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Siddharth Krishna Kumar 1 and co-authors claim to have shown that “GCTA applied to 

current SNP data cannot produce reliable or stable estimates of heritability.” Given the 

numerous recent studies on the genetic architecture of complex traits that are based on this 

methodology, these claims have important implications for the field. Through an 

investigation of the stability of the likelihood function under phenotype perturbation and an 

analysis of its dependence on the spectral properties of the genetic relatedness matrix, our 

study characterizes the properties of an important approach to the analysis of GWAS data 

and identified crucial errors in the authors’ analyses, invalidating their main conclusions. 

 Heritability estimation using genome-wide SNP data is a fundamental research topic 

with profound implications for studies of the genetic architecture of complex traits. The 

development of a novel methodology 2,3 in this direction has spurred studies, on a broad 

spectrum of complex traits, that have reinforced the view that a substantial portion of missing 

heritability can be accounted for by hitherto undiscovered common variants 4,5 and has led to 

substantial research that has demonstrated that certain functional categories of SNPs 

contribute disproportionately to the heritability of complex diseases 6-8. However, in a recent 

report 1, Krishna Kumar and co-authors claim to have proved that the method “may not reliably 

improve our understanding of the genomic basis of phenotypic variability” even when the 

assumptions of the method are satisfied exactly and that the heritability estimates produced 

are highly sensitive to the choice of sample used and to measurement errors in the phenotype. 

We investigated these claims by characterizing the likelihood function and identified crucial 

analytic errors that seriously undermine the validity of the authors’ conclusions.  

The GREML model 
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We consider the following model (Figure 1A) of the phenotype 𝑦 (which has been 

simplified, as in Krishna Kumar et al., to exclude any fixed-effects):  

𝑦 = 𝑍𝑢 + 휀                                   [Ϯ] 

where 𝑢 is a 𝑃𝑥1 vector of random (genetic) effects, 𝑍 is a 𝑁𝑥𝑃 (standardized genotype) matrix 

and 휀 is the (non-genetic) residual. Here 

𝑢 ~ 𝑁(0, 𝜎2𝐼) 

𝑦|𝑢 ~ 𝑁(𝑍𝑢, 𝛼2𝐼) 

Thus, the distribution of 𝑦 assumes the following form: 

𝑦 ~ 𝑁(0, 𝛼2𝐼 + 𝜎2𝑍𝑍𝑇) 

Note that the phenotypic covariance, 𝑣𝑎𝑟(𝑦), is the sum of a genetic covariance and a residual 

covariance. The Genetic Relatedness Matrix (GRM), which quantifies the genetic similarity 

between pairs of individuals using the genotype data 𝑍, can be written as follows: 

𝐴 = 𝑍𝑍𝑇/𝑃 

Singularity index and induced quadratic form 

We refer to the function S(Z) ∶= log(det(𝛼2𝐼 + 𝜎2𝑍𝑍𝑇)) as the singularity index 

(because it provides a formal test for the invertibility of the phenotypic covariance matrix 𝛼2𝐼 +

𝜎2𝑍𝑍𝑇) and refer to the function 𝑄(𝑍, 𝑦1) ∶= 𝑦1
𝑇(𝛼2𝐼 + 𝜎2𝑍𝑍𝑇)−1𝑦1 as the induced quadratic 

form. Note the log-likelihood of the observed phenotype data 𝑦1 is given by 

𝑙( 𝜎2, 𝛼2 | 𝑍, 𝑦1) = −
𝑁

2
𝑙𝑜𝑔(2𝜋) − log(det(𝛼2𝐼 + 𝜎2𝑍𝑍𝑇)) −

1

2
𝑦1

𝑇(𝛼2𝐼 + 𝜎2𝑍𝑍𝑇)−1𝑦1  [ϮϮ] 
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Using Restricted Maximum Likelihood (REML), GCTA estimates the variances 𝜎2 and 𝛼2 given 

the observation 𝑦1, thereby providing an estimate of the SNP-based heritability:   

ℎ𝑆𝑁𝑃
2 =

𝑃𝜎2

𝑃𝜎2 + 𝛼2
 

Equivalently, the log-likelihood function, now viewed as a function of 𝑍 and 𝑦1, can be written 

as a sum involving the singularity index and the induced quadratic form:  

