
Succinct Colored de Bruijn Graphs

Keith Belk∗ Christina Boucher† Alexander Bowe‡ Travis Gagie§

Paul Morley¶ Martin D. Muggli† Noelle R. Noyes¶ Simon J. Puglisi§

Robert Raymond†

Abstract

Iqbal et al. (Nature Genetics, 2012) introduced the colored de Bruijn graph, a variant of the
classic de Bruijn graph, which is aimed at “detecting and genotyping simple and complex
genetic variants in an individual or population”. Because they are intended to be applied
to massive population level data, it is essential that the graphs be represented efficiently.
Unfortunately, current succinct de Bruijn graph representations are not directly applicable
to the colored de Bruijn graph, which require additional information to be succinctly encoded
as well as support for non-standard traversal operations. Our data structure dramatically
reduces the amount of memory required to store and use the colored de Bruijn graph, with
some penalty to runtime, allowing it to be applied in much larger and more ambitious
sequence projects than was previously possible.

1 Introduction

In the 20 years since it was introduced to bioinformatics by Idury and Waterman [14], the de
Bruijn graph has become a mainstay of modern genomics, essential to genome assembly [6, 26,
21]. The near ubiquity of de Bruijn graphs has led to a number of succinct representations, which
aim to implement the graph in small space, while still supporting fast navigation operations.
Formally, a de Bruijn graph constructed for a set of strings (e.g., sequence reads) has a distinct
vertex v for every unique (k − 1)-mer (substring of length k − 1) present in the strings, and a
directed edge (u, v) for every observed k-mer in the strings with (k−1)-mer prefix u and (k−1)-
mer suffix v. A contig corresponds to a non-branching path through this graph. See Compeau
et al. [6] for a more thorough explanation of de Bruijn graphs and their use in assembly.

In 2012, Iqbal et al. [15] introduced the colored de Bruijn graph, a variant of the classical
structure, which is aimed at “detecting and genotyping simple and complex genetic variants in
an individual or population.” The edge structure of the colored de Bruijn graph is the same as
the classic structure, but now to each vertex ((k−1)-mer) and edge (k-mer) is associated a list of
colors corresponding to the samples in which the vertex or edge label exists. More specifically,
given a set of n samples, there exists a set C of n colors c1, c2, .., cn where ci corresponds to
sample i and all k-mers and (k − 1)-mers that are contained in sample i are colored with ci. A
bubble in this graph corresponds to a directed cycle, and is shown to be indicative of biological
variation by Iqbal et al. [15]. Cortex, Iqbal et al.’s [15] implementation, uses the colored
de Bruijn graph to develop a method of assembling multiple genomes simultaneously, without

∗Department of Animal Sciences, Colorado State University, Fort Collins, CO
†Department of Computer Science, Colorado State University, Fort Collins, CO
‡National Institute of Informatics, Chiyoda-ku, Tokyo, Japan
§Department of Computer Science, University of Helsinki, Finland
¶Department of Clinical Sciences, Colorado State University, Fort Collins, CO

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

losing track of the individuals from which (k− 1)-mers (and k-mers) originated. This assembly
is derived from either multiple reference genomes, multiple samples, or a combination of both.

Variant information of an individual or population can be deduced from structure present in
the colored de Bruijn graph and the colors of each k-mer. As implied by Iqbal et al. [15], the ulti-
mate intended use of colored de Bruijn graphs is to apply it to massive, population-level sequence
data that is now abundant due to next generation sequencing technology (NGS) and multiplex-
ing. These technologies have enabled production of sequence data for large populations, which
has led to ambitious sequencing initiatives that aim to study genetic variation for agriculturally
and bio-medically important species. These initiatives include the Genome 10K project that
aims to sequence the genomes of 10,000 vertebrate species [11], the iK5 project [10], the 150
Tomato Genome ReSequencing project [3, 16], and the 1001 Arabidopsis project, a worldwide
initiative to sequence cultivars of Arabidopsis [31]. Given the large number of individuals and
sequence data involved in these projects, it is imperative that the colored de Bruijn graph can
be stored and traversed in a space- and time-efficient manner.

Our Contribution We develop an efficient data structure for storage and use of the colored de
Bruijn graph. Compared to Cortex, Iqbal et al.’s [15] implementation, our new data structure
dramatically reduces the amount of memory required to store and use the colored de Bruijn
graph, with some penalty to runtime. We demonstrate this reduction in memory through
a comprehensive set of experiments across the following three datasets: (1) six Escherichia
coli (E. coli) reference genomes, (2) a set of 54 antimicrobial resistance (AMR) genes and a
simulated metagenomics sample containing seven of these 54 AMR genes, and four AMR genes
not contained in this set, and, (3) four plant genomes. We show our method, which we refer to as
Vari (Finnish for color), has better peak memory usage on all these datasets. This observation
is highlighted on our largest dataset (e.g. the plant reference genomes) where Cortex required
101 GB and Vari required 19 GB. Vari is a novel generalization of the succinct data structure
for classical de Bruijn graphs due to Bowe et al. [1], which is based on the Burrows-Wheeler
transform of the sequence reads, and thus, has independent theoretical importance.

