nearly 

linearly with the local number of plant species, and with a slope greater than one, since each 

plant species is associated with multiple herbivore and predator species (Castagneyrol & 

Jactel 2012). 

However, correlations between arthropod (mostly insect) and plant species-richness have 

shown only moderate fit. Castagneyrol and Jactel’s (2012) comprehensive meta-analysis 

reported mean correlations of only 0.39 and 0.51 for studies in single habitats and across 

multiple habitats, respectively, and a regression slope < 1, even for studies that focused on 

herbivores and pollinators. 

Four possible reasons for this apparent lack of explanatory power are (1) geographic 

variation in the ratio of herbivores to plants and of non-herbivores to herbivores, due to 

coevolutionary and ecological interactions amongst plants, herbivores and their predators 

(Hamilton et al. 2013); (2) variation across plant species in their geographic ranges, which is 

positively correlated with total insect richness (Condon et al. 2008); (3) correlations and 

linear regressions being inappropriate models; and (4) incomplete taxon sampling (Lewinsohn 

& Roslin 2008). The last explanation is straightforward to test at least in principle. For 
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instance, although Pellissier et al. (2013) successfully demonstrated a correlation between 

phylogenetic beta diversities of plant and butterfly communities, they also found that plant 

phylogenetic alpha diversity did not explain butterfly phylogenetic alpha diversity. One 

reason was that some of the local plant taxa were not consumed by Lepidoptera and therefore 

contributed to variance in plant alpha diversity but not to explanatory power. Presumably, 

those plant species are consumed by other insect clades, and a taxonomically more complete 

sample might have uncovered a positive relationship between plant and insect alpha diversity.  

Thus, in a groundbreaking study involving 102 investigators and 129 494 arthropod 

specimens collected in twelve 0.04-ha quadrats of tropical forest (0.48 ha total), Basset et al. 

(2012) demonstrated that local tree species richness could predict the local species richness of 

both herbivore and non-herbivore arthropod taxa exceptionally well. For each of their 

eighteen taxon datasets (corresponding to ordinal or sub-ordinal guilds), Basset et al. (2012) 

used tree-species data from the 0.48 ha of sampling effort to extrapolate total arthropod 

species richness for the entire 6000-ha reserve. Overall, they found that what they called their 

“plant models,” which were parameterized species-accumulation curves that predicted the 

accumulation of arthropod species from the accumulation of tree species, were consistently 

able to predict “to a precision of 1%” independently derived best estimates of total arthropod 

species richness for the entire 6000-ha reserve.  

In summary, Basset et al. (2012) showed that, given comprehensive taxon sampling and a 

more sophisticated statistical approach than correlations, plant species richness could indeed 

accurately predict arthropod species richness. However, due to their unprecedentedly huge 

sampling and taxonomic effort, Basset et al.'s (2012) protocol is effectively unrepeatable (and 

itself was unavoidably limited to a tiny area [0.48 ha]), but it would be highly desirable to be 

able to repeat this protocol efficiently in large numbers and over large spatial scales, i.e. to 
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‘operationalize’ the approach. At larger spatial scales (i.e. within and across landscapes), 

additional determinants of community structure can start to contribute, such as variation in 

environmental conditions and variation in regional species pools (Castagneyrol & Jactel 

2012). It is at these larger spatial scales that plant community data would be most valuable in 

management for acting as a surrogate for arthropod diversity (and vice versa). 

Metabarcoding is emerging as a promising way of advancing biodiversity research 

(Taberlet et al. 2012; Cristescu 2014). In metabarcoding, bulk samples of eukaryotes or 

environmental DNA are extracted, amplified, and sequenced for one or more taxonomically 

informative genes (DNA ‘barcodes’) (Taberlet et al. 2012; Yu et al. 2012; Ji et al. 2013; 

Cristescu 2014). Most importantly, despite false negatives (species failing to be detected) and 

false positives (falsely present species) being found in metabarcoding, due to primer bias (Yu 

et al. 2012; Clarke et al. 2014; Deagle et al. 2014; Piñol et al. 2015) and other errors in the 

metabarcoding pipeline (sequence errors and chimeras from PCR, library prep, and/or 

pyrosequencing, and species lumping and splitting in OTU clustering and taxonomic 

assignment), species richness and composition estimates from metabarcoded arthropod 

samples have been shown to correlate well with estimates calculated from standard 

morphological identification, even when the focal taxa are different (Yu et al. 2012; Ji et al. 

2013; Edwards et al. 2014). 

We therefore used metabarcoding to scale up Basset et al.’s (2012) approach, and we asked 

if plant diversity can predict insect diversity at landscape scales. Specifically, 1) does plant 

species richness predict insect species richness (alpha diversity); 2) does plant community 

composition predict insect community composition (beta diversity); and 3) is the predictive 

power of the plant model consistent across insect orders and over different seasons?  
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We report here that plant models parameterized with metabarcoding data produce 

landscape-scale estimates of total insect species richness that are very close to independent 

non-parametric estimates of insect species richness, and we also find a high degree of 

correlation between insect and plant community compositions in two widely separated 

tropical landscapes. As a result, we conclude that, armed with high-throughput methods, it 

should indeed be possible to operationalize Basset et al.'s (2012) important result that plant 

diversity can accurately predict arthropod diversity.  

