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Abstract

Recent studies of “unconscious working memory” have challenged the
notion that only visible stimuli can be actively maintained over time. In
the present study, we investigated the neural dynamics of subliminal main-
tenance using multivariate pattern analyses of magnetoencephalography
recordings (MEG). Subjects were presented with a masked Gabor patch
whose angle had to be briefly memorized. We show with an unprecedented
level of precision, that irrelevant sensory features of contrast, frequency
and phase are only encoded transiently. Conversely, the relevant feature of
angle is encoded and maintained in a distributed and dynamically chang-
ing manner throughout the brief retention period. Furthermore, although
the visibility of the stimulus correlates with an amplification of late neu-
ral codes, we show that unseen stimuli can be partially maintained in the
corresponding neural assemblies. Together, these results invalidate several
predictions of current neuronal theories of visual awareness and suggest
that visual perception relies on a long sequence of neural assemblies that
repeatedly recode and maintain task-relevant features at multiple levels
of processing, even under unconscious conditions.

1 Introduction

Conscious perception is often associated with the ability to hold a represen-
tation in mind. Indeed, the influence of invisible stimuli on behavior rapidly
decreases with time. Furthermore, neuroimaging studies have repeatedly shown
that invisible stimuli typically fail to evoke late and sustained neural responses,
notably in fronto-parietal cortices [1]. Several models of visual awareness have
consequently conjectured a strong link between the visibility of a stimulus and
the maintenance of specific neuronal codes, through the coalition of coherent
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thalamo-cortical neuronal assemblies [2], recurrent processing within the cortex
[3] or the sustained recruitment of the fronto-parietal networks [4].

The association between visual awareness and information maintenance has
however been recently challenged. First, several groups have shown that an un-
seen stimulus can sometimes evoke late neuronal responses [5, 6, 7, 8, 9, 10, 11].
Second, Soto and collaborators have recently shown in a series of behavioral
experiments that a masked Gabor patch can be mentally maintained for sev-
eral seconds, even when subjects report not seeing it [12, 13, 14]. Finally,
functional Magnetic Resonance Imaging (fMRI) suggests that this unconscious
visual maintenance depends on prefrontal activity [15, 13].

The current neuronal theories of visual awareness could offer ad-hoc expla-
nations to account for the maintenance of these putatively unconscious stimuli.
For example, the Global Neuronal Workspace Theory predicts that the mainte-
nance of a neuronal module could remain unconscious if its output failed to be
globally broadcasted across brain areas [4, 16]. Alternatively, the Recurrence
Theory predicts that a long feedforward activation that fails to trigger recurrent
processing could in principle provide a mechanism for an unconscious dynamic
maintenance [3].

Testing these theoretical predictions requires identifying, the neural mecha-
nisms responsible for the maintenance of unseen stimuli. Specifically, one needs
to determine 1) whether the maintenance of unseen information is confined to
early sensory regions or broadcasted to higher processing stages ([16, 4, 17]) and
2) whether the maintenance of an unseen stimulus depends on the sustained fir-
ing rate of a coding neuronal assembly (e.g. [18]), on the dynamic transmission
of information across multiple modules (e.g. [19]), or both.

In the present study, we investigated with magneto-encephalography the
neural mechanisms encoding and briefly maintaining low-level visual features,
and tested how their recruitment varies as a function of the stimulus visibility.

2 Method

2.1 Stimuli & Protocol

Twenty young healthy adults were scanned with MEG (22±3 years old; 11 males,
18 right-handed). Subjects had normal or corrected-to-normal vision. Each
experiment lasted for approximately one hour and was financially compensated.
All subjects gave written informed consent to participate in this study, which
was approved by the local Ethics Committee.

Each trial started with a brief and variably contrasted target Gabor patch (17
ms), subsequently masked by a radial sinusoid (117 ms, inter stimulus interval:
50 ms, Figure 1 a.). A probe Gabor patch was then presented for 67 ms, 800 ms
after the onset of the target. The contrast of the target was pseudo-randomly
varied between 0% (‘absent’ trials), 25%, 75% and 100%, whereas the contrast
of the mask and of the probe was fixed to 100%. The orientation of the target
pseudo-randomly varied between 15◦, 45◦, 75◦, 105◦, 135◦, and 165◦. The
probe angle was tilted 30◦ relative to the target angle; the direction of this tilt
(clockwise or counter-clockwise) was varied pseudo-randomly.

