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Abstract 

Interactions between taxa are essential drivers of ecological community structure and dynamics, 

but they are not taken into account by traditional indices of diversity. In this study, we propose a 

novel family of indices that quantify community similarity in the context of taxa interaction networks. 

Using publicly available datasets, we assess the performance of two specific indices which are 

Taxa INteraction-Adjusted (TINA, based on taxa co-occurrence networks), and Phylogenetic 

INteraction-Adjusted (PINA, based on phylogenetic similarities). TINA and PINA outperformed 

traditional indices when partitioning human-associated microbial communities according to habitat, 

even for extremely downsampled datasets, and when organising ocean micro-eukaryotic plankton 

diversity according to geographical and physicochemical gradients. We argue that interaction-

adjusted indices capture novel aspects of diversity outside the scope of traditional approaches, 

highlighting the biological significance of ecological association networks in the interpretation of 

community similarity. 
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Introduction 

Understanding how patterns of diversity are established and maintained is fundamental to the 

ecological characterisation of living systems. Following Whittaker 1,2, diversity is traditionally 

considered to comprise three components: local diversity of individual habitats (α diversity) and 

between-site variation (β diversity) together determine the total diversity of a given system (γ 

diversity). However, while referring to these definitions, researchers have studied conceptually 

different phenomena under the umbrella term “diversity”. β diversity, in particular, has been 

variously reported as species turnover or variation, further sub-defined and quantified using 

different mathematical approaches 3,4. Nevertheless, most authors agree that community similarity, 

the compositional variation between sites, is an integral aspect of β diversity, and more generally 

one of the most important parameters in community ecology 5. To characterise the mechanisms 

underlying an observed diversity structure, it is essential to quantify and appraise patterns of 

community similarity. 

A multitude of mathematical indices of community similarity have been proposed: as of 2015, the 

widely used software EstimateS 6 computes 16 different indices, while the popular microbial 

ecology toolboxes mothur 7  and phyloseq  8 provide as many as 37 and 44 measures, 

respectively. The various available measures capture conceptually different aspects of diversity. 

Traditional indices, such as the Jaccard 9 or Bray-Curtis 10 index, focus on taxa compositional 

overlap, quantified directly from taxa count data. More recently, phylogenetically informed indices 

have become increasingly popular which, in contrast to census-based metrics, do not treat taxa 

independently but rather quantify shared evolutionary history between communities 11,12. 

Traditional and phylogenetic metrics may provide complementary insights on the processes driving 

community composition, particularly since phylogenetic relatedness of taxa is a proxy for functional 

or ecological similarity 13. 

Apart from analysing diversity patterns, another important approach to characterising ecosystem 

function focuses on studying interaction networks of ecological or functional associations between 

taxa directly. Applying graph theory to food webs, mutualist or host-parasite networks and others 
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has revealed an important role for interaction structure in community stability and dynamics 14–16. 

This approach has been particularly fruitful in microbial ecology, where “true” ecological 

interactions can to a certain extent be inferred from co-occurrence networks of anonymous 

Operational Taxonomic Units (OTUs)17,18. Highly informative taxa co-occurrence networks have 

been constructed for many ecological systems, including the human body-associated microbiota  

19,20 or ocean planktonic communities  21, as well as for global, integrated datasets across various 

habitats  22. 

One main difference between such diversity-based and network-based approaches lies in the 

analysis scope: the latter identify drivers of community structure at the level of individual taxa 

interactions, while the former reveal compositional patterns at community level. Arguably, both 

approaches are informative, but they are often pursued independently: it remains challenging to 

interpret community-level diversity changes in the light of taxa-level ecological associations, and 

vice versa. In this study, we propose to bridge this analysis gap by developing a set of 

mathematical indices that quantify community similarity (or β diversity) as the average taxa 

interaction strength between samples. While our method is applicable to many types of interaction 

data, we focus on Taxa INteraction-Adjusted indices (TINA), based on taxa co-occurrence data, 

and Phylogenetic INteraction-Adjusted indices (PINA), based on phylogenies. In a re-analysis of 

two publicly available datasets, we show that TINA and PINA capture known diversity patterns 

better than existing indices, even for very small datasets, and that they can reveal novel and 

refined biological interpretations. 
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Methods 

In this study, we compared a total of 11 indices of community similarity (listed in Table 1) that fall 

into three categories, “traditional” taxa count-based indices, phylogenetic indices and our proposed 

interaction-adjusted indices (Figure 1). 