One potential benefit is that modern remote-sensing technologies, which show increasing 

promise at efficient assessment of vegetation (Féret & Asner 2014; Baldeck et al. 2015), 

might now also make possible the efficient management of a large proportion of animal 

biodiversity. Another benefit, and perhaps the most important one, is that it should now be 

possible to conduct highly replicated tests of the major competing explanations for tropical 

megadiversity (Lewinsohn & Roslin 2008), and we explain this in detail in the Discussion. 

Materials and Methods 

Study sites 

We conducted our study in two montane landscapes in tropical southern China (Fig. 1), which 

differ in the nature of environmental heterogeneity they encompass and provide contrasting 

case studies of the relationship between plant and insect diversity at landscape scales.  

Yinggeling Nature Reserve is located in central Hainan province (UTM/WGS84: 49N 

328731 E, 2102468 N), a land-bridge island, and is the largest nature reserve in Hainan with 

an area of > 500 km2. The elevation ranges from 180 m to 1812 m, and the annual mean 

temperature correspondingly ranges between 24°C to 20°C. Mean annual rainfall is 1800–

2700 mm. The principal vegetation types are tropical montane rainforest and tropical montane 
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evergreen broadleaf forest (Lin et al. 2013). Over 64% of the vegetation in the reserve is in a 

near-pristine state, although many of the carnivores have been extirpated (Lau et al. 2010). 

Mengsong (UTM/WGS84: 47N 656355 E, 2377646 N) is a sub-catchment of the upper 

Mekong River, with an area of ~100 km2. The elevation ranges from 800 m to 2000 m. 

Mengsong has a subtropical climate influenced by the Indian monsoon. The annual mean 

temperature is 18°C (at 1600 m asl). Mean annual rainfall varies between 1600–1800 mm, 80% 

of which falls in May–October. Mengsong has a > 200-year history of occupation by 

indigenous farmers, who formerly practiced swidden agriculture (Xu et al. 2009). Hence, 

today the landscape is a mosaic of mature forest with a history of selective cutting, forest that 

has naturally regenerated from clearance, and currently open land, such as terrace tea fields 

and grasslands. The principal primary vegetation types are seasonal montane rain forest in 

valleys, which grades into tropical montane evergreen broadleaf forest on upper slopes and 

ridges (Zhu et al. 2005). Part of Mengsong was included in Bulong Nature Reserve 

established in 2009. As with Yinggeling, many of the larger vertebrates have been extirpated 

(Sreekar et al. 2015). 

Biodiversity sampling 

Yinggeling. - Twenty-nine 50×50 m plots were set up in Yinggeling in May 2009 (10 plots) 

and September 2011 (19 plots). The plot locations were selected from a satellite image to 

incorporate as much of the substantial topographic variation found within the nature reserve 

as logistically possible. However, plot locations were not strictly randomly chosen. Plots 

established in 2009 were clustered, so for our study, only one plot was selected randomly 

from each cluster to minimize pseudo-replication. In total, 21 plots in Yinggeling were 

included (Fig. 1). All trees ≥ 5 cm DBH (‘diameter at breast height,’ which is set at 1.3 m 

from the soil surface) in each plot were surveyed. Species name, DBH, height and crown 
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width were recorded. Field identifications were conducted by local experts, and trees that 

were not identified to the species level were excluded from further analyses. 

Insects were sampled in the wet season (September to November 2011) using a Malaise 

trap located at the center of each plot for an average of 16 days (range: 12 - 25) depending on 

the weather, which affects capture efficiency. Malaise traps are widely used in sampling 

insect diversity, and are designed to capture flying insects that escape upwards (mainly 

Diptera and Hymenoptera), but are generally not suitable for Coleoptera, which drop when 

they hit a barrier (review in Russo et al. 2011). The collecting bottles on the Malaise traps 

were filled with 99.9% ethanol. Upon collection, the contents of each bottle were sieved to 

remove ethanol and placed in a storage bottle with fresh 99.9% ethanol. Between samples, the 

sieve and other equipment were rinsed with water and ethanol-flamed to prevent DNA cross-

contamination. 

Mengsong. - Twenty-eight 100×100 m plots were set up from April 2010 to May 2011, 

based on a stratified random sampling design described in Paudel et al. (2015a; b) (Fig. 1). 

Plots covered a gradient from heavily disturbed shrubland and grassland (n = 6), through 

regenerating forest (n = 12) to mature forest (n = 10). Each plot consisted of nine 10-m radius 

subplots arranged on a square grid with 50 m spacing (Beckschäfer et al. 2013). All trees, 

bamboos, and lianas with ≥ 10 cm DBH were recorded within a 10-m radius of the subplot 

center, and all trees, bamboos, and lianas with 2-10 cm DBH were recorded within a 5-m 

radius of the subplot center. Species name, DBH, distance and angle to the subplot center 

were recorded. All herbs, ferns, and woody seedlings with < 2 cm DBH were surveyed within 

1-m radius of the subplot center using a Braun-Blanquet coverage estimator (total coverage 

for each species was estimated visually and recorded using cover-abundance scale within six 

cover classes). Vouchers of every species in each plot were collected, and field identifications 
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were confirmed (or adjusted) based on comparison to herbarium material at the 

Xishuangbanna Tropical Botanical Garden (HITBC). The vouchers were later deposited at the 

Kunming Institute of Botany.  