In addition to demonstrating the memory and runtime of Vari, we validate its output using
the E.coli reference genomes and AMR dataset. In particular, our experiment on the AMR
dataset validates Vari’s ability to correctly identify AMR genes from a metagenomics sample,
which is of paramount importance since—when expressed in bacteria—AMR genes render the
bacteria resistant to antibiotics and pose serious risk to public health. Our experiments and
results focus on beta-lactamases, which are genes that confer resistance to a class of antibiotics
that are considered to be the last resort for infections from multi-drug-resistant bacteria [20, 25].
Our experiments demonstrate that all beta-lactamases were correctly identified and only two of
the remaining 47 genes were identified to be in the sample, which had 97% and 95% sequence
similarity to one of the beta-lactamases in the sample.

Related Work As noted above, maintenance and navigation of the de Bruijn graph is a space
and time bottleneck in genome assembly. Space-efficient representations of de Bruijn graphs
have thus been heavily researched in recent years. One of the first approaches was introduced
by Simpson et al. [28] as part of the development of the ABySS assembler. Their method stores
the graph as a distributed hash table and thus requires 336 GB to store the graph corresponding
to a set of reads from a human genome (HapMap: NA18507).

In 2011, Conway and Bromage [7] reduced space requirements by using a sparse bitvector
(by Okanohara and Sadakane [22]) to represent the k-mers (the edges), and used rank and
select operations (to be described shortly) to traverse it. As a result, their representation took
32 GB for the same data set. Minia, by Chikhi and Rizk [5], uses a Bloom filter to store
edges. They traverse the graph by generating all possible outgoing edges at each node and

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

testing their membership in the Bloom filter. Using this approach, the graph was reduced to
5.7 GB on the same dataset. Contemporaneously, Bowe, Onodera, Sadakane and Shibuya [1]
developed a different succinct data structure based on the Burrows-Wheeler transform [2] that
requires 2.5 GB. The data structure of Bowe et al. [1] is combined with ideas from IDBA-
UD [23] in a metagenomics assembler called MEGAHIT [17]. In practice MEGAHIT requires
more memory than competing methods but produces significantly better assemblies. Chikhi
et al. [4] implemented the de Bruijn graph using an FM-index and minimizers. Their method
uses 1.5 GB on the same NA18507 data. In 2015, Holley et. al. [13] released the Bloom Filter
Trie, which is another succinct data structure for the colored de Bruiin graph; however, we were
unable to compare our method against it since it only supports the building and loading of a
colored de Bruijn graph and does not contain operations to support our experiments. Lastly,
SplitMEM [18] is a related algorithm to create a colored de Bruijn graph from a set of suffix
trees representing the other genomes.

Roadmap In the next section, we describe our succinct colored de Bruijn graph data structure,
generalizing Bowe et al.’s stucture for classic de Bruijn graphs [1]. Section 3 then elucidates
the practical performance of the new data structure, comparing it to Cortex. Section 4 offers
directions for future work.

2 Methods

Our data structure for colored de Bruijn graphs is based on a succinct representation of indi-
vidual de Bruijn graphs that was introduced by Bowe et al. [1] and which we refer to as the
BOSS representation from the authors’ initials. The BOSS representation was in turn based
on an adaptation of Ferragina and Manzini’s [9] FM-indexes. Before getting to our description
of the succinct colored de Bruijn graph data structure, we first describe FM-indexes and then
explain the BOSS representation. Our explanation of BOSS is particularly simple and may be
of independent interest to those wanting to better understand that data structure.

2.1 FM-indexes

Consider a string S. Let F be the list of S’s characters sorted lexicographically by the suffixes
starting at those characters, and let L be the list of S’s characters sorted lexicographically by
the suffixes starting immediately after those characters. (The names F and L are standard
for these lists.) If S[i] is in position p in F then S[i − 1] is in position p in L. Moreover, if
S[i] = S[j] then S[i] and S[j] have the same relative order in both lists; otherwise, their relative
order in F is the same as their lexicographic order. This means that if S[i] is in position p in L
then, assuming arrays are indexed from 0 and ≺ denotes lexicographic precedence, in F it is in
position

|{h : S[h] ≺ S[i]}|+ |{h : L[h] = S[i], h ≤ p}| − 1 .

Finally, notice that the last character in S always appears first in L. It follows that we can
recover S from L, which is the famous Burrows-Wheeler Transform (BWT) [2] of S.

The BWT was introduced as an aid to data compression: it moves characters followed by
similar contexts together and thus makes many strings encountered in practice locally homo-
geneous and easily compressible. Ferragina and Manzini [9] realized it could also be used for
indexing because, if we know the range BWT(S)[i..j] occupied by characters immediately pre-
ceding occurrences of a pattern P in S, then we can compute the range BWT(S)[i′..j′] occupied

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

by characters immediately preceding occurrences of cP in S, for any character c, since

i′ = |{h : S[h] ≺ c}|+ |{h : S[h] = c, h < i}|
j′ = |{h : S[h] ≺ c}|+ |{h : S[h] = c, h ≤ j}| − 1 .