𝑓( 𝑍, 𝑦1 | 𝜎2, 𝛼2) = −
𝑁

2
𝑙𝑜𝑔(2𝜋) − 𝑆(𝑍) −

1

2
𝑄(𝑍, 𝑦1) 

Perturbation of the standardized genotype matrix 𝒁 and the GRM 𝑨 

Because the 𝑍 in the GREML model is a standardized genotype matrix (wherein each entry 

is a function of the number of copies of the reference allele and the reference allele frequency 

at a SNP), this implies that there are implicit constraints on what is a valid perturbed genotype 

matrix 𝑍 + 𝑝𝑒𝑟𝑡𝑢𝑟𝑏(𝑍) (i.e., constraints which determine whether 𝑍 + 𝑝𝑒𝑟𝑡𝑢𝑟𝑏(𝑍) is a 

realizable or ill-defined standardized genotype matrix). A perturbation matrix 𝑝𝑒𝑟𝑡𝑢𝑟𝑏(𝑍) may 

generate a matrix that departs substantially from a standardized genotype matrix, yielding an 

ill-defined revised model. To illustrate this, if the original (e.g., independent, real and random) 

entries in 𝑍 have mean 0 and variance 1, a perturbation with elements on the primary diagonal 

due to the introduction of the phenotype noise 𝜗~𝑁(0, 𝜏2) would preserve the mean of these 

elements but alter their variance,  possibly quite substantially. In short, not every element of 

Matrices(N, P) represents a standardized genotype matrix, and not every perturbation is a 

reasonable one. For the same reason, a perturbation of the GRM (by an error matrix 𝐸, as in 

the authors’ equation [A17] of the Appendix) does not necessarily generate a valid (revised) 
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GRM. (For example, the resulting perturbed GRM must be symmetric, which implies that the 

perturbation matrix 𝐸 must be symmetric as well.) Furthermore, modeling the difference 

between the true 𝑍 and sample 𝑍 through an error matrix 𝐹 via an additive model (𝑍𝑠𝑎𝑚𝑝𝑙𝑒 =

𝑍𝑡𝑟𝑢𝑒 + 𝐹) makes some very strong assumptions, including that the two matrices, 𝑍𝑡𝑟𝑢𝑒 and 

𝑍𝑠𝑎𝑚𝑝𝑙𝑒, are of the same dimension (in particular, same number of variants). It is therefore 

more sound to evaluate the discordance between the true GRM (𝐺𝑅𝑀𝑡𝑟𝑢𝑒) and the estimated 

GRM (𝐺𝑅𝑀𝑠𝑎𝑚𝑝𝑙𝑒). The impact of this discordance (arising, for example, from the imperfect 

tagging of causal variants 2,9) on the REML estimate of heritability is indeed a valid subject of 

research 3. Interestingly, this issue is related to the classic Horn’s conjecture in matrix theory 

(which was finally settled 10) on the spectrum of the sum of two Hermitian matrices and on how 

the eigenvalues of two Hermitian matrices constrain the eigenvalues of their sum. 

A critique of the authors’ claims 

The authors evaluated the sensitivity of the likelihood function, and the resulting GREML 

estimate, to the GWAS data (specifically, phenotype measurement noise and population 

stratification). We report here crucial errors in the authors’ analyses, on which the main 

conclusions of the study are based. Furthermore, we highlight a methodological gap, which we 

address using an approach that may be of interest to future studies in population genetics and 

GWAS of complex traits.  

(We should note a random matrix theory for the Wishart product matrix 𝑍𝑍𝑇  (or the 

GRM) generally assumes a 𝑍 with independent Gaussian entries, and any application in genetics 

must demonstrate that the relevant theoretical results apply (robustly) to a (non-Gaussian) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2016. ; https://doi.org/10.1101/040055doi: bioRxiv preprint 

https://doi.org/10.1101/040055
http://creativecommons.org/licenses/by-nc-nd/4.0/


matrix (e.g., one consisting of standardized genotype data). The authors appear to claim, clearly 

incorrectly and rather confusingly, for both 𝑍 and its symmetrization 𝑍𝑍𝑇 a Wishart distribution 

(e.g., see pages E62 and E68 of the authors’ paper 1). In what follows, we will assume that 𝑍 is a 

standardized genotype matrix (and thus non-Gaussian), and Gaussian-based results that require 

extension to the non-Gaussian case will be explicitly stated.) 