Insects were collected with Malaise traps in five subplots (four corners and the middle 

subplot) over six days at the end of the wet season (late September-December 2010, hereafter 

wet season) and at the end of the dry season (April-June 2011, hereafter dry season). The 

collection and laboratory processing protocol were same as for Yinggeling. Subplot samples 

were pooled within each plot for further analyses. 

DNA extraction, PCR amplification, pyrosequencing, and bioinformatic analysis 

Samples were prepared by using one leg from all specimens equal to or larger than a large fly 

(~5 mm length) and whole bodies of everything smaller, added with 4 mL Qiagen ATL buffer 

(Hilden, Germany) (20 mg/mL proteinase k = 9 : 1) per 1 g of sample, homogenized with 

sterile 0.25-inch ceramic spheres in a FastPrep-24® system (MP Biomedicals, Santa Ana, CA, 

USA) set on 5 m/s for 1 min at room temperature, and incubated overnight at 56 °C. The 

genomic DNA was extracted with the Qiagen DNeasy Blood & Tissue Kit from 10% of the 

lysed solution, with ≤ 900 μL per spin column, and quality-checked using the Nanodrop 2000 

spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). DNA was PCR 

amplified for the standard mtCOI barcode region using the degenerate primers, Fol-degen-for 

5′-TCNACNAAYCAYAARRAYATYGG-3′ and Fol-degen-rev 5′-

TANACYTCNGGRTGNCCRAARAAYCA-3′ (Yu et al. 2012). The standard Roche A-

adaptor and a unique 10 bp MID (Multiplex IDentifier) tag for each sample were attached to 

the forward primer. PCRs were performed in 20 μL reaction volumes containing 2 μL of 10 × 

buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.4 μM each primer, 0.6 U HotStart Taq DNA 

polymerase (TaKaRa Biosystems, Ohtsu, Japan), and ~60 ng of genomic DNA. We used a 
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touchdown thermocycling profile of 95 °C for 2 min; 11 cycles of 95 °C for 15 s; 51 °C for 30 

s; 72 °C for 3 min, decreasing the annealing temperature by 1 degree every cycle; then 17 

cycles of 95 °C for 15 s, 41 °C for 30 s, 72 °C for 3 min and a final extension of 72 °C for 10 

min. We used non-proofreading Taq and fewer, longer cycles to reduce chimera production 

(Lenz & Becker 2008; Yu et al. 2012). DNA from each sample was amplified in three 

independent reactions and pooled to reduce amplification stochasticity. A negative control 

was included for each sample during PCR runs to detect contamination. For pyrosequencing, 

PCR products were gel-purified by using a Qiagen QIAquick PCR purification kit, quantified 

using the Quant-iT PicoGreen dsDNA Assay kit (Invitrogen, Grand Island, New York, USA), 

pooled and A-amplicon-sequenced on a Roche GS FLX at the Kunming Institute of Zoology. 

The 21 Yinggeling samples were sequenced on two 1/8 regions (one 1/8 region shared with 

other samples). The 28 Mengsong samples were sequenced on one whole run (four 1/4 

regions, late September-December 2010: wet season) and two 1/4 regions (April-June 2011: 

dry season), respectively. 

We followed an experimentally validated bioinformatic pipeline (Yu et al. 2012; Ji et al. 

2013) to denoise, deconvolute, and cluster the reads into 97%-similarity Operational 

Taxonomic Units (OTUs). Quality control: Header sequences and low-quality reads were 

removed from the raw output in the QIIME 1.5.0 environment (split_libraries.py: -l 100 -L 

700 -H 9 -M 2 -b 10) (Caporaso et al. 2010b). We removed any sequences < 100 bp. 

Denoising, deconvoluting and chimera removal: PyNAST 1.1 (Caporaso et al. 2010a) was 

used to align reads against a high-quality, aligned data set of Arthropoda sequences (Yu et al. 

2012), and sequences that failed to align at ≥ 60% similarity were removed. The remaining 

sequences were clustered at 99% similarity with USEARCH 5.2.236 (Edgar 2010), a 

consensus sequence was chosen for each cluster, and the UCHIME function was used to 
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perform de novo chimera detection and removal. A clustering step is required for chimera 

detection because chimeric reads are expected to be rare and thus belong to small clusters 

only. The final denoising step used MACSE 0.8b2 (Ranwez et al. 2011), which aligns at the 

amino acid level to high-quality reference sequences and uses any stop codons in COI to infer 

frameshift mutations caused by homopolymers. OTU-picking and Taxonomic assignment: 

Sequences were clustered at 97% similarity using CROP 1.33 (Hao et al. 2011). Each cluster 

of sequences represents a set of COI reads that are more similar to each other than to any 

other cluster, and is called an Operational Taxonomic Unit (OTU), which should approximate 

or somewhat underestimate biological species. OTUs were assigned taxonomies using SAP 

1.0.12 (Munch et al. 2008), keeping only taxonomic levels for which the posterior probability 

was ≥ 80%. OTUs containing only one read (which tend to be PCR or sequencing errors and 

are uncertain presences [Yu et al. 2012; Ficetola et al. 2015]) or assigned to non-Arthropoda 

taxa were discarded.  