Notice j′ − i′ + 1 is the number of occurrences of cP in S. The essential components of an
FM-index for S are, first, an array storing |{h : S[h] ≺ c}| for each character c and, second, a
rank data structure for BWT(S) that quickly tells us how often any given character occurs up
to any given position1. To be able to locate the occurrences of patterns in S (in addition to just
counting them), we can use a sampled suffix array of S and a bitvector indicating the positions
in BWT(S) of the characters preceding the sampled suffixes.

2.2 BOSS Representation

Now consider the de Bruijn graph G = (V,E) for a set of k-mers, with each k-mer a0 · · · ak−1 rep-
resenting a directed edge from the node labelled a0 · · · ak−2 to the node labelled a1 · · · ak−1, with
the edge itself labelled ak−1. Define the nodes’ co-lexicographic order to be the lexicographic
order of their reversed labels. Let F be the list of G’s edges sorted co-lexicographically by their
ending nodes, with ties broken co-lexicographically by their starting nodes (or, equivalently, by
their k-mers’ first characters). Let L be the list of G’s edges sorted co-lexicographically by their
starting nodes, with ties broken co-lexicographically by their ending nodes (or, equivalently, by
their own labels). If two edges e and e′ have the same label, then they have the same relative
order in both lists; otherwise, their relative order in F is the same as their labels’ lexicographic
order. This means that if e is in position p in L, then in F it is in position

|{d : d ∈ E, label(d) ≺ label(e)}|+ |{h : label(L[h]) = label(e), h ≤ p}| − 1 .

Defining the edge-BWT (EBWT) of G to be the sequence of edge labels sorted according to
the edges’ order in L, so label(L[h]) = EBWT(G)[h] for all h, it follows that if we have, first,
an array storing |{d : d ∈ E, label(d) ≺ c}| for each character c and, second, a fast rank data
structure on EBWT(G) then, given an edge’s position in L, we can quickly compute its position
in F .

Let BF be the bitvector with a 1 marking the position in F of the last incoming edge of
each node, and let BL be the bitvector with a 1 marking the position in L of the last outgoing
edge of each node. Given a character c and the co-lexicographic rank of a node v, we can use
BL to find the interval in L containing v’s outgoing edges, then we can search in EBWT(G)
to find the position of the one e labelled c. We can then find e’s position in F , as described
above. Finally, we can use BF to find the co-lexicographic rank of e’s ending node. With the
appropriate implementations of the data structures, we obtain the following result:

Theorem 1 (Bowe, Onodera, Sadakane and Shibuya, 2012). We can store G in (1+o(1))|E|(lg σ+
2) bits such that, given a character c and the co-lexicographic rank of a node v, in O(log log σ)
time we can find the node reached from v by following the directed edge labelled c, if such an
edge exists.

If we know the range L[i..j] of k-mers whose starting nodes end with a pattern P of length
less than (k − 1), then we can compute the range F [i′..j′] of k-mers whose ending nodes end
with Pc, for any character c, since

i′ = |{d : d ∈ E, label(d) ≺ c}|+ |{h : EBWT(G)[h] = c, h < i}|
j′ = |{d : d ∈ E, label(d) ≺ c}|+ |{h : EBWT(G)[h] = c, h ≤ j}| − 1 .

1Given a sequence (string) S[1, n] over an alphabet Σ = {1, . . . , σ}, a character c ∈ Σ, and an integer i,
rankc(S, i) is the number of times that c appears in S[1, i].

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

It follows that, given a node v’s label, we can find the interval in L containing v’s outgoing
edges in O(k log log σ) time, provided there is a directed path to v (not necessarily simple) of
length at least k − 1. In general there is no way, however, to use EBWT(G), BF and BL alone
to recover the labels of nodes with no incoming edges.

To prevent information being lost and to be able to support searching for any node given
its label, Bowe et al. add extra nodes and edges to the graph, such that there is a directed path
of length at least k − 1 to each original node. Each new node’s label is a (k − 1)-mer that is
prefixed by one or more copies of a special symbol $ not in the alphabet and lexicographically
strictly less than all others. Notice that, when new nodes are added, the node labelled $k−1 is
always first in co-lexicographic order and has no incoming edges. Bowe et al. also attach an
extra outgoing edge labelled $, that leads nowhere, to each node with no original outgoing edge.
The edge-BWT and bitvectors for this augmented graph are, together, the BOSS representation
of G.

2.3 Adding Color

Given a multiset G = {G1, . . . , Gt} of individual de Bruijn graphs, we set G to be the union of
those individual graphs and build the BOSS representation for G. We also build and store a
two-dimensional binary array C in which C[i, j] indicates whether the ith edge in G is present in
the jth individual de Bruijn graph (i.e., whether that edge has the jth color). (Recall from the
description above that we consider the edges in G to be sorted lexicographically by the reversed
labels of their starting nodes, with ties broken lexicographically by their own single-character
labels.) We keep C compressed, but in such a way that we can still access individual bits quickly.
If the individual graphs are similar, then most edges will appear in most graphs, so it is more
natural to use 0s to indicate that edges are present and 1s to indicate that they are absent.
With these data structures, we can navigate efficiently in any of the individual graphs.