Classical and phylogenetic community similarity indices 

In his widely cited "comparative study of the floral distribution of parts of the Alps and the Jura”, 

Paul Jaccard 9 introduced what is arguably the earliest index of β diversity. For two communites A 

and B, the classical Jaccard index (JCI) is the relative taxa overlap, i.e. the ratio of shared taxa 

among all sampled taxa (see formula in Table 1). In this original fomulation, the JCI is incidence-

based, or unweighted: it considers only the presence and absence of taxa, but not their relative 

abundance ratios. Several abundance-based or weighted variations of the classical Jaccard index  

have been proposed 23; here, we use a straightforward weighted Jaccard (JCW) formulation which 

describes community similarity as the mean fraction of individuals in shared taxa across both focal 

samples. While the JCI has proved very versatile and is used for manifold scientific problems 

beyond biology, an ecology-specific variant that corrects for the characteristics of imperfect 

sampling has been proposed by Chao et al. 23: Chao’s weighted Jaccard index (JCC) extrapolates 

the fractions of individuals in unseen shared taxa based on the number of observed rare taxa. 

One of the most widely used indices in modern community ecology is arguably the Bray-Curtis 

(dis)similarity (BC) 10 which describes community overlap as the fractional minimum abundance of 

shared taxa between samples. Somewhat related to BC is the Morisita-Horn overlap index (MH) 24, 

calculated as pairwise multiplicative taxa overlap, adjusted by a per-sample concentration index. 

These classical indices and their derivations assess community overlap directly from count data, 

treating all observed taxa as independent (Figure 1, top branch). Phylogenetic indices, in contrast, 

consider the (phylogenetic) relationships between taxa and quantify community similarity as shared 

evolutionary history (Figure 1, middle). Among these increasingly popular indices is UniFrac which 

calculates the shared branch length between samples on a phylogenetic tree, either for observed 
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taxa based on incidence (unweighted UniFrac, UFU)25, or based on taxa abundances (weighted 

UniFrac, UFW)26. 

A novel family of Interaction-Adjusted community similarity indices 

Consider two communities A and B, composed of NA and NB taxa from which a total of nA and nB 

individuals have been sampled. Next, consider a matrix I which describes pairwise taxa 

interactions, such that Iij is the interaction between taxa i and j. Manifold types of interactions with 

different biological meanings, different layers of information and at different levels of curation effort 

are suitable, such as e.g. predator-prey relationships, symbiosis, parasitism, mutualism, cross-

feeding, resource competition, etc. Here, we consider the case of ecological associations as 

inferred by taxa co-occurrence networks, constructed from taxa count tables by pairwise 

association of abundances across samples (Figure 1, bottom). The scale and characteristics of 

such a co-occurence interaction matrix IC will depend on the association metric chosen; Faust & 

Raes 18 have provided a comprehensive review of different approaches to network construction 

and interpretation. For example, a taxa abundance correlation network would scale from -1 

(avoidance) to +1 (complete association), while other popular association metrics may scale 

differently. Therefore, it is important to transform the interaction matrix IC to a common scale; we 

do this by correlating taxa by their pairwise associations to all other taxa in the system (i.e., row IC,i* 

of IC for taxon i) and transforming this into a Pearson similarity: 

௜௝ܥ = 0.5 ∗ (1 + ,∗஼,௜ܫ)௉௘௔௥௦௢௡ߩ  ((∗஼,௝ܫ
Thus defined, a transformed co-occurrence matrix C has several desirable properties: (i) it scales 

from 0 (avoidance) to 0.5 (neutral association) to 1 (complete association); (ii) Cij corresponds to 

the “proximity" of taxa i and j on the original association network IC; (iii) the transformation generally 

sharpens and smoothens network structure, amplifying strong associations and down-weighting 

spurious correlations, but association ranks remain mostly unchanged (see also Figure S1 in 

Supporting Information). 