Statistical analysis 

Analyses were mostly performed using R 3.2.2 (R Core Team 2015) and packages BAT 1.3.1 

(Cardoso et al. 2015) and vegan 2.3-0 (Oksanen et al. 2015). We converted metabarcoding 

read numbers to presence/absence data before analyses, because read numbers are unlikely to 

reflect biomass or abundance (Yu et al. 2012). We first analyzed all Insecta-assigned OTUs 

together and then separately analyzed each Insecta order with ≥ 50 OTUs, including 

Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, and Psocoptera (the last for 

Mengsong only). More than 90% of OTUs were identified to order rank. We did not conduct 

analysis at family level, since less than half of the OTUs were identified to this rank. We 

tentatively included Arachnida from Mengsong (n = 84 and 83 OTUs for wet and dry season, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/040105doi: bioRxiv preprint 

https://doi.org/10.1101/040105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhang et al.  Plants accurately predict insects 

13 

respectively) in our analyses of species richness, although they are a by-catch of Malaise traps 

and hence may have a more stochastic pattern. 

Species richness 

To test whether plant species richness can predict insect species richness estimated from 

metabarcoded Malaise-trap samples (i.e. Insecta OTU richness), we first calculated Pearson's 

correlations (cor.test function) to allow comparison with the wider literature (Castagneyrol & 

Jactel 2012). We then applied the “plant model” approach of Basset et al. (2012), as follows: 

First, the mean number of arthropod OTUs and of plant species found with each additional 

vegetation sampling plot (i.e. rarefaction curves) (specaccum in vegan) were calculated. To 

control for the order in which plots are added, we randomly subsampled the data without 

replacement (method = “random”, permutations = 9999).  

Second, we used CurveExpert 1.4 (Hyams 2009; default settings, except maximum 

iterations = 1000) to fit functions to the relationship between the mean number of arthropod 

OTUs and the mean number of plant species found with each additional sampling plot. 

Following Basset et al. (2012), we used AICc to choose the best function from three 

candidates: linear, power, and Weibull functions, and called the best function the “plant 

model.” For comparison, we also chose the best function from a broader selection of 25 

candidates, including ones used in other studies (Dengler 2009). These alternative candidates 

included linear (including quadratic fit and 3rd degree polynomial fit), exponential, power, 

growth, sigmoidal and rational functions (Hyams 2009). We selected the top three functions 

based on AICc. Since statistical models offering a good fit to the data do not necessarily result 

in a robust species richness estimates (Basset et al. 2012), we again fitted the top three 

functions to a random subset of data (20 out of 28 plots for Mengsong, 15 out of 21 plots for 

Yinggeling) to check for robustness. Then we predicted the arthropod OTU richness at 297 
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tree species (the number of species in all the Yinggeling survey plots) or at 807 vascular plant 

species (the number of species in all the Mengsong survey plots) with these newly 

parameterized models, and we compared these predicted richnesses against the observed 

arthropod OTU richnesses in our metabarcode datasets. The best function was the one with 

the smallest absolute difference (similar to the “lowest error of extrapolation” in Dengler 

2009). The results from three and 25 candidate functions proved similar, and we thus focused 

on the results from the first approach, using three candidate functions. 

Third, we extrapolated the best function (i.e. the “plant model”) to the total plant species 

richness in the landscape to generate the plant model’s prediction of total arthropod species 

richness. In Yinggeling, there are 603 tree species known from the total reserve (Zhang et al. 

2013). In Mengsong, no information on total vascular plant species richness is available, so 

we used non-parametric estimators to extrapolate from the plot data to total vascular plant 

species richness (alpha.accum in BAT). 

Fourth, we used non-parametric estimators to independently estimate total arthropod OTU 

richness in the landscape directly from the arthropod dataset (alpha.accum in BAT), and we 

compared this extrapolation with the prediction from the plant model (‘same-site prediction’). 

Specifically, we calculated the explained variance (R2) when fit to a y = x model, and also 

calculated correlations (cor.test, method = “pearson”) for insect orders.  

Note that there exists no ‘true’ biodiversity dataset to test against. Basset et al. (2012) used 

both statistical (best-fitting function with lowest error of extrapolation) and biological 

arguments (relevant surveys in the world with large sampling efforts) to get their best 

estimates of arthropod diversity. As no comparable surveys with metabarcoding techniques 

are available, we necessarily used non-parametric estimators, choosing those (Jackknife1, 

Jackknife2 and Chao) that have been shown to perform better than other estimators (Walther 
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& Moore 2005; Hortal et al. 2006). Non-parametric estimators use the species 

abundance/occurrence relationships (e.g. the number of species occurring in only one or two 

sites throughout the samples) to estimate the total number of species (Hortal et al. 2006). We 

further applied a correction factor (P) for these non-parametric estimators to improve 

performance under conditions of low sampling effort, which is usually the case in arthropod 

surveys (Lopez et al. 2012). In Mengsong, the above approach was firstly applied to the 

whole landscape, and then separately to forests (mature and regenerating forest) and open 

lands. We also included only tree data to build the plant model in the Mengsong forests.  