Figure 1 shows an example of how we represent a colored de Bruijn graph consisting of
two individual de Bruijn graphs. Suppose we are at node ACG in the graph, which is the co-
lexicographically eighth node. Since the eighth 1 in BL is BL[10] and it is preceded by two 0s,
we see that ACG’s outgoing edges’ labels are in EBWT[8..10], so they are A, C and T. Suppose we
want to follow the outgoing edge e labelled C. We see from C[9, 0..1] (i.e., the tenth column in
CT) that e appears in the second individual graph but not the first one (i.e., it is blue but not
red). There are four edges labelled A in the graph and three Cs in EBWT(G)[0..9], so e is F [6].
(Since edges labelled $ have only one end, they are not included in L or F .) From counting the
1s in BF [0..6], we see that e arrives at the fifth node in co-lexicographic order that has incoming
edges. Since the first node, $$$, has no incoming edges, that means e arrives at the sixth node
in co-lexicographic order, CGC.

2.4 Implementation

We now give some details of how our data structure is implemented and constructed in practice.

2.4.1 Data Structure

The arsenal of component tools available to succinct data structures designers has grown con-
siderably in recent years, with many methods now implemented in libraries. We chose to make
heavy use of the succinct data structures library (SDSL)2 in our implementation.

EBWT(G), the sequence of edge labels, is encoded in a wavelet tree, which allows us to
perform fast rank queries, essential to all our graph navigations. The bitvectors of the wavelet
tree are stored in the RRR encoding, as is the B bitvector. The rows of the color matrix, C,

2https://github.com/simongog/sdsl-lite

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

G G

A

ACG

CGC

GAC
T

T

A

C $

$$T

$TA CGA

ACT

$$$

TAC

GCG

G A

G
GTC TCG

CGT

C

C
T

A

C

$$$

CGA

$TA

GAC

TAC

0

3

1

1

1

T

C

C

G
T

G

CGC

GTC

TCG

ACG

GCG

G

G

A

A

T
C

A

1

1

1

2

1

CGT

$$T

ACT

1

1

1

C

A

$

EBWT(G) =

TCCGTGGGACTAAA$C

BF = 001111110111111

BL = 1110111100111111

CT = 0000001001010000

0000000110101001

Figure 1: Left: A colored de Bruijn graph consisting of two individual graphs, whose edges
are shown in red and blue. (We can consider all nodes to be present in both graphs, so they
are shown in purple.) Center: The nodes sorted into co-lexicographic order, with each node’s
number of incoming edges shown on its left and the labels of its outgoing edges shown on its
right. The edge labels are shown in red or blue if the edges occur only in the respective graph,
or purple if they occur in both. Right: Our representation of the colored de Bruijn graph: the
edge-BWT and bitvectors for the BOSS representation for the union of the individual graphs,
and the binary array C (shown transposed) whose bits indicate which edges are present in which
individual graphs.

are concatenated (i.e. C is stored in row-major order) and this single long bit string is then
stored in a RRR encoding. This reduces the size of C considerably because we expect rows to
be very sparse (i.e. most k-mers are contained in most samples), and the RRR encoding is able
to compress away this sparseness.

2.4.2 Construction

In order to convert the input data to the format required by BOSS (that is, in correct sorted
order, including dummy edges and bit vectors), we use the following process.

Our construction algorithm takes as input the set of (k-mer, color-set) pairs present in the
input sets of reads. Here, color-set is a bit field indicating which read sets the k-mer occurs in3.
We currently use the Cortex frontend to generate this set, but any k-mer counter capable of
recording color information will suffice.

For each of these k-mers we generate the reverse complement (giving it the same color-set
as its twin). Then, for each k-mer (including the reverse complements), we sort the (k-mer,
color-set) pairs by the first k − 1 symbols (the source node of the edge) to give the F table
(from here, the colors are moved around with rows of F , but ignored until the final stage).
Concurrently, we also sort each k-mer (without the color-sets) by the last k − 1 symbols (the
target node of the edge) to give the L table.

With F and L tables computed, we calculate the set difference F − L (comparing only the
(k − 1)-length prefixes and suffixes respectively), which tells us which nodes require incoming
dummy edges. Each such node is then shifted and prepended with $ signs to create the required
incoming dummy edges (k− 1 each). These incoming dummy edges are then sorted by the first
k − 1 symbols. Let this table of sorted dummy edges be D. Note that the set difference L− F
will give the nodes requiring outgoing dummy edges, but these do not require sorting, and so
we can calculate it as is needed in the final stage.

Finally, we perform a three-way merge (by first k − 1 symbols) D with F , and L − F
(calculated on the fly). For each resulting edge, we keep track of runs of equal k − 1 length
prefixes, and k − 2 length suffixes of the source node, which allows us to calculate the BF and
BL bit vectors, respectively. Next, we write the bit vectors, symbols from last column, and

3In our current implementation, the color-set bitmaps were chosen to be 64 bits wide for simplicity, but can
easily be extended to wider (or variable-length) bitmaps.