1. Sensitivity of third term of log-likelihood to phenotype noise 
 

The authors sought to show the instability of the induced quadratic form 𝑄(𝑍, 𝑦1), and thus 

of the log-likelihood, by showing its sensitivity to the phenotype measurement (i.e., to a 

perturbation of 𝑦1). In their analysis, this conclusion follows from the instability of the spectral 

properties of 𝑍 even under a “small perturbation.” The authors used the following 

“equivalence” of perturbations (see equation [A10] of their Appendix A) – namely, the 

perturbation to the phenotype measurement and the induced perturbation of the matrix 𝑍: 

𝑍𝑇(𝑦1 + 𝑝𝑒𝑟𝑡𝑢𝑟𝑏(𝑦1)) = (𝑍𝑇 + 𝑝𝑒𝑟𝑡𝑢𝑟𝑏(𝑍𝑇))𝑦1        [e1] 

Applying the Sherman-Morrison-Woodbury identify to the third term of the log-likelihood 

(equation [ϮϮ]), one obtains 

𝑄(𝑍, 𝑦1) ≔ 𝑦1
𝑇(𝛼2𝐼 + 𝜎2𝑍𝑍𝑇)−1𝑦1 = 𝑦1

𝑇 (
1

𝛼2
𝐼 −

𝜎2

𝛼4
𝑍 (𝐼 +

𝜎2

𝛼2
𝑍𝑇𝑍) 𝑍𝑇) 𝑦1 

=
1

𝛼2 𝑦1
𝑇𝑦1 −

𝜎2

𝛼4 𝑦1
𝑇𝑍 (𝐼 +

𝜎2

𝛼2 𝑍𝑇𝑍) 𝑍𝑇𝑦1⏟   

Thus, the sensitivity, assuming phenotype perturbation (equation [e1]), depends not only on 

the factor with an underlying bracket (i.e., the spectral properties of 𝑍), but also on the 
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remaining terms (including 𝑦1
𝑇𝑦1). (The authors highlighted the former and, curiously, 

disregarded the latter.) Ignoring these remaining terms may yield invalid inferences concerning 

𝑄(𝑍, 𝑦1). Importantly, 𝑄(𝑍, 𝑦1) is an ℝ-valued continuous (i.e., well-behaved and stable) 

function at every (𝑍0, 𝑦0) ϵ Matrices(N, P)xℝ𝑁, i.e., 

∀𝜖 > 0, ∃𝛿 > 0 𝑠𝑜 𝑡ℎ𝑎𝑡 |𝑄(𝑍, 𝑦) − 𝑄(𝑍0, 𝑦0)| < 𝜖 whenever 𝑑((𝑍, 𝑦), (𝑍0, 𝑦0)) < 𝛿   

where 𝑑: Matrices(N, P)xℝ𝑁 ⊕ Matrices(N, P)xℝ𝑁 → ℝ is the distance function defined by: 

 𝑑((𝑍, 𝑦), (𝑍0, 𝑦0)) ∶= √(||𝑍 − 𝑍0||𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠)2 + (𝑦 − 𝑦0)𝑇(𝑦 − 𝑦0))      [§] 

Here, for 𝑀 ϵ Matrices(N, P), ||M||𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠 ∶=  √∑ ∑ |𝑚𝑖𝑗|2𝑃
𝑗=1

𝑁
𝑖=𝑖 . The metric in equation [§] 

endows the space Matrices(N, P)xℝ𝑁 with the topology of a Euclidean space (homeomorphic 

to ℝ𝑁𝑃+𝑁) on which 𝑄(𝑍, 𝑦), consisting of sums and products of continuous functions, is 

continuous.  Similarly, the proper subset 

{(𝑍, 𝑦)| 𝑍 a standardized genotype matrix and 𝑦 a phenotype vector} ⊆ Matrices(N, P)xℝ𝑁, 

which is embeddable into ℝ𝑁𝑃+𝑁 via the canonical inclusion, gets an induced subspace 

topology on which 𝑄(𝑍, 𝑦) is continuous.  