Finally, to evaluate the generality of our plant models, we used Yinggeling's plant model to 

try to predict Mengsong insect diversity, and used Mengsong's plant model to try to predict 

Yinggeling insect diversity (‘cross-site prediction’). Yinggeling and Mengsong are good 

candidates for such a test, as they are in the same zoogeographic region (Holt 2013) but are 

far from each other (~1000 km). However, Yinggeling and Mengsong have different 

landscape histories, and their vegetation was sampled differently. To maximize comparability, 

we used only the Mengsong plots (n = 16) located within the forest of Bulong Nature Reserve 

(~60 km2) (Fig. 1) and only included trees ≥ 5 cm DBH in each plot. 

Community composition 

To test whether plant species compositions can predict insect species compositions, we could 

use Mantel tests, Procrustes analysis, or co-correspondence analysis, with each approach 

offering advantages and drawbacks (review in Gioria et al. 2011). We elected to use 

Procrustes analysis, because it is generally more powerful than Mantel tests and is more 

widely used than co-correspondence analysis, facilitating comparison with other studies. 

Procrustes analysis superimposes one ordination on top of another by minimizing the sum of 

the squared distances between points from the first to the second ordination. The probability 
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of the fit is calculated by comparing the observed sum of squared distances against those from 

a null distribution obtained by repeated Procrustes fitting of permuted data (Oksanen et al. 

2015). We used a non-metric multidimensional scaling (NMDS) ordination (metaMDS in 

vegan, distance = “jaccard”) of community composition data as the input data matrices for the 

Procrustes analyses (protest in vegan, symmetric = TRUE). Because the Procrustes analysis 

requires an identical number of axes in both ordinations, we constrained the number of axes to 

two (k = 2) for Yinggeling and four (k = 4) for Mengsong across all analyses. Initial 

exploratory analyses found that two/four axes were optimal for most groups (low stress and 

consistent results). Stress values ranged from 0.08 - 0.24. We also used these approaches to 

compare variation in community compositions among insect orders and between the two 

seasons in Mengsong. 

Results 

Species richness 

The 21 Yinggeling samples produced 40 261 sequence reads, and the 28 Mengsong samples 

produced 519 865 and 253 025 reads for wet season and dry season, respectively. After 

bioinformatic processing, we obtained 1 995 Insecta OTUs from Yinggeling, and we obtained 

2 946 Insecta OTUs from Mengsong, including 2 073 in the wet season and 2 215 in the dry 

season samples. None of the PCR negative controls detected sample contamination.  

All the best-fit ‘plant models’ were Weibull functions, except for Hymenoptera in the dry 

season in Mengsong, which was a power function. All the ‘plant models’ exhibited very close 

fits to the non-parametric estimates of total OTU richness for insects as a whole (Insecta) and 

for individual orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera and 

Psocoptera) in both Yinggeling (Figs. 2 and S1, all Pearson’s r > 0.98) and Mengsong (Figs. 2 
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and S1, all Pearson’s r > 0.99). Similar results were obtained when we analyzed forests and 

open land separately in Mengsong (Figs. S2 and S3), and similar results were obtained when 

we used only trees to build the plant models in Mengsong forests (Fig. S4). In contrast, and 

consistent with the results compiled by Castagneyrol & Jactel (2012), simple Pearson 

correlations between insect OTU richness and plant species richness at the survey plot level 

were low (Yinggeling: all r ≤ 0.14; Mengsong: all r ≤ 0.29 for both wet and dry seasons).  

The cross-site plant-model predictions (Yinggeling plant model predicting Mengsong 

Insecta OTU richness and vice versa) lay within an error of 2X for all Insecta and for three 

orders (Coleoptera, Hemiptera, Hymenoptera), but not for Diptera and Lepidoptera (Fig. 3). 

Given the observed scatter, all correlations were, not surprisingly, very low (Mengsong’s wet-

season plant model predicting Yinggeling: all Pearson’s r < 0.1; Yinggeling’s plant model 

predicting Mengsong’s wet season: all Pearson’s r ≤ 0.1. Similar results were obtained when 

we used Mengsong’s dry-season data, Fig. S5. In all analyses, we excluded the Insecta points 

to avoid double counting.) 

Community composition 

Community compositions in Insecta and plants were highly correlated in both Yinggeling and 

Mengsong (Fig. 4, Table 1). Correlations were reduced somewhat but were still high when we 

considered insect orders separately, likely reflecting the smaller sample size at this taxonomic 

level (Figs. S6 and S7, Table 1). High correlations were maintained even when we limited our 

analyses to only forests in Mengsong (Table S1). 