Subjects made two successive decisions. First, they performed a forced-
choice discrimination task, which consisted in indicating whether the probe was

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040030doi: bioRxiv preprint 

https://doi.org/10.1101/040030


tilted clockwise or counter-clockwise to the target (index and middle finger of
the left hand respectively). Subjects were then asked to report the visibility
of the target (0: no experience of the target, up to 3: clear experience of the
target, as defined by the ’Perceptual Awareness Scale’ [20]), using the left index,
middle, ring and little fingers of their right hand respectively. Subjects did 30
minutes of training before entering the MEG to ensure that they understood the
task, and sensibly used all visibility ratings. Four subjects had to be excluded
from the analysis because “unseen” or “clearly seen” reports were given less
than 10 times across the experiment, or because the training phase had not
been completed.

The phases of the target and of the probe randomly varied between -180◦

and 180◦. The target spatial frequency pseudo-randomly varied between two
possible values (30 and 35). The spatial frequency of the probe and of the mask
was fixed to 32.5. The target, mask and probe stimuli had a fixed size of 16◦

of visual angle. Stimuli were presented on a gray background of a projector
refreshed at 60 Hz, and placed 106 cm away from subjects’ head. Subjects
were asked to keep their eyes opened and to avoid eye movements by fixating
a dot continuously displayed at the center of the screen. Subjects performed
a total of 840 trials, shuffled across five blocks of ∼12 minutes each. Pseudo
randomization corresponds to a shuffled permutation of all conditions and was
performed within each block.

2.2 Preprocessing

The preprocessing and statistical pipelines are available on http://github.

com/kingjr/decoding_unconscious_maintenance, together with their mod-
ification history, several method tutorials, and an interactive preview of the
results.

Magneto-encephalography recordings were acquired with an ElektaNeuromag R©
MEG system (Helsinki, Finland), comprising 204 planar gradiometers and 102
magnetometers in a helmet-shaped array. Subjects’ head position relative to the
MEG sensors was estimated with four head position coils placed on the nasion
and pre-auricular points, digitized with a PolhemusIsotrak System R©, and trian-
gulated before each block of trials. Six electrodes recorded electro-cardiograms
as well as the horizontal and vertical electro-oculograms. All signals were sam-
pled at 1000 Hz, and band-pass filtered online between 0.1 and 330 Hz. Raw
MEG signals were cleaned with the signal space separation [21] method provided
by MaxFilter to i) suppress magnetic interferences ii) interpolate bad MEG sen-
sors and iii) realign the MEG recordings into a subject-specific head position.
The signals were then low-pass filtered at 30 Hz with a zero-phase forward and
reverse Butterworth IIR filter (order=4), epoched between -300 ms and +1.200
ms relative to the target onset and baseline-corrected from -300 to -50 ms. Arte-
facted epochs were removed from the analysis after visual inspection. Epochs
were finally down-sampled to 128 Hz.

The orientation of a Gabor patch ranges from 0 to 180◦. To facilitate the
circular analyses described below, we will refer to Gabor angle as the double of
Gabor orientation. The phase of the Gabor patches was random. To facilitate
the analyses and keep a consistent processing pipeline (i.e. the stratified k-folded
cross-validation is only implementable with discrete values), continuous phases
were digitized into 6 discrete evenly-separated bins.
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Four large time regions of interest were used to simplify the results and
maximize signal-to-noise ratio. The baseline, early, delay and probe time win-
dows refer to time samples between -100–50 ms, 100–250 ms, 300–800 ms, and
900–1050 ms relative to the target onset respectively.

2.3 Statistics

Except if stated otherwise, statistical analyses were based on second order tests
across subjects. Specifically, each analysis was first performed within each sub-
ject separately (across trials). We then tested the robustness of these effect
sizes across subjects, using, whenever possible, non-parametric statistical tests,
which tend to provide more robust, although potentially less sensitive statistical
estimates. Except if stated otherwise, the reported effect sizes correspond to
the mean effect size ± the standard error of the mean (SEM) across subjects;
the p-values correspond to the second-order analyses obtained across subjects.
Categorical and ordinal tests were based on two-tailed Wilcoxon and Spearman
regression analyses respectively, as provided by the Scipy package [22]. Para-
metric circular-linear correlations were implemented from [23] and consisted
in combining the linear correlation coefficients (R) obtained between the linear
data (x) and the cosine and sine of the circular data (α): Rsin = corr(x, sin(α))

Rcos = corr(x, cos(α))
Rnorm = corr(sin(α), cos(α))

R2
lc = Rcos

2+Rsin
2−2RcosRsinRnorm

1−Rnorm
2

Where R2
lc is the linear-circular correlation coefficient between x and α.