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

count of the second last column to a packed file on disk, and the colors to a separate file. The
time bottleneck in the above process is clearly in sorting the D and F tables, which are of the
same size, and are made up of elements of size O(k). Thus, overall, construction of the data
structure takes O(k(|F | log |F |)) time.

2.4.3 Cortex’s Graph Implementation

Before discussing our experimental results, we give a brief description of the colored de Bruijn
graph data structure that is implemented in the current Cortex release, which we use as a
baseline to measure our performance against in the next section.

Cortex implements the colored de Bruijn graph using a hash table. Each entry in the hash
table stores a (k − 1)-mer (vertex in the graph) as well as the following fields: the (k − 1)-mer
labelling this vertex, coverage (an array, indexed by color), status, and edges (indicating adjacent
(k − 1)-mers in the graph).

The (k − 1)-mer part of the hashtable entry is variable length, composed of multiple 64-
bit fields (sufficient to accommodate k − 1 nucleotides, represented as two bits each). The
coverage information is used for error correction prior to graph construction, e.g., to remove
low-coverage k-mers assumed to be the result of sequence errors. Later, when processing the
graph, the coverage array is used to determine if a k-mer exists for a given color (coverage of
0 for a given color indicates the (k − 1)-mer does not exist in that sample). The status field is
used at runtime to record whether the vertex has been previously visited, and to store other
information specific to a given algorithm (e.g. bubble finding). Finally, an edges field is stored
for each k-mer and each color. It is one byte in size, and each of the eight bits indicate which
bases precede and follow the k-mer for this color. Since there are four possible predecessors and
successors, one byte is sufficient.

3 Results

We evaluated the performance of Vari against Cortex on three different datasets, described
below. Performance was evaluated on peak memory, which was measured as the maximum res-
ident set size, and runtime, measured as the user process time. All experiments were performed
on a 2 Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz server with 386 GB of RAM, and both
set size and user process time were reported by the operating system. In addition to evaluating
performance, we also analyzed the ability of Vari to correctly call bubbles and to accurately
identify the origin of k-mers in a simulated metagenomics sample.

3.1 Datasets

Three different datasets were chosen in order to test and evaluate Vari on a variety of diverse yet
realistic data types that are likely to be used as input into Vari. The first dataset contained six
sub-strains of E. coli K-12 strain reference genomes from NCBI. Each of the genomes contained
approximately 4.6 million base pairs and had a median GC content of 49.9% (1).

Our second dataset was composed of reference genomes for four different plant species:
Oryza sativa Japonica (rice, NCBI Accession numbers: NC 008394 to NC 008405), Solanum
lycopersicum (tomato, NCBI Accession numbers: NC 015438 to NC 015449), Zea mays (corn,
NCBI Accession numbers: NC 024459 to NC 024468), and Arabidopsis thaliana (Arabidopsis,
[NCBI Accession numbers: NC 003070 to NC 003076). The genome sizes and GC content were
430 Mbp and 43.42% [30], 950 Mbp and 43.42% [3, 16], 2.07 Gbp and 35.70% [27], and 135 Mbp
and 47.4% [29], respectively. Hence, this represents a significantly larger dataset with more
varied GC content than the E. coli dataset, and therefore placed more demands on both the
performance and accuracy of Vari.

7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

Accession Number Sub-strain Genome Size

AP009048 W3110 4,646,332 bp
CP009789 ER3413 4,558,660 bp
CP010441 ER3445 4,607,634 bp
CP010442 ER3466 4,660,432 bp
CP010445 ER3435 4,682,086 bp

U00096 MG1655 4,641,652 bp

Table 1: Characteristics of the substrains of E. coli K-12 used to test the performance and
accuracy of Vari

.

As previously described, our third dataset contains 54 beta-lactamase genes from a custom
database and a simulated metagenomics sample. We first compiled a database of known AMR
genes based on sequences in the databases CARD [19], Resfinder [32] and ARG-ANNOT [12]—
each of these AMR-specific databases are actively curated and contain the genetic sequences
for a large variety of AMR genes. This database contains all known AMR genes, their drug
resistance, and mechanism conferring resistance. We selected 54 beta-lactamase genes from this
database that are known to have very high clinical and public health importance, and simulated
26,516,559 paired-end 120 bp reads from seven of the 54 beta-lactamase genes, as well as four
additional AMR genes that were not included in this set of 54 genes. These latter four genes
were tetracycline-resistant genes. Tetracyclines are a group of broad-spectrum antibiotics and
hence, their resistance is also clinically important. This AMR dataset was used not only in
the memory and time performance but also used to test the ability of Vari in identifying beta-
lactamase genes from a typical metagenomic sample containing a variety of AMR genes. Table 2
contains the gene name, resistance type (beta-lactamase or tetracycline), and accession number
of 11 genes that were used in simulation of the sample.