In Mengsong, 61% of Insecta OTUs recorded in the wet season were also recorded in the 

dry season. Interestingly, community compositions remained highly correlated between these 

two seasons for all Insecta and for individual insect orders, except Lepidoptera and 

Psocoptera (Table 1), showing that despite turnover across seasons, the different insect 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/040105doi: bioRxiv preprint 

https://doi.org/10.1101/040105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhang et al.  Plants accurately predict insects 

18 

species compositions contain the same ‘ecological information,’ meaning that they 

consistently reveal the persistent compositional differences between the different vegetation 

plots, which themselves reflect differences in microhabitats, food sources and histories. 

Finally, community compositions were highly correlated between most pairs of insect 

orders in both Yinggeling and Mengsong, with the exceptions of Lepidoptera and Hemiptera 

in Yinggeling and Lepidoptera and Psocoptera in the wet season of Mengsong (Table 1). This 

suggests that different insect orders also contain similar ecological information about habitat 

differences. Again, these results were upheld even when analyzing only forests in Mengsong 

(Table S1). 

Discussion 

Our study has demonstrated (1) a close fit between estimates of total insect species richness 

that have been derived from plant models and from non-parametric estimators (alpha diversity, 

Figs. 2 and S1) and (2) a high degree of correlation between insect community composition 

and plant community composition (beta diversity, Fig. 4). We replicated our results in two 

landscapes (Yinggeling and Mengsong), in two seasons in one of the landscapes (wet and dry 

in Mengsong), and across multiple insect orders (Figs. S6 and S7). Furthermore, we have 

extended the plant-model approach from tropical America to tropical Asia, from a 

homogeneous forest of 60 km2 to two heterogeneous, anthropogenically modified landscapes 

(~100 - 500 km2), and from a labor-intensive dataset of morphologically identified specimens 

to an efficiently processed dataset of metabarcoded samples.  

Our results thus strongly support Basset et al.’s (2012) finding that plant species richness 

can be an accurate predictor of insect species richness in tropical forest, and we show that 

plant and insect species compositions are highly correlated. Also, given that the Mengsong 
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plant model was able to predict Arachnida species richness (Figs. 2 and S2), we find some 

support for the broader conclusion that plant diversity can be an accurate predictor of 

arthropod diversity. Of course, it will be necessary to carry out taxonomically more 

comprehensive sampling to be able to support the last conclusion strongly. 

We also found that plant models from one landscape could predict the species richnesses of 

Coleoptera, Hemiptera, Hymenoptera, and all Insecta in another landscape to within an error 

of 2X (cross-site predictions, Figs. 3 and S5). One clear reason for the error in the cross-site 

predictions is that our sampling effort and design were different across sites, due to 

unavoidable logistical constraints. For instance, in Mengsong, each quadrat was sampled with 

five Malaise traps, but in Yinggeling, only one trap was used.  

Regardless, it seems likely that different landscapes will have differently parameterized 

plant models, and we argue below that this provides an opportunity for testing theories of 

tropical megadiversity. Note also that for biodiversity management and conservation, precise 

estimates of insect species richness are not necessary. It is already useful to know that plant 

species diversity can indeed be used as a close surrogate for insect diversity and vice versa. 

We propose that metabarcoded insect samples should be tested as a sensitive and perhaps 

early indicator of forest degradation.  

Malaise traps and metabarcoding 

When resources are limited, which they always are, a feasible way to carry out arthropod 

diversity surveys at large scales is to combine mass trapping (here, Malaise traps) with a high-

throughput taxonomic method (here, metabarcoding). Naturally, this places limitations on the 

informational content of the resulting datasets. Any given trap type can collect only a portion 

of total arthropod biodiversity (Russo et al. 2011), and the downstream processes of DNA 

extraction, PCR amplification, high-throughput sequencing, and bioinformatic processing will 
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result in false negatives (‘dropout species’) and false positives (‘artefactual species’ created 

by PCR-induced sequence chimeras, and PCR, sequencing, and clustering errors) (Bohmann 

et al. 2014).  

PCR primers and software pipelines have been developed to minimize these errors (as used 

in Yu et al. 2012), but it is more important to understand how to interpret metabarcoding 

outputs judiciously. Multiple studies (Yu et al. 2012; Ji et al. 2013; Yang et al. 2014) have 

shown using both mock and real biodiversity samples that, despite false negatives and 

positives, metabarcoding datasets are nonetheless reliable for estimating community-level 

metrics of alpha and beta diversity. In other words, the degree to which arthropod samples 

(and thus locations) differ in species richness and composition can be quantified with 

metabarcoding, which is precisely the requirement of our study. We were thus able to 

recapitulate Basset et al. (2012) in finding that Weibull-function plant models accurately 

predict insect communities.  

However, we cannot directly compare the parameter values of our plant models with 

Basset et al.'s (2012) models for two reasons. Most importantly, we used only Malaise traps, 

which are designed to capture flying insects that escape upwards, whereas many beetles and 

nonflying species are missed. Basset et al.'s (2012) collections were more comprehensive. 

Less importantly, our species concept is based on COI sequence similarity, which will differ 

somewhat (but not hugely) from morphological concepts in the Arthropoda (e.g. Schmidt et al. 