Mass-statistical analyses, such as those used to test the significance of each
channel at each time sample, or each estimator at each time sample, were based
on cluster-based permutation analyses [24], using the default parameters of the
MNE-Python spatio temporal cluster 1samp test function, which intrinsically
corrects for multiple comparison issues. Uncorrected p-values are explicitly
denoted as puncorrected. Except if stated otherwise, analyses were only based on
meaningful trials: for instance, the decoding of Gabor angle was solely based
on target-present trials, and trials with missed decision responses were excluded
from any analyses involving a decision factor.

2.4 Decoding

The multivariate estimators aimed at predicting a vector (y) of categorical (e.g.
present versus absent), ordinal (e.g. visibility = 0, 1, 2, 3) or circular data (e.g.
Gabor angle: 30◦, 90◦ . . . , 330◦) from a matrix of single trial MEG data (X,
shape = ntrials × (nchans × 1 time sample), Figure S8). Decoding analyses
systematically consisted in i) fitting a linear estimator (w) to a training subset
of X (Xtrain), ii) predicting an estimate of y on a separate test set (ŷtest) and
finally iii) assessing the decoding score of these predictions as compared to the
ground truth (score(y, ŷ)).

Estimators. Each estimator made use of two processing steps. First, X was
whitened by using a standard scaler that z-scored each channel at each time
point across trials. Second, a linear support vector machine (SVM) algorithm
was fitted to find the hyperplane (w) that maximally predicts y from X while
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minimizing a square hinge loss function. All SVM parameters were set to their
default values as provided by the Scikit-Learn package (C = 1, l2 regulariza-
tion, tolerance = 0.0001) at the exception of setting an automatic class-weight
parameter that aimed at making the analysis more robust to potential class im-
balance in the dataset. Three variants of estimators were implemented to deal
with categorical, ordinal and circular data respectively. Categorical and ordinal
tests were based on support vector classifiers (SVC) and support vector regres-
sors (SVR) respectively. The SVC included a supplementary computational
layer to generate probabilistic estimates instead of categorical predictions, by
using a nested cross-validation based on Platt’s method [25]. Finally, a combi-
nation of SVR was used to perform circular correlations: two distinct SVR were
fitted on X to respectively predict sin(y) and cos(y). The predicted angle (ŷ)
was estimated from the arctangent of the predicted sine and predicted cosine of
the two SVR: ŷ = artan2(ŷsin, ŷcos).

Cross-validation. Each estimator was fitted on each subject separately, across
all MEG sensors, and at a unique time sample (sampling frequency = 128 Hz).
In other words, for each analysis (decoding of Gabor angle, contrast, visibility
report etc), we fitted ntime estimators on an X matrix (ntrials × nchannels × 1
time sample of MEG data) to robustly predict a vector y (ntrials × 1 categori-
cal, ordinal or circular data). This analysis was performed with an eight folds
stratified folding cross-validation, such that each estimator iteratively generated
predictions on 1/8th of the trials (testing set) after having been fitted to the
remaining 7/8th (training set) while maximizing the distribution homogeneity
across training and testing sets (stratification).

Scores. Decoding analyses generated an ntimes × 1 vector of probabilistic,
ordinal or circular data (ŷ) that could be compared to the trials’ actual categor-
ical, ordinal or circular value (y). Categorical decoding was summarized with an
empirical Area Under the Curve applied across all trials (AUC, range between
0 and 1, chance = 0.5). Ordinal decoding was summarized with a Spearman
correlation R coefficient (range between −1 and 1, chance = 0). Circular de-
coding was summarized by computing the mean absolute difference between ŷ
and y (range between 0 and π, chance = π/2). To facilitate visualizations, this
’error’ metrics was transformed into an ’accuracy’ metrics (range between −π/2
and π/2, chance = 0).

Time regions of interest. Except if stated otherwise, the decoding scores
obtained for a large time window of interest was generated by i) averaging the
decoding predictions across the selected time samples at the single trial level,
ii) computing the unique resulting score for each subject and iii) performing a
univariate categorical or ordinal test across subjects. Averaging of circular data
(e.g. decoded angle of a Gabor patch) was performed in the complex space:
µ = artan2(

∑n
ii

sinαii

n ,
∑n
ii

cosαii

n ), where αii is the angle at trial ii, n is the
number of trials, and µ the average angle.