Given this transformed interaction matrix, we propose to quantify the similarity between 

communities A and B as the average interaction strength between all taxa observed in A or B. We 
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thus define an incidence-based or unweighted Taxa INteraction-Adjusted index of community 

similarity (unweighted TINA, TU) as 

ܷܶ = ∑௜∈஺ ∑௝∈஻ܥ௜௝஺ܰ ஻ܰ  

Likewise, an abundance-based or weighted TINA index (TW) can be defined as weighted average 

taxa interaction strength, scaled by the geometric mean per-sample weighted taxa interaction 

strength: 

ܹܶ = ∑௜∈஺ ∑௝∈஻ ݊஺௜݊஺ ݊஻௝݊஻ ௜௝ܥ
ඨ( ∑௜∈஺ ∑௝∈஺ ݊஺௜݊஺௝݊஺ଶ )(௜௝ܥ ∑௜∈஻ ∑௝∈஻ ݊஻௜݊஻௝݊஻ଶ  (௜௝ܥ

TINA values are 1 for two completely identical communities, but also if all taxa in A and B are 

perfectly associated. If no taxa are shared, TINA values tend towards 0.5 if taxa interactions are 

neutral (neither associative nor dissociative) and towards 0 if taxa between A and B show a strong 

avoidance signal. Thus, TINA resolves non-zero similarities even for pairs of communities that do 

not share any taxa (which implies zero similarity according to traditional, count-based indices); 

theoretically, the TINA index for such disparate pairs can even be 1 if all their taxa are perfectly 

associated. 

TINA-like indices can be defined analogously for any kind of interaction data, given that interaction 

matrices are transformed similarly to the IC to C transformation described above. This is also true 

for the special case of phylogenetic “interactions”. Consider a phylogenetic tree φ of taxa observed 

in a given system with a cophenetic phylogenetic similarity matrix Iφ which can be interpreted as a 

phylogenetic association network (analogous to IC) and transformed into an association matrix Φ 

(analogous to the co-occurrence association matrix C). Then, we can define unweighted 

Phylogenetic INteraction-Adjusted community similarity (unweighted PINA, PU) as 

ܷܲ = ∑௜∈஺ ∑௝∈஻Φ௜௝
஺ܰ ஻ܰ  

and weighted PINA (PW) as 
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ܹܲ = ∑௜∈஺ ∑௝∈஻ ݊஺௜݊஺ ݊஻௝݊஻ Φ௜௝
ඨ( ∑௜∈஺ ∑௝∈஺ ݊஺௜݊஺௝݊஺ଶ Φ௜௝)( ∑௜∈஻ ∑௝∈஻ ݊஻௜݊஻௝݊஻ଶ Φ௜௝) 

 

Human Microbiome Project data analysis 

To test the performance of different community similarity indices, we re-analysed two publicly 

available datasets, provided by the Human Microbiome Project and the TARA Oceans project, 

respectively. Raw 16S rRNA V35 region sequencing reads of the Human Microbiome Project 27  

were downloaded from the NCBI Sequence Read Archive; metadata was obtained from the HMP 

data repository (http://hmpdacc.org). Sequences were filtered for chimeric reads using UCHIME  28, 

aligned to a secondary structure-aware 16S rRNA model using Infernal  29, denoised by a global 

minimum read abundance at 1% tolerance of 4 and clustered into OTUs at 97% average linkage 

sequence similarity using hpc-clust 30, as established previously 31,32. The resulting filtered taxa 

count table contained 24,717,447 sequences clustered into 27,041 OTUs across 3,849 samples. A 

phylogenetic tree of OTU representatives, selected by minimum average within-OTU sequence 

distance, was inferred using FastTree2  33 with default parameters. Pairwise taxa correlation 

networks for the full dataset and subsets were calculated using a custom R implementation of 

SparCC  34, an adapted correlation metric correcting for spurious associations that has been shown 

to approximate “true” ecological interactions  17. 

TARA Oceans data processing and analysis 

From the TARA Oceans eukaryotic plankton diversity census 35, we downloaded 18S rRNA V9 tag 

data organised into an OTU-level taxa count table 

(http://doi.pangaea.de/10.1594/PANGAEA.843022) and sample metadata 

(http://doi.pangaea.de/10.1594/PANGAEA.843017). Data per sample were pooled across filter 

sizes and OTUs containing ≤30 sequences and several orphan samples were removed (see 

analysis code), yielding a filtered count table of 535,903,407 sequences, 27,448 OTUs and 77 

samples for which a SparCC correlation network was computed. 
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Data and software availability 