Given a fixed matrix 𝑍, we ask how a perturbation in 𝑦1 changes 𝑄(𝑍, 𝑦1). The rate of 

change in 𝑄 with respect to (the vector) 𝑦1 is given by:  

   
𝜕𝑄

𝜕𝑦1
=

1

𝛼2 𝑦1
𝑇(2𝐼) +

𝜎2

𝛼4 𝑦1
𝑇(𝑀 + 𝑀𝑇) with 𝑀 =  𝑍 (𝐼 +

𝜎2

𝛼2 𝑍𝑇𝑍) 𝑍𝑇  

This simplifies to the following expression: 

   
𝜕𝑄

𝜕𝑦1
= 𝑦1

𝑇{(2
1

𝛼2
𝐼) +

𝜎2

𝛼4
(𝑀 + 𝑀𝑇)}  
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which allows us to quantify the 𝑙2-norm ||
𝜕𝑄

𝜕𝑦1
|| as a function of (the perturbed) 𝑦1. Because 

S(Z) does not depend on 𝑦1, this also gives the rate of change of the entire log-likelihood with 

respect to the phenotype vector. (Furthermore, the expression for 
𝜕𝑄

𝜕𝑦1
= 𝑦1

𝑇�̃� shows that 𝑄 ∈

∁1, i.e., it is actually continuously differentiable as a function of 𝑦1.)   

Consistent with the continuity of the function 𝑄 in 𝑍 and 𝑦 and the (stable and “linear”) 

rate of change in 𝑄 with respect to 𝑦1, simulations we performed confirm the stability of the 

GREML estimate (Figure 1B). We note that, in fact, both terms (𝑄(𝑍, 𝑦1) and S(Z)) of the log-

likelihood are continuous functions at every (𝑍0, 𝑦0) ϵ Matrices(N, P)xℝ𝑁. 

The authors’ figure 5, which was intended to show the variation in the GREML estimates 

from random sampling from repeated measures of a phenotype, is not unexpected and, 

furthermore, does not empirically support the flawed theoretical argument about the instability 

of the log-likelihood.  

2. Stability of second term of log-likelihood in stratified population 
 

 The authors also sought to show the instability of the singularity index S(Z) in a 

stratified population. Using the singular value decomposition (SVD) of 𝑍 (𝑍 = 𝑈1𝑊1𝑉1
𝑇) and 

applying the Matrix determinant lemma, one obtains the following decomposition: 

S(Z) = 2𝑁𝑙𝑜𝑔(𝛼) + log(det(𝑊1
2)) + log (det (𝑊1

−2 +
𝜎2

𝛼2
𝐼))        [e2] 

The last term of equation [e2] can be written in terms of the singular values 𝑤𝑖 of 𝑍 as 

log (∏ (
1

𝑤𝑖
2 +

𝜎2

𝛼2)𝑘
𝑖=1 ). From this, the authors concluded (incorrectly, as we will see) that in a 
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stratified population (for which, it is claimed, thousands of the 𝑤𝑖 are close to 0), this 

expression for the last term of [e2] (and thus the entire expression itself) is sensitive to small 

changes in the values of the 𝑤𝑖. However, one cannot show the instability of the singularity 

index without also considering the rest of the terms in equation [e2]. Indeed, equation [e2] can 

be rewritten as follows: 

S(Z) = 2𝑁𝑙𝑜𝑔(𝛼) + log (∏(𝑤𝑖
2)

𝑘

𝑖=1

) + log (∏ (
1

𝑤𝑖
2 +

𝜎2

𝛼2
)

𝑘

𝑖=1

) 

= 2𝑁𝑙𝑜𝑔(𝛼) + ∑ (log(𝑤𝑖
2) + log (

1

𝑤𝑖
2 +

𝜎2

𝛼2
))

𝑘

𝑖=1

 

    = 2𝑁𝑙𝑜𝑔(𝛼) + ∑ log (1 + 𝑤𝑖
2 𝜎2

𝛼2
)𝑘

𝑖=1                              [e3] 

For singular values 𝑤𝑖 of 𝑍 that are close to 0,  log (1 + 𝑤𝑖
2 𝜎2

𝛼2) ≈ 𝑤𝑖
2 𝜎2

𝛼2 (based on the Taylor 

series expansion). Thus, the sampling variability (from the expression for S(Z); see equation 

[e3]) for near-zero singular values does not arise from the terms 
1

𝑤𝑖
2 (as the authors claim), but 

from 𝑤𝑖
2. Such near-zero singular values should add little to the singularity index and closely-

packed singular values (i.e., for which 𝑤𝑖 ≈ 𝑤, for some constant 𝑤) should affect S(Z) nearly 

similarly, and thus the claim that near-zero singular values lead to unreliable estimates of the 

variance explained by all SNPs (= 𝑃𝜎2) remains unfounded. In contrast, very large eigenvalues 