Temporal generalization. Time-resolved decoding analyses are a specific
case of temporal generalization analyses where the estimators are fitted, tested
and scored with a unique time sample (Figure S9). Each estimator fitted across
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trials at time t can also be tested on its ability to accurately predict a given trial
at time t‘, so as to estimate whether the coding pattern is similar between t and
t‘. When applied systematically across all pairs of time-samples, this analysis
results in a square generalization-across-time (GAT) matrix, where the y-axis
corresponds to the time at which the estimator was fitted, and the x-axis to the
time at which the estimator was evaluated.

All decoding analyses were performed with the MNE-Python [26] and Scikit-
Learn packages [27]. The first-order decoding analyses have been integrated to
the MNE-Python package under the TimeDecoding andGeneralizationAcrossT ime
classes.

2.5 Topology analyses

Two-dimensional graphs were generated from temporal generalization analyses.
The nodes and edges of the graph correspond to the training and testing times of
the GAT matrix respectively (Figure 6). Indeed, each training time corresponds
to a specific estimator, itself isolating a linear combination of MEG sensors, and
thus a specific, possibly distributed, neural assembly. The similarity of these
neural assemblies can thus be estimated from the co-activation of their respective
estimators [28].

Each graph was based on the average of decoding scores obtained across
subjects. This connectivity matrix was normalized by the maximum decoding
score thresholded according to the second order statistical significance obtained
with cluster-permutation analyses, and rectified (negative weights correspond to
topographical inversions and thus imply the same neural regions than positive
weights). The sizes of the nodes are proportional to the decoding scores obtained
at the time at which each estimator was trained. The two-dimensional position
of the nodes was initialized around a circle, and iteratively re-estimated with the
Fruchterman-Reingold force-directed algorithm until reaching a local minimum
(niterations=100) provided in the NetworkX package [29].

The resulting 2D plot attempts to summarize a complex hyper-dimensional
graph, and is thus necessarily simplistic and partially arbitrary. Different ap-
proaches, such as multidimensional scaling and spectral embedding would lead
to slightly different 2D layouts. The critical features of the graph therefore re-
late more to the topology of the network than the exact distance that separate
the nodes.

3 Results

3.1 Behavioral evidence of a weak maintenance of unseen
stimuli.

We first quantified the extent to which subjects were able to detect the masked
Gabor patches (target), maintain its orientation and compare it to a subsequent
probe (Figure 1 a). Subjects’ visibility ratings varied across the four-point vis-
ibility scale (0: unseen, 3: clearly seen). Absent trials were generally reported
as unseen (visibility=0/3: 74±6%) and present trials were generally reported
with one of the three other visibility ratings (visibility > 0/3: 93±2%), leading
to a detection d’ of 2.73±0.32 (Figure 1 b). This result confirms that subjects
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meaningfully used subjective visibility reports. Forced-choice discrimination
performance (the ability to determine whether the probe was oriented clockwise
or counter-clockwise to the target) was relatively high (85±5%, chance=50%),
and strongly varied as a function of visibility (R=0.79±0.10, p<0.001), indicat-
ing that subjects adequately estimated their ability to detect the target. To
our surprise, discrimination performance did not appear to systematically in-
crease with the contrast of the target (R=0.17±0.14, p=0.194), although this
effect may be under-powered by the fact that the contrasts only varied between
three possible values. Importantly, target reported as unseen were discriminated
slightly above chance level (accuracy: 58±5%, p=0.036; d’=0.20±0.09, p=0.006,
Figure 1 c). These behavioral results suggest that subjects were weakly but sig-
nificantly able to maintain and compare the orientation of a target stimulus to
that of a probe presented 800 ms later, even when they reported not seeing the
target.

3.2 The brain automatically encodes all sensory features
in parallel.

A series of regression analyses was applied for each sensor (univariate topog-
raphy analyses) or across all sensors at once (decoding analyses) to track, at
each time point, the neural responses specifically coding for each sensory and
decision feature.

Comparing the event related fields (ERF) evoked in trials with a target and
a mask, to trials with a mask but no target (‘absent trials’) confirmed that the
visual target elicited a strong focal response on centro-posterior MEG channels
from between ∼80 and 250 ms after the onset of the target (average decoding
scores 100–250 ms: AUC=0.91±0.01, p<0.001, Figure 1 d).