All analysis code and processed datasets are available online 

(http://github.com/defleury/Schmidt_et_al_2016_community_similarity; 

http://meringlab.org/suppdata/2016-community_similarity/). 
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Results 

TINA and PINA provide improved partitioning of human body site-

specific microbial communities 

From an ecological point of view, the human body appears as little more than a system of distinct 

microbial habitats 36. The Human Microbiome Project 27 has provided a first comprehensive census 

of human body-associated microbial communities and their potential functional repertoires. HMP 

16S rRNA tag sequencing data is available for 18 habitats from five different body sites, namely 

oral cavity (9 habitats), skin (4), female urogenital tract (3), airways (1) and gastrointestinal tract 

(1); see Figure 2 for a full list. One original goal of the HMP, similar to many ecological studies, 

was to establish how compositional similarity patterns distinguish communities associated to these 

different habitats. In other words: are body sites distinct from each other in microbial community 

composition, and which other factors drive compositional variance? 

These types of questions are typically addressed by calculating pairwise community distances and 

then applying multivariate statistical tests to establish how much of the distance matrix' structure is 

explained by a given model. One of the most widely used methods is Anderson’s PERMANOVA 

(permutational analysis of variance)37, implemented in the adonis function of the R package vegan 

38, which calculates a pseudo-F statistic on group separation from the sums of squares of inter-

group distances over the sums of squares of intra-group distances (see Figure 2A) and then 

conducts a permutational significance test. Thus, the adonis F statistic, as well as the related R2 

statistic (the ratio of variance explained by the tested factor) indicate an effect size of multivariate 

group separation (higher F and R2 values indicate more discriminatory power), while a 

permutational p value indicates significance. F and R2 statistics have previously been used to 

benchmark multivariate ecological analyses, e.g. by Eren et al. 39. 

We reanalysed the HMP data using 11 different community similarity indices (Table 1), five of 

which are count-based (JCI, JCW, JCC,BC and MH), two phylogenetic (UFU, UFW) and four 

interaction-adjusted (TU, TW, PU and PW). We observed that partitioning of the five general body 

sites (oral cavity, skin, urogenital tract, airways, gut) by community similarity was by far best for 
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TINA (F=30,455 for TW; F=16,421 for TU) and PINA (PW, 4,397; PU, 6,917) when compared to all 

other indices, with JCI providing the weakest discrimination (F=182). This improved partitioning 

was due to several effects, as indicated by community distance histograms per index (Figure 2A, 

left). First, TINA and PINA provided very high overall resolution, distributing pairwise dissimilarities 

across a broader range on the interval 0 (identical communities) to 1 (complete dissimilarity) than 

most count-based indices. Second, TINA and PINA assigned very low and sharply distributed intra-

group dissimilarities, meaning that samples from the same body sites were on average considered 

very similar to each other; in contrast, count-based indices showed very sharp and pronounced 

inter-group dissimilarities, but wider distributions within groups. Finally, intra- and inter-group 

dissimilarities were generally much clearer separated for TINA than for count-based indices or 

UniFrac. 

Combined interpretation of TINA and PINA may provide novel biological 

insights 

While habitat partitioning was differentially pronounced, all indices provided significant group 

separation (p≤0.001, 999 permutations). Indeed, differences in community composition between 

body sites – which are highly distinct micro-environments – can be expected to be large, so it is not 

surprising that they were picked up by all indices. We therefore conducted similar tests on more 

complicated problems, such as the separation of habitats within a body site (Figure 2B) or of pairs 

of similar habitats (Figure 2C). TINA provided by far the strongest partitioning of oral and skin 

habitats, followed by PINA and JCW/JCC. For urogenital sites, in contrast, only few indices 

provided significant separation at all: unweighted PINA (PU), UFU, UFW and JCI. These trends 

were consistent with pairwise separability of habitats (Figure 2C) which was highest for TINA in 

oral and skin, but for PU, UFU and UFW in urogenital sites. 

These observations imply that diversity patterns in these habitats are determined by different 

factors. TINA quantifies community similarity as an overlap in ecological associations of taxa, while 

PINA and UniFrac focus on shared phylogeny. Thus, it appears that the compositional identity of 

oral and skin sites is driven by recurring cliques of associated OTUs, as captured by strong co-
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occurrence signals, while pairwise taxa associations are less important in the urogenital tract, 

where communities of changing partners are instead filtered by phylogeny, possibly indicating a 

functional signal. 