2015). In any event, the use of DNA barcodes as a major input to species delimitation is now 

mainstream (Ratnasingham & Hebert 2013; Riedel et al. 2013; Tang et al. 2014), and 

barcodes are advantageous because they more efficiently reveal cryptic species (Condon et al. 

2008).  
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Explaining tropical herbivore megadiversity 

Lewinsohn and Roslin (2008) partitioned the causes of tropical herbivore megadiversity into 

four components: (A) more host plant species in the tropics combined with some level of host 

specificity, (B) more arthropod species per tropical plant species, (C) higher host specificity 

of tropical herbivores, and (D) higher rates of species turnover (beta diversity) within the 

same host species in the tropics. Studies by Novotny et al. (2002, 2006, 2007) in Papua New 

Guinea, with temperate-zone contrasts in Central Europe, have supported component A (more 

host plant species) over the other three components, whereas a compilation of feeding 

experiments by Dyer et al. (2007) has supported component C: higher host specificity in 

tropical species. Two important observations made by Dyer et al. (2007) are that broad host 

range in the temperate-zone is more obvious when more host plant species are surveyed and 

that different host plant species in the tropics show higher levels of insect community 

differentiation than do different temperate-zone host plants, suggesting higher host specificity 

in tropical insects.  

Given our results here and elsewhere that metabarcoding can deliver reliable metrics of 

arthropod communities (Yu et al. 2012; Ji et al. 2013; Edwards et al. 2014; Yang et al. 2014), 

we suggest that metabarcoding can now be used to carry out the large numbers of surveys 

needed to test the four competing (and perhaps coexisting) explanations of Lewinsohn and 

Roslin (2008). Components A (more tropical plant species) and B (more tropical arthropod 

species per plant species) can be differentiated by parameterizing plant models along a 

tropical to temperate gradient. A is self-evidently true, but if B is important then we should 

observe a steeper slope of the plant model in the tropics. Following Dyer et al. (2007), 

components C (tropical insects having narrower host ranges) and D (more rapid spatial 

turnover in tropical insects) can be tested and differentiated by the relative contributions to 
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beta diversity of changing host plant species and spanning geographic distance, in tropical and 

temperate habitats. Although in many parts of the world, DNA-barcode databases are not yet 

sufficiently comprehensive to be able to identify most insects to species level, it should be 

possible to use a combination of sequence matching (Ratnasingham & Hebert 2007) and 

phylogenetic placement (Matsen et al. 2010; Berger et al. 2011) to identify most specimens to 

at least family level, allowing differentiation of herbivores from non-herbivores in the near 

future.  
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Table 1 Procrustes correlations among plant, Insecta, and individual insect order communities in (a) Yinggeling and (b) Mengsong (9999 

permutations), with the input NMDS (non-metric multidimensional scaling) ordinations calculated from binary Jaccard dissimilarities (k = 2 

axes used in Yinggeling, k = 4 in Mengsong). Correlations with plants are bolded. In Mengsong, where insects were sampled in two seasons, wet 

vs. dry-season Procrustes correlations are presented on the diagonal and are underlined, and the proportions of wet-season Operational 

Taxonomic Units (OTUs) that were also collected in the dry season are reported below as percentages.  

 
(a) Yinggeling 
 Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Trees (n = 297) 

Insecta (n = 1995)      0.76*** 

Coleoptera (n = 239)  0.54** 0.47* 0.63*** 0.43* 0.44* 

Diptera (n = 848)   0.64*** 0.57** 0.53** 0.73*** 

Hemiptera (n = 205)    0.45* 0.39 0.60** 

Hymenoptera (n = 163)     0.55** 0.56* 

Lepidoptera (n = 263)      0.65*** 
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(b) Mengsong 

 
 

Insecta Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Psocoptera 
Vascular plants 

(n = 807) 

Insecta 

 

wet (n = 2073) 

dry (n = 2215) 

0.75***  

 

 

 

 

 

 

 

 

 

 

 

0.78*** 

0.75*** 60.6%  

Coleoptera 

 

wet (n = 375) 

dry (n = 603) 
 

0.45* 0.60*** 

0.75*** 

0.58*** 

0.70*** 

0.55*** 

0.63*** 

0.43* 

0.51*** 

0.52** 

0.60*** 

0.53*** 

0.63*** 38.0% 

Diptera 

 

wet (n = 414) 

dry (n = 413) 
  

0.52*** 0.67*** 

0.78*** 

0.71*** 

0.61*** 

0.63*** 

0.52*** 

0.52*** 

0.50** 

0.71*** 

0.65*** 70.9% 

Hemiptera 

 

wet (n = 435) 

dry (n = 370) 
   

0.67*** 0.58*** 

0.61*** 

0.44* 

0.44* 

0.50** 

0.57*** 

0.70*** 

0.77*** 71.1% 

Hymenoptera 

 

wet (n = 409) 

dry (n = 360) 
    

0.68*** 0.50** 

0.51*** 

0.57*** 

0.61*** 

0.64*** 

0.72*** 70.0% 

Lepidoptera 

 

wet (n = 78) 

dry (n = 95) 
     

0.33 0.40 

0.47** 

0.46** 

0.38 61.1% 

Psocoptera 

 

wet (n = 71) 

dry (n = 63) 
      

0.42 0.55*** 

0.52*** 85.7% 

* p < 0.05, ** p < 0.01, *** p < 0.001, non-significant values shown in gray, after adjustment for multiple tests (p.adjust, method = “fdr”)
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Figure captions 

Figure 1 Inventory plots in Yinggeling (n = 21) and Mengsong (n = 28). Colors stand 

for different elevation categories (orange = < 600 m; blue = 600 - 800 m; purple = ≥ 

800 m) in Yinggeling, and for different habitat types (red = mature forest; green = 

regenerating forest; yellow = open land) in Mengsong. The Mengsong area left of the 

dashed line is included in Bulong Nature Reserve. 