AMR Gene Resistance Type Accession Number

AmpH beta-lactamase AFQ67211
OKP-B-4 beta-lactamase CAJ19612
NDM-6 beta-lactamase AEX08599
MAL-1 beta-lactamase CAC33434
MOX-2 beta-lactamase CAB82578
TLA-1 beta-lactamase ADM26831
SED-1 beta-lactamase AAK63223
TEM-1 beta-lactamase AFI61435
TET-X Tetracycline AAA27471

TET-X(1) Tetracycline ADD83116
TET-C Tetracycline NP 387454

TETR-G Tetracycline AAB24797

Table 2: List of AMR genes used to generate the simulated sample. The first seven genes
were included in the the 54 beta-lactamase genes we considered for this experiment, and the
remaining four were tetracycline genes. Each of the genes were approximately 1,000 bp in length
and had varied GC content.

3.2 Time and Memory Usage

To compare Vari with Cortex [15], we constructed the colored de Bruijn graph, performed
bubble calling using both data structures, and recorded the peak memory usage and runtime.
Bubble calling is a simple algorithm to detect sequence variation in genomic data. It consists of
iterating over a set of k-mers in order to find places where bubbles start and terminate. When

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

combined with the k-mer color (in a colored de Bruijn graph), this enables identification of
places where genomic sequences diverge from one other. A bubble is identified when a vertex
has two outgoing edges. Each edge is followed in turn to navigate a path until we reach a
vertex with two incoming edges. If the terminating vertex is the same for both paths, we call
this a bubble. Colors for the bubbles are determined by looking at the color assignment of the
corresponding (k − 1)-mers. Our implementation in Vari closely follows the pseudocode given
by Iqbal et al. in [15]; however, it navigates the graph only in a forward direction to see if both
paths converge at the same vertex, while Cortex navigates the graph backwards and forwards
to find a path of adjacent vertices.

In order to test performance characteristics, this experiment was performed on all three
datasets described in the previous subsection. Due to differences in the size of the datasets, the
number of k-mers in the graph ranged from four million to over one and a half billion. As can
be seen in Table 3, Vari used less than one-fifth of the peak memory that Cortex required but
required greater running time. This memory and time trade-off is important in larger population
level data. Given that Cortex requires 100.93 GB of space for four plant species, it would be
perceptibly infeasible to run it on the i5K initiative dataset that contains the genetic sequence
data for 5,000 insect species. Hence, lowering the memory usage in exchange for higher running
time deservers merit in contexts where there is data from large populations.

Cortex Vari
Dataset No. of k-mers Colors Memory Time Memory Time
E. coli reference genomes 4,627,104 6 363.64 MB 9 s 72.38 MB 1m 19s
AMR genes and sample 9,348,365 55 7.08 GB 2m 55s 0.718 GB 29m 21s
Plant reference genomes 1,621,663,030 4 100.93 GB 2h 18m 19.46 GB 17h 28m

Table 3: Comparison between the peak memory and time usage required to store all the k-mers
and perform bubble finding in Cortex and Vari. k = 31 was used for all datasets. The peak
memory is given in megabytes (MB) or gigabytes (GB). The running time is reported in seconds
(s), minutes (m), and hours (h).

3.3 Validation on E. coli Dataset

In order to validate our data structure and test the accuracy of the bubble calling method
of Vari, we compared the bubbles found by running the bubble calling algorithm on the E.
coli dataset using Cortex and Vari. The bubbles outputted by each method were compared
by identifying the flank preceding each bubble. Both Vari and Cortex identified 465 bubbles
across all six E. coli K-12 substrains. This number accounts for the reverse complement bubbles
found by Vari. The methods agree on 98.5% (458 / 465) of the bubbles. Thus, Vari found seven
bubbles that were not identified by Cortex, which identified to be valid, and Cortex found
seven bubbles not identified by Vari. These latter bubbles were missed by Vari because the
addition of the reverse complement adds complexity to the graph, which changes these regions
from containing a single bubble to a more complex structure. Nonetheless, our validation shows
that 98.5% of the variation determined by Cortex and Vari is identical.

3.4 Validation on AMR Dataset

Lastly, we validated the ability of Vari to correctly identify the AMR genes contained in a
metagenomics sample using a set of reference genes. Vari constructed the colored de Bruijn
graph from the set of 54 beta lactamases and the simulated metagenomics sample. Hence,
there were 55 unique colors in the graph because there exists one color for the metagenomic
sample and one unique color for each of the 54 beta-lactamase genes. Hence, the resulting graph

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

contains all possible k-mers in the dataset and the color(s) associated with each. Next, for each
of the 54 genes, the unique k-mers were identified and the total number of these k-mers that
were contained in the simulated sample was determined.