TINA captures habitat structure of the human microbiome taxa co-

occurrence network 

To illustrate how TINA captures ecological taxa interaction structure, how TINA values can be 

interpreted at the level of individual sample pairs and under which conditions it provides more 

intuitive results than count-based indices, we selected 16 HMP samples for which Figure 3 shows 

the taxa co-occurrence network; Figure S2 shows the same network, coloured by OTU phylum-

level taxonomy. We observed that the network is structured into several habitat-specific clusters of 

strongly  co-occurring OTUs, with slightly less dependence on taxonomy. This is in line with the 

general observation that (microbial) co-occurrence networks tend to capture ecological signals 

which indeed can often be much more subtle than the present body habitat classification  18. 

Next, we mapped three examples of sample pairs onto this network to illustrate how TINA takes 

interaction structure into account to quantify diversity. In the first example (Figure 4A), we consider 

two samples from the vaginal posterior fornix which where the most similar pair according to the 

classical Jaccard index (lowest JCI distance). These samples have a high taxa overlap, while 

many of their non-shared taxa also share strong co-occurrence signals, so that TINA likewise 

assigns them a very high similarity. Thus, in this case, TINA and count-based indices agree in 

considering both samples highly similar. 

The second case is less trivial (Figure 4B). Here, we consider two urogenital samples from the 

vaginal introitus which do not share any taxa at all – count-based indices assign a distance of 1, 

considering them completely dissimilar. However, the taxa found in these samples share an 

attractive interaction signal, although some taxa form part of distinct co-occurence clusters. In this 

case, TINA provides a more intuitive result by ranking the similarity between two samples from the 

same habitat (vaginal introitus) relatively high. 
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Finally, consider the opposite situation (Figure 4C). Here, two samples from different body sites 

(skin and oral) happen to share several taxa, so that JCI ranks them among the top 17.3% most 

similar samples. However, most non-shared taxa belong to distinct co-occurrence clusters, 

meaning that their pairwise interactions are repulsive, such that TINA assigns a very high 

dissimilarity to this pair which, again, is an arguably more realistic picture. 

Interaction-Adjusted Indices provide strong partitioning even for small 

datasets 

The HMP dataset used in this study is comparatively large, comprising 27,041 OTUs across 3,849 

samples. To test whether the observed trends were robust to dataset scope, we conducted two 

downsampling experiments (Figure 5). First, we randomly selected between 5-50 samples per 

body site (25-250 samples in total), re-calculated co-occurrence and phylogenetic networks and 

assessed body site separation by all 11 indices, at 10 iterations per down-sampling step (Figure 

5A; see Figure S3A for the corresponding plot on the R2 statistic). We found that even for the 

smallest tested dataset, TINA and PINA indices provided much clearer partitioning by body site, 

although ranks by partitioning effect sizes varied across down-sampling iterations. Next, we 

randomly selected 1,000 samples from which we drew 1,000 sequences each and down-sampled 

these to 50 sequences per sample in several steps, at 10 iterations per step, recalculated co-

occurrence and phylogenetic networks and quantified community similarity (Figures 5B and S3B). 

Likewise, we observed that TINA and PINA provided much better separation by body site than all 

other indices, even at a drastically small size of 50 sequences per sample. 

 

Biogeographical and physicochemical gradients structuring oceanic 

micro-eukaryote plankton communities are best captured by TINA 

The TARA Oceans project has provided a very rich and multifaceted census of the world’s oceans 

along several geographical and physicochemical gradients. We re-analysed TARA data on micro-

eukaryote plankton diversity in the sunlit ocean 35 to test the performance and versatility of TINA 
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and other indices at representing different ecological signals. The dataset contained 77 samples 

from 43 stations along a wide geographical gradient (as shown in Figure 6A), taken at two depth 

levels, subsurface water (SUR) and deep chlorophyll maximum (DCM), and with body size filters 

ranging from 0.8-2,000µm. We calculated pairwise community distances according to JCI, JCW, 

JCC, BC, MH, TU and TW. 