(such as reflecting non-random population structure) affect the stability of the index, with the 

rate of change of the index, 𝜌𝑖 ∶=
𝜕𝑆

𝜕𝑤𝑖
, with respect to 𝑤𝑖 given by the following expression: 
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𝜌𝑖 =
2𝑤𝑖

1 + 𝑤𝑖
2 𝜎2

𝛼2

(
𝜎2

𝛼2
) 

which, at 𝑤𝑖 = ∞, is approximately 
1

𝑤𝑖
. Thus, the marginal effect of increasing singular value on 

the index decays at infinity in a manner inversely proportional to the magnitude of the singular 

value. The rate-vector 𝜌 is informative about the behavior of the index at extreme singular 

values. Clearly, lim
𝑤𝑖→0

𝜌𝑖 = 0, which implies that the rate of change becomes almost negligible 

for singular values near 0.  

 As we have already noted, the singularity index is also a continuous function at each 

(𝑍0, 𝑦0) ϵ Matrices(N, P)xℝ𝑁 and, by projection to the first coordinate, a continuous function 

of the matrix 𝑍. Related to this, the classical Weyl’s inequality 11 implies that, given  

𝐺𝑅𝑀𝑠𝑎𝑚𝑝𝑙𝑒 = 𝐺𝑅𝑀𝑡𝑟𝑢𝑒 + 𝐸  

with ||E||𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠 < ε, then  

|𝑤𝑖,𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑤𝑖,𝑡𝑟𝑢𝑒| < 휀  

i.e., small perturbations in GRM yield only small perturbations in singular values. Thus, under an 

additive model in which the true GRM differs from the sample GRM by a perturbation 𝐸 whose 

Frobenius norm is small, the difference in the corresponding singular values between the GRMs 

will be correspondingly small.  

3. Methodological gap  
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 What is notably missing from the authors’ analysis, given its use of the eigenvalues 

(
𝑤𝑖

2

𝑃
, 1 ≤ 𝑖 ≤ 𝑁) of the GRM (from the SVD) to evaluate the stability of the GREML approach, is 

a quantification of the degree to which the eigenvalues reflect non-random population 

structure versus random expectation. A large eigenvalue may well be “within null expectation,” 

and there is thus a need to quantify its significance. (Note this is different from the empirical 

distribution of the GRM eigenvalues as presented in the authors’ figure 1, which aimed to show, 

despite the small sample sizes considered, concordance of the data with the asymptotic 

behavior of eigenvalues from the Marchenko-Pastur theory.) Consideration of the null is also 

missing from the authors’ appropriation of the notion of an “ill-conditioned” matrix 𝑍, which is 

defined in terms of the condition number 𝜅 =
max

𝑖
(𝑤𝑖)

min
𝑖

(𝑤𝑖) 
, as an approach for investigating the 

effect on GREML estimates. In addition to these key methodological gaps, it is important to 

note that 𝜅 is a property of the matrix 𝑍 rather than of the GREML method. Indeed, a very large 

𝜅 would also affect effect size estimation in simple linear regression (e.g., equation [Ϯ]) that 

jointly fits multiple SNPs as fixed effects; a very large 𝜅 would imply that even a small change in 

𝑦 could have a destabilizing impact on the estimated SNP effect sizes and that matrix inversion 

would be unstable with finite-precision numbers.  

The distribution of the largest eigenvalue of the Wishart matrix of a matrix 𝑍 with 

independent Gaussian entries is known 12. For large values of 𝑁 and 𝑃, if λ denotes the largest 

eigenvalue, then 
λ−μ(N,P)

𝜎(𝑁,𝑃)
 assumes the Tracy-Widom distribution 13; here both the centering 

constant μ(N, P) and the scaling constant 𝜎(𝑁, 𝑃) depend on only 𝑁 and 𝑃. If the following 
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assumptions are met for the symmetrization 𝑍𝑍𝑇 = [𝑠𝑖𝑗] in the GREML model (where now 𝑍 is 

the standardized genotype matrix with non-Gaussian entries): 

(a) the (independent real random) entries have mean 0 and variance 1 

(b) all moments of these random variables are finite 

(c) 𝐸(𝑠𝑖𝑗)2𝑚 ≤ 𝑚𝑚, for some constant 𝑚 (i.e., the distributions of the entries decay at 

least as fast as a Gaussian distribution) 