Table 4 in the Supplement gives the total number of each unique k-mers for each gene,
the number of these k-mers that were contained in the simulated reads, and the shared k-mer
fraction that is defined by the division of the latter two numbers. The shared k-mer fraction
for each of the 54 genes ranged from 0.41 to 1 with a mean of 0.62. All of the seven beta-
lactamase genes that were contained in the simulated sample had a shared k-mer fraction of
1, whereas none of the remaining 47 genes did. Of the 47 beta-lactamase genes that were not
contained in the simulated sample, two had a shared k-mer fraction 0.98 and 0.95, however,
these genes had 97% and 95% sequence similarity to one of the seven genes contained in the
sample. All the remaining 45 genes had a shared k-mer fraction between 0.79 and 0.41. Hence,
this demonstrates (on a small scale) that this use of the colored de Bruijn graph is a viable
method to identify AMR genes in a metagenomics sample.

4 Concluding Remarks

We presented Vari, which is an implementation of a succinct colored de Bruijn graph that
significantly reduces the amount of memory required to store and use the colored de Bruijn
graph. In addition to the memory savings, we validated our approach using E coli. and a set
of beta-lactamase genes that have a critical role in public health. Moreover, we introduced the
use of colored de Bruijn graph for identifying the AMR genes within a metagenomics sample;
however, as shown in our results, this use requires construction of the colored de Bruijn graph
on the complete set of beta-lactamases and metagenomics sample. Nontrivial extensions to our
work include (1) developing a fully scalable version of our construction algorithm that makes use
of external-memory sorting, and (2) determining a succinct data structure that would allow for
efficient querying of large metagenomics sample datasets. Due to the decrease in sequence costs,
scientists and public health officials are increasingly moving towards a metagenomic sequence-
based approach for surveillance and identification of resistant bacteria [8, 24]. A tailored colored
de Bruijn graph implementation that would enable efficiently identify and comparison of AMR
genes and their sequence variations across thousands of samples would be an influential method
for AMR research.

Acknowledgements

The authors would like to thank Journi Sirén from the Wellcome Trust Sanger Institute for
many insightful discussions, and Zamin Iqbal for his assistance with testing Cortex.

References

[1] Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In: Proc.
WABI. pp. 225–235 (2012)

[2] Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm. Tech. Rep.
124, Digital Equipment Corporation (1994)

[3] Causse, M., et al.: Whole genome resequencing in tomato reveals variation associated with
introgression and breeding events. BMC Genomics 14, 791 (2013)

[4] Chikhi, R., Limasset, A., Jackman, S., Simpson, J., Medvedev, P.: On the representation
of de Bruijn graphs. In: Proc. RECOMB. pp. 35–55 (2014)

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

[5] Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a
Bloom filter. Algorithms for Molecular Biology 8(22) (2012)

[6] Compeau, P., Pevzner, P., Tesler, G.: How to apply de bruijn graphs to genome assembly.
Nature Biotechnology 29, 987–991 (2011)

[7] Conway, T.C., Bromage, A.J.: Succinct data structures for assembling large genomes.
Bioinformatics 27(4), 479–486 (2011)

[8] F., B., et al.: Metagenomic epidemiology: a public health need for the control of antimi-
crobial resistance. Clinical Microbiology and Infection 18(4), 67–73 (2012)

[9] Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52, 552–581
(2005)

[10] G.E. Robinson, K., et al.: Creating a buzz about insect genomes. Science 331(6023), 1386
(2011)

[11] Genome 10K Community of Scientists: Genome 10K: A proposal to obtain whole-genome
sequence for 10,000 vertebrate species. Journal of Heredity 100(6), 659–674 (2009)

[12] Gupta, S., et al.: ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance
genes in bacterial genomes. Antimicrobial Agents and Chemotherapy 58(1), 212–20 (2014)

[13] Holley, G., Wittler, R., Stoye, J.: Bloom filter trie–a data structure for pan-genome storage.
Algorithms in Bioinformatics pp. 217–230 (2015)

[14] Idury, R., Waterman, M.: A new algorithm for DNA sequence assembly. Journal of Com-
putational Biology 2, 291–306 (1995)

[15] Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and geno-
typing of variants using colored de Bruijn graphs. Nature Genetics 44, 226–232 (2012)

[16] Kobayashi, M., et al.: Genome-wide analysis of intraspecific DNA polymorphism in “micro-
tom”, a model cultivar of tomato (solanum lycopersicum). Plant Cell Physiology 55(2),
445–454 (2014)

[17] Li, D., Liu, C.M., Luo, R., Sadakane, K., Lam, T.W.: MEGAHIT: An ultra-fast single-
node solution for large and complex metagenomics assembly via succinct de Bruijn graph.
Bioinformatics 31(10), 1674–1676 (2015)

[18] Marcus, S., Lee, H., Schatz, M.C.: Splitmem: A graphical algorithm for pan-genome
analysis with suffix skips. Bioinformatics 30(24), 3476–3483 (2014)

[19] McArthur, A.G., et al.: The comprehensive antibiotic resistance database. Antimicrobial
Agents and Chemotherapy 57, 3348–3357 (2013)

[20] McKenna, M.: Antibiotic resistance: The last resort. Nature 499, 394–396 (2013)

[21] Muggli, M., Puglisi, S., Ronen, R., Boucher, C.: Misassembly detection using paired-end
sequence reads and optical mapping data. Bioinformatics (special issue of ISMB 2015)
31(12), i80–i88 (2015)