To test whether community similarity follows a latitudinal gradient, we correlated the first 

component of a Principal Coordinates ordination (PCoA) to latitude, separately for the northern and 

southern hemispheres (Figure 6A). We observed that the dominating component of an unweighted 

TINA-based PCoA correlated well with latitude, both for SUR (ρSpearman=0.75) and DCM (ρ=0.8) 

water layers. In contrast, an ordination based on BC (the index used in the original study) showed 

much weaker correlations for the dominating component (ρ=0.15 and ρ=35, respectively). We 

tested for these effects more systematically by correlating pairwise community distances to 

absolute differences in latitude between samples (Figure 5B). While all indices provided positive 

correlations, TU and JCI showed the strongest trend for SUR samples (ρSpearman=0.37), while TU 

and TW showed the strongest signals for DCM (ρ=0.36 and ρ=0.32). Similar trends were observed 

for correlations of community distance to geographical distance (Table S1). Thus, although JCI 

performed surprisingly well, TINA outperformed other indices at detecting a biogeographical signal. 

This can probably be rationalized when considering that taxa co-occurrence  is expected to be in 

part determined by geography, which in turn also correlates with many other ecological parameters 

like water temperature, irradiation, salinity, etc. 

Finally, we tested how well pairwise community distances represented the factors sampling region 

and depth; Figure 6C shows PCoA ordinations and PERMANOVA statistics for JCI, BC and TU. 

While all three indices provided significant separation by sampling region, water layer effects were 

significant only in JCI and TU, while only TU detected any effect of the region*depth interaction 

term. Moreover, effect sizes as expressed in F statistics and total variance explained by these 

three factors (summed R2) were considerably higher for TU than for JCI and BC, indicating a much 

more pronounced partitioning according to these terms. 
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Discussion 

The question of what processes are rendering communities similar or dissimilar to each other is 

fundamental to the study of diversity. Traditionally, community similarity has been quantified from 

compositional overlap, considering taxa as independent of each other and describing community 

structure based on census data. More recently, measures based on additional signals have 

become increasingly popular, most prominently phylogenetic indices based on shared evolutionary 

history. Such approaches take into account relationships between taxa, under the assumption that 

phylogenetic relatedness implies ecological and functional similarity. In this study, we have 

introduced a set of indices that follow a different rationale: we propose to quantify community 

similarity in terms of interactions between taxa. 

There are several arguments for doing so. First, taxa interactions are a fundamental ecological 

parameter, at the heart of community ecology: they are important drivers of community assembly, 

composition and dynamics. Second, it is therefore meaningful to characterise taxa and their 

relationships based on their interactions: two taxa that are highly similar in terms of their 

interactions with other taxa can be considered ecologically almost equivalent, they can be 

assumed to fulfill similar roles in a community. Our approach captures this signal: we argue that it 

is meaningful to consider communities as similar which contain ecologically similar taxa. Third, 

interaction network analysis has proven to be a very powerful tool in unravelling complex 

community dynamics, but its findings are often difficult to connect to the level of community-level 

diversity patterns. Our approach may help to bridge this analysis gap, by providing diversity indices 

which are based on networks and can be interpreted in a network framework. For example, TINA 

essentially quantifies community distance as the distance on a taxa co-occurrence network. 

Finally, our approach is versatile: there are many types of ecological interactions, at many different 

levels, and in principle, interaction-adjusted indices like TINA and PINA can be formulated for all of 

them. 

In this study, we have focused on two specific types of interaction-adjusted indices, TINA and 

PINA, and benchmarked their performance in a re-analysis of two large and complex datasets. 
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TINA by far outperformed all other indices at discriminating human body habitat-specific 

communities (Figure 2), even for very small datasets (Figure 5). Moreover, TINA best captured 

biogeographical trends and partitioning by the factor ‘region' and 'water depth' for microeukaryotic 

plankton communities (Figure 6). These results can be interpreted in light of how TINA is 

computed. Taxa co-occurrence networks, on which TINA is based, capture an “integrated" 

ecological association signal, in quantifying the observable outcome of the interplay of different 

levels of taxa interactions as patterns of co-abundance and avoidance 18. Thus, they can reveal 

network structures that are specific to a given type of habitat (as shown e.g. in Figure 3) or 

structured according to their response to an ecological gradient or perturbance. Figure 4 illustrates 

anecdotally how TINA can capture such signals to assign community similarities that are more in 

line with ecological reality than count-based indices. The fact that TINA provides such strong 

separations of body habitats and strong correlations with biogeography and other factors for 

plankton communities means that these factors have a strong and specific influence on taxa co-

occurrence; subsequent diversity analyses should take this into account and interpret accordingly. 