Soshnikov’s extension theorem 14 implies that the ratio 
λ−μ(N,P)

𝜎(𝑁,𝑃)
, for some centering and scaling 

constants that depend only on 𝑁 and 𝑃, converges in distribution to the Tracy-Widom 

distribution, just as in the Wishart case. The ratio thus provides a way to assess the significance 

of the largest eigenvalue of a GRM and to quantify the presence of non-random population 

structure in the genotype data 15. (For example, using the Framingham dataset presented in the 

authors’ figure 3, one concludes that the dataset shows extreme population stratification, 

p<2.2x10-16.) Exact expressions for the density and the moments of the distribution of the 

smallest eigenvalue (in terms of polynomials, exponentials and hypergeometric functions) for a 

matrix with independent Gaussian entries have been derived, and, interestingly, the form of 

this distribution depends on whether 𝑃 − 𝑁 is odd or even 16. Additionally, the work of 

Edelman provides a closed form for the distribution of the condition number 𝜅. Indeed, for 𝑍 

with independent standard-Gaussian entries and large 𝑁 16, we can write 

𝑃(𝜅(𝑍𝑍𝑇)/𝑁 < 𝑥) = 𝑃(𝜅(𝑍)2/𝑁 < 𝑥) ≈ 𝑒
−

2
𝑥

−
2

𝑥2 
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providing an asymptotic distribution for 𝜅(𝑍). The claims made by the authors concerning the 

stability of the GREML estimates such as through their use of the skew in singular values (such 

as the “Largest Singular Value” of Figure 3 and the discussion thereof in the text) are, as 

currently presented, statistically problematic without consideration of what is expected under 

the null.  

Conclusions 

We investigated the properties of the log-likelihood to evaluate the dependence of the 

GREML estimate on phenotype perturbation and on the spectral properties of the standardized 

genotype matrix. We showed the continuity of the singularity index and the induced quadratic 

form as functions of the standardized genotype matrix and the phenotype vector, supporting 

the stability of the log-likelihood under perturbation. Furthermore, we derived an explicit 

expression for the rate of change in the log-likelihood with respect to the phenotype vector. 

We examined the sensitivity to changes in the singular values, showing that the authors’ claims 

regarding the impact of sampling variability for near-zero singular values on the GREML 

estimate were based on an analytic error (and indeed assumed an incorrect view of the 

structure of genetic relatedness under population stratification). (It should be noted that the 

observation that population structure, which may be reflected in the largest eigenvalues of the 

GRM, may confound heritability estimation, and must thus be adjusted for, has been 

repeatedly discussed and investigated 17,18.) Finally, we investigated a methodological gap in the 

authors’ study and highlighted an approach to address it, which may be of broad interest to 

methods development in population genetics and genome-wide association analysis. 
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Figure Legend 

Figure 1. A) The GREML model (which underlies the GCTA software implementation) has been 

simplified here, as in the Krishna Kumar et al. study, to exclude fixed effects. Note that the 

phenotypic covariance decomposes into a genetic covariance and a residual covariance. Using 

Restricted Maximum Likelihood (REML), GCTA provides estimates of 𝜎2 and 𝛼2 and thus of the 

SNP-based heritability: ℎ𝑆𝑁𝑃
2 =

𝑃𝜎2

𝑃𝜎2+𝛼2
 . The Genetic Relatedness Matrix (GRM), which 

quantifies the genetic similarity between pairs of individuals using the genotype data 𝑍, can be 

written as 𝐴 = 𝑍𝑍𝑇/𝑃 . B) We performed simulations, assuming N =

2,000 unrelated individuals, P = 50,000 independent SNPs and ℎ2 = 0.75. For each value of 

the minor allele frequency (MAF) ϵ {0.10, 0.30}, we generated the matrix 𝑍 by drawing from the 

binomial distribution 𝐵𝑖𝑛(2, 𝑚𝑎𝑓) and standardizing (i.e., by centering and scaling) the entries. 

We simulated 100 phenotypes for each MAF. The genetic effects 𝑢 were drawn from the 

standard normal 𝑁(0,1). We used the generative model described in (A) and the necessary 

residual to arrive at the required level of heritability. The distribution of GREML estimates for 

ℎ2 and corresponding standard error is shown for each MAF.  
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