[22] Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In:
Proc. ALENEX. pp. 60–70. SIAM (2007)

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

[23] Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y.: IDBA-UD: a de novo assembler for single-
cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11),
1420–1428 (2012)

[24] Port, J.A., Cullen, A.C., Wallace, J.C., Smith, M.N., Faustman, E.M.: Metagenomic frame-
works for monitoring antibiotic resistance in aquatic environments. Environmental. Health
Perspectives 122(3) (2014)

[25] Queenan, A.M., Bush, K.: Carbapenemases: the versatile beta-lactamases. Clinical Micro-
biology Reviews 7(3), 440–458 (2007)

[26] Ronen, R., Boucher, C., Chitsaz, H., Pevzner, P.: SEQuel: Improving the accuracy of
genome assemblies. Bioinformatics (special issue of ISMB 2012) 28(12), i188–i196 (2012)

[27] Schnable, P., et al.: The b73 maize genome: Complexity, diversity, and dynamics. Science
326, 1112–1115 (2009)

[28] Simpson, J., Wong, K., Jackman, S., Schein, J., Jones, S., Birol, I.: ABySS: a parallel
assembler for short read sequence data. Genome Research 19(6), 1117–1123 (2009)

[29] Swarbreck, D., et al.: The Arabidopsis information resource (TAIR): gene structure and
function annotation. Nucleic Acids Research. 36, D1009–14 (2008)

[30] Tanaka, T., et al.: The rice annotation project database (RAP-DB): 2008 update. Nucleic
Acids Research 36, D1028–33 (2008)

[31] Weigel, D., Mott, R.: The 1001 genomes project for Arabidopsis thaliana. Genome Biology
10(5), 107 (2009)

[32] Zankari, E., et al.: Identification of acquired antimicrobial resistance genes. Antimicrobial
Agents and Chemotherapy 67(11), 2640–2644 (2012)

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

Supplement

Table 4 shows the results of the validation on AMR dataset as described in the Results section.
The set of beta lactamase genes is listed as well as the number of k-mers in that genes. For
each gene, we also count the number k-mers shared with the sample and then divide the shared
k-mer count by the k-mer count to calculate the fraction. The first seven genes are in the sample
so as expected their fraction is 1.

13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

Gene Name Total No. of k-mers No. of Shared k-mers Shared k-mer Fraction

AmpH 5,021 5,021 1
OKP-B-4 4,407 4,407 1
NDM-6 4,327 4,327 1
MAL-1 4,507 4,507 1
MOX-2 4,987 4,987 1
TLA-1 4,513 4,513 1
SED-1 4,475 4,475 1
TEM-1 4,321 4,321 1
TLA-1-1 4,593 4,513 0.982582
NDM-5 4,323 4,137 0.956974
BLA-I 3,463 2,763 0.797863
OKP-A-1 4,413 3,299 0.747564
Mbl 4,093 2,763 0.675055
IND-1 4,139 2,763 0.667553
CGB-1 4,157 2,763 0.664662
GIM-1 4,207 2,763 0.656763
LEN-1 4,377 2,853 0.651816
LCR-1 4,257 2,763 0.649049
Nps1 4,261 2,763 0.648439
VIM-1 4,301 2,763 0.642409
OXA-1 4,363 2,763 0.63328
MOX-1 4,987 3,153 0.632244
Z32 4,391 2,763 0.629242
SHV-1 4,423 2,783 0.629211
BEL-1 4,403 2,763 0.627527
CARB-1 4,437 2,763 0.622718
OXY-1-5 4,441 2,763 0.622157
IMI-1 4,445 2,763 0.621597
CTX-M-1 4,449 2,763 0.621038
NMC-A 4,457 2,763 0.619924
BES-1 4,459 2,763 0.619646
KPC-1 4,463 2,763 0.61909
SME-1 4,469 2,763 0.618259
CME-1 4,477 2,763 0.617154
Lut-1 4,481 2,763 0.616603
FAR-1 4,489 2,763 0.615505
VEB-1 4,499 2,763 0.614136
AIM-1 4,525 2,763 0.610608
AER-1 4,531 2,763 0.609799
ROB-1 4,535 2,763 0.609261
SFC-1-1 4,559 2,763 0.606054
cfxA 4,635 2,763 0.596116
cphA1 4,663 2,763 0.592537
CMG 4,795 2,763 0.576225
ACT-1 4,977 2,763 0.555154
MIR-1 4,977 2,763 0.555154
MOR 4,979 2,763 0.554931
Amp 4,993 2,763 0.553375
FOX-1 4,999 2,763 0.552711
PAO-1 5,089 2,763 0.542936
PENA 6,137 2,763 0.45022
PBP 6,505 2,763 0.42475
lmrD 6,675 2,763 0.413933
MECA 6,713 2,763 0.411589

Table 4: AMR gene name, number of k-mers in the colored de Bruijn graph, and number
and proportion of k-mers identified in both the beta lactamase database and the simulated
metagenomic sample

.

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040071doi: bioRxiv preprint

https://doi.org/10.1101/040071