Likewise, PINA and other phylogenetic indices such as UniFrac are based on phylogenetic 

relatedness, operating under the assumption that shared phylogeny implies not only a shared 

evolutionary history, but similar ecological roles and functional profiles. However, by definition, an 

inference of ecological similarity from phylogeny is necessarily indirect and imperfect, although it is 

arguably a valid enough assumption for many phylogenetic clades. In all relevant tests, unweighted 

and/or weighted PINA, based on phylogenetic “interaction” networks, outperformed UniFrac, based 

on shared phylogeny only, even for very small datasets. Interestingly, unweighted PINA and 

UniFrac were the only indices to detect partitioning by urogenital habitats (Figure 2), a task at 

which almost all count-based indices, as well as TINA, failed. As discussed above, this is likely due 

to differential factors and mechanisms shaping community structure in urogenital habitats, 

compared to other habitats. However, the fact that we did observe differential trends in index 

performance emphasises the importance of a multifaceted approach: by applying count-based, 

phylogenetic and interaction-adjusted indices, different aspects of community similarity are 
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quantified which can be interpreted in context of each other, with the potential to reveal biological 

insights beyond the scope of mono-dimensional approaches. 

One possible drawback of interaction-adjusted indices is that they are not context-invariant: their 

values will always depend on analysis scope and on the system under consideration, as they vary 

with varying network structure. While count-based indices will always assume the same similarity 

for two communities, independently of the remaining dataset, interaction-adjusted indices may 

change asymptotically when more data is added, simply due to (subtle) changes in network 

structure. However, this behaviour can indeed also be an asset, for example when comparing 

multiple datasets in a meta-study. In such a setup, “globally” constructed networks may mitigate 

dataset-specific noise, introduced e.g. by sampling methods or limited depth. Likewise, interaction-

adjusted indices are not limited to capturing static network architectures, but their flexibility allows 

to account for conditionally variable networks which are rewired e.g. over time, gradients or in 

response to specific changing factors. 

In the large arsenal of measures for community similarity and, more generally, β diversity, our 

proposed family of interaction-adjusted indices provide an important, powerful and versatile 

alternative. By taking taxa interactions into account, they quantify novel aspects of “diversity”, at 

the very core of community ecology, and may guide biological interpretation of diversity patterns in 

novel ways. 
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Table Legends 

Table 1. Overview of different indices of community similarity used in 

this study. 

All formulas and descriptions are given as similarities; for ordinations and statistical tests, 

corresponding distances or dissimilarities are used (D = 1 - S). NA, total number of taxa in sample 

A; nA total number of individuals in sample A; nAi, individuals of taxon i in sample A; Û, estimator for 

fraction of individuals in shared taxa for sample A, according to formula 9 in Chao et al. 23; φi, 

phylogenetic branch length of taxon i to root; Φij, phylogenetic association between taxa i and j; Cij, 

interaction similarity between taxa i and j. 

 

Figure Legends 

Figure 1. Overview of different approaches to quantifying community 

similarity. 

Based on a taxa-sample count table, traditional count-based indices such as Jaccard and Bray-

Curtis quantify community similarity from the overlap in taxa composition (upper branch). In 

contrast, phylogenetic indices such as UniFrac take into account taxa relationships, quantifying 

community similarity as shared evolutionary history, based on taxa phylogeny (middle branch). Our 

proposed Taxa INteraction-Adjusted (TINA) and Phylogenetic INteraction-Adjusted (PINA) indices, 

in contrast, take into account similarities on a taxa co-occurrence network, codified in an interaction 

similarity matrix C, or in terms of cophenetic phylogenetic distances, represented in a phylogenetic 

association matrix Φ. 

 

Figure 2. Differential partitioning of human body habitat-specific 

community structure. 
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(A) Partitioning by general body sites. Left, PERMANOVA F statistics for different indices when 

testing community distance partitioning according to general body site, i.e. into oral, skin, 

urogenital, airways and gastrointestinal habitats. Right, histograms of community distances intra-

site (orange) and inter-site (blue) for all body sites against each other, oral against other habitats 

and gastrointestinal against other habitats. The inset illustrates how PERMANOVA F statistics and 

R2 values are calculated from community distances using the adonis function of the R package 

vegan 37,38. (B) Sub-partitioning of oral habitats (blue), skin habitats (yellow) and urogenital habitats 

(violet). (C) Pairwise separation by different indices of all pairs of oral habitats, skin habitats 

against each other and against airways (anterior nares) and urogenital habitats against each other, 

as detected by the PERMANOVA R2 value (relative variance explained by factor habitat). Note the 

different color scales, indicating overall differential partitioning power per body site. 