Figure 2 Same-site predictions. Scatterplot of plant-model estimates versus non-

parametric estimates of total OTU (Operational Taxonomic Unit) richness, for 

Arachnida (for Mengsong only), Insecta and insect orders that contained ≥ 50 OTUs. 

To quantify the goodness-of-fit of these two estimates, explained variances (R2) for 

insect orders were calculated from a y = x model (dashed line). Circles, squares and 

triangles stand for P-corrected versions of the Jackknife1, Jackknife2 and Chao 

estimators, respectively. Different colors stand for different taxa; only taxa absent 

from Yinggeling are labeled in the Mengsong figures. The plant-model functions were 

Weibull for all taxa in Yinggeling and Mengsong, except for Hymenoptera (dry 

season) in Mengsong, which was a power function. Note breaks in the axes. 

Figure 3 Cross-site predictions. Scatterplot of plant-model estimates versus non-

parametric estimates of total OTU richness. Symbols as in Figure 2. Plant models 

from one landscape were used to predict non-parametric estimates in the other 

landscape. Shown here are the Mengsong wet-season results. Mengsong dry-season 

results are similar and shown in Figure S5. The shaded area encompasses a two-fold 

difference between the two estimates (y = 0.5x to y = 2x). The plant-model functions 

were Weibull for all taxa in Yinggeling and Mengsong, except for Lepidoptera in 

Mengsong, which was a linear function. 
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Figure 4 Procrustes superimposition plots between plant and Insecta communities 

(9999 permutations), with the input of non-metric multidimensional scaling (NMDS) 

ordinations calculated from binary Jaccard dissimilarities (k = 2 axes used in 

Yinggeling, k = 4 in Mengsong). All Procrustes correlation coefficients (r) are 

significantly different from zero at p < 0.001 (Table 1). Each pair of points represents 

a census plot; solid points indicate plant data, and hollow points insect data. Colors as 

in Figure 1. 
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Supporting information 

Appendix S1 R Markdown output. 

Figure S1 Same-site predictions. Scatterplot of plant-model (25 candidate functions) 

estimates versus non-parametric estimates of total OTU richness. Symbols as in 

Figure 2. Note breaks in the axes. 

Figure S2 Same-site predictions. Scatterplot of plant-model estimates versus non-

parametric estimates of total OTU richness in the (a) forests and (b) open land in 

Mengsong. Symbols as in Figure 2. The plant-model functions for (a) forests were 

Weibull for all taxa except Hymenoptera (dry season), which was a power function. 

The plant-model functions for (b) open land were power for all taxa except 

Coleoptera (wet season), which was a linear function. Note breaks in the axes. 

Figure S3 Same-site predictions. Scatterplot of plant-model (25 candidate functions) 

estimates versus non-parametric estimates of total OTU richness in the (a) forests and 

(b) open land in Mengsong. Symbols as in Figure 2. Note breaks in the axes. 

Figure S4 Same-site predictions. Scatterplot of plant-model estimates versus non-

parametric estimates of total OTU richness in the forests in Mengsong. Only tree data 

were included to build the plant model. Symbols as in Figure 2. The plant-model 

functions were Weibull for all taxa except Hymenoptera (dry season), which was a 

linear function. Note breaks in the axes. 

Figure S5 Cross-site predictions. Scatterplot of plant-model estimates versus non-

parametric estimates of total OTU richness. Symbols as in Figure 3. Shown here are 

the Mengsong dry-season results. The plant-model functions were Weibull for all taxa 

in both Yinggeling and Mengsong. 

Figure S6 Procrustes superimposition plots between plant and insect order 

communities in Yinggeling. All Procrustes correlation coefficients (r) are significantly 
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different from zero at p < 0.05 (Table 1). Symbols as in Figure 4. 

Figure S7 Procrustes superimposition plots between plant and insect order 

communities in (a) wet and (b) dry seasons of Mengsong. All Procrustes correlation 

coefficients (r) are significantly different from zero at p < 0.01 for wet season and at p 

< 0.001 for dry season except for Lepidoptera (Table 1). Symbols as in Figure 4. 

Table S1 Procrustes correlations among plant, Insecta, and insect order communities 

in the forests of Mengsong (n = 22) (9999 permutations), with the input of non-metric 

multidimensional scaling (NMDS) ordinations calculated from binary Jaccard 

dissimilarities (k = 4). The percentage calculations, and the bold and underlined 

statistics as in Table 1. 
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