Figure 3. Taxa co-occurrence network for a subset of Human 

Microbiome Project samples. 

16 samples from the full HMP dataset were selected as described in the main text, comprising a 

total of 2,671 OTUs for which all pairwise SparCC correlations ≥0.5 are shown as edges in the 

network. Node size indicates global OTU size, i.e. the total number of counts per OTU across the 

full HMP dataset. Node colour indicates OTU dominant habitat, assigned if more than 50% of all 

OTU abundance was in samples of the same body site. Figure S2 shows the same network, 

coloured by OTU phylum-level taxonomy. 

Figure 4. TINA quantifies community similarity from taxa co-occurrence 

(A) For two urogenital samples which share a large taxa overlap, both traditional count-based 

indices (exemplified by the classical Jaccard index, JCI) and TINA assign a low-ranking community 

distance (as indicated in community distance histograms on the right). The middle panel shows 

how taxa of these samples map onto the co-occurrence network introduced in Figure 3; blue, taxa 

unique to sample SN700035995; green, taxa unique to sample SN700096698; blue-green, taxa 

shared between both samples. (B) For two urogenital samples that do not share any taxa, but 

whose taxa still share attractive co-occurrence interactions, JCI assigns complete distance 
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(JCI=1), while TINA assigns a relatively low-ranking distance. (C) In the opposite case of two 

samples from different body sites (skin and oral) which have a significant taxa overlap, but 

repulsive taxa interactions, JCI assigns a low-ranking, but TINA a very high-ranking distance. 

Figure 5. TINA and PINA detect strong partitioning by body habitat even 

for very small datasets. 

Adonis F statistic for separation by body site according to all 11 tested indices, for datasets 

randomly down-sampled following two different regimes. Taxa co-occurrences and phylogenetic 

interactions were re-calculated for every down-sampled dataset. (A) 5, 10, 20 and 50 samples per 

body site were randomly selected from the full HMP dataset, at 10 iterations per down-sampling 

step. (B) 1,000 randomly selected samples were down-sampled to a depth of 1,000 sequences per 

sample; this dataset was then further down-sampled to 50 sequences per sample in several steps, 

at 10 random iterations per step. Figure S3 shows corresponding plots on R2 values. 

Figure 6. TINA captures biogeographical and physicochemical trends 

(A) TARA Oceans sampling locations, coloured by assigned oceanic world region (middle). The 

first axes of PCoA ordinations on TINA (left) and Bray-Curtis (right) dissimilarities correlated 

differentially well with latitude both for subsurface (SUR, orange) and deep chlorophyll maximum 

(DCM, blue) samples, both for the northern and southern hemisphere. (B) Spearman correlations 

of six different community distances against absolute difference in latitude (∆lat in rad). (C) PCoA 

ordinations and PERMANOVA statistics on dataset partitioning by factors region, depth and the 

region*depth interaction term for JCI, BC and TU. 
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Supporting Information 

Table S1. Spearman correlations of community similarities to 

geographical distance for TARA samples. 

Figure S1. Transformation of taxa co-occurrence into co-occurrence 

similarity smoothens and sharpens interaction information. 

Heatmaps of correlation strengths are shown for 300 randomly selected OTUs from the set shown 

in the network of Figure 3, for SparCC co-occurrences (referred to as matrix IC in the Methods 

section) and transformed SparCC correlations (matrix C). OTUs were clustered by SparCC 

correlation. Note that the color scale is [-1, 1] for a more intuitive visualisation, while we use a 

linear transformation to [0, 1] in our analyses. 

Figure S2. HMP taxa co-occurrence network, annotated by taxonomy. 

The same network as in Figure 3 of the main text, with nodes are coloured by OTU phylum-level 

consensus taxonomy. 

Figure S3. Down-sampling effects on body habitat partitioning, 

quantified as R2 

This figure is analogous to Figure 5 of the main text, but showing down-sampling effects in terms of 

R2 instead of F statistics. 
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