These early ERFs specifically encoded target orientations. Indeed, linear
circular correlations between the ERF and the target angles revealed a focal
response over posterior channels from ∼90 ms and the corresponding decoding
scores were relatively low but strongly significant during this early time window
(100–250 ms: 0.060±0.007 rad., p<0.001, Figure 2). Similar analyses applied
onto probe orientations revealed analogous ERF and decoding results at the no-
table exception of a much higher signal-to-noise ratio (900–1050 ms after target
onset, i.e.100–250 ms after probe onset: 0.111±0.008 rad., p<0.001, Figure 2).

The contrast, spatial frequency and phase of the target (Figure 3) also ap-
peared encoded in these early brain responses: univariate analyses consistently
revealed correlations between the early posterior responses and each of these sen-
sory features. Although some of these effects vanished after correction for multi-
ple comparisons, decoding analyses confirmed that the contrast (R=0.17±0.01,
p<0.001) and the spatial frequency of the target (AUC=0.53±0.01, p=0.005),
as well as the phase of the probe (0.054±0.012 rad., p<0.001) could be decoded
significantly above chance between approximately 100 and 250 ms after the on-
set of the corresponding stimulus. The decoding of the target phase did not
reach statistical significance, but additional analyses showed that the estima-
tors fitted to the probe phase significantly predicted the target phase between
148 and 202 ms after target onset (0.024±0.006 rad., p<0.001). The phase of
the target thus appears to be decodable from the MEG response, but the signal
is so weak that the default parameters used to fit the initial estimators were
visibly suboptimal to robustly capture this effect.
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Overall, these results demonstrate that all of the sensory features presently
manipulated are simultaneously and automatically encoded in early brain re-
sponses.

3.3 Task-relevant visual features are selectively maintained.

While the task-irrelevant sensory features of contrast, spatial frequency and
of phase were not detectable beyond 250 ms in the MEG activity, the task-
relevance features of presence and orientation as well as the visibility of the
target remained decodable during the entire epoch (Figure 3).

Specifically, the decoding scores of the target presence were significantly
above chance during the delay period (300–800 ms: AUC=0.73±0.02, p<0.001)
as well as after probe onset (900–1050 ms: AUC=0.66±0.02, p<0.001, Figure 3,
red), and was characterized by spatially distributed MEG response from ∼250
ms onward. Similarly, the decoding of target orientation was low but remained
significant from ∼250 ms (300–800 ms: 0.025±0.003 rad., p=0.005). The corre-
sponding univariate ERFs only reached statistical significance after the probe
onset, suggesting that the anatomical substrates recruited during the delay time
period may have been too variable across subjects to be detectable with conven-
tional group analyses across sensors. Additional control analyses confirmed that
the decoding of the target after probe onset could not be solely explained by
the correlation between the angles of these two stimuli (Supplementary Figure
S11).

Interestingly, we observed that visibility, a subjectively-defined but task-
relevant visual feature was also detectable throughout the retention period.
Indeed, the decoding of visibility decisions was low but sustained from ∼100
ms up to the end of the epoch (100–250 ms: R=0.06± 0.01, p=0.007, 300–800
ms: R=0.05±0.01, p=0.002, 900–1050 ms: R=0.08±0.01, p=0.002). By con-
trast, the decoding of forced-choice discriminations was only significantly above
chance around probe onset (900–1050 ms: AUC=0.54±0.01, p=0.002, Figure
3).

Overall, these results suggest that, the brain automatically encodes all visual
features in parallel around 100-250 ms, but then only processes and maintains
those relevant to the task (Figure S10).

3.4 The maintenance of unseen sensory information can
be tracked over time.

To investigate whether the maintenance of unseen visual information could be
detectable in the MEG results, we separately analyzed seen and unseen trials,
as defined in a conservative manner (seen=rating 3/3, unseen= rating 0/3).

Decoding the presence of the target was significant in both seen and un-
seen conditions during the early time window (AUC: seen 0.91±0.01, unseen:
0.87±0.02, both p<0.001; for clarity purposes, we report the AUC of present
trials as compared to all absent trials) as well as during the retention period
(AUC: seen: 0.74±0.02, unseen: 0.65±0.02, both p<0.001, Figure 4. Top left).

The decoding scores of seen and unseen orientations were noisier than those
of presence decoding, but presented a similar overall picture to the one ob-
served above with the presence decoding (Figure 4 Top right). Specifically,
the orientations of both unseen and seen trials could be decoded shortly after
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the target onset (seen: 0.111±0.13 rad., p<0.001, unseen: 0.085±0.018 rad.,
p<0.001). These seen and unseen decoding scores did not appear significantly
different from one another during these two time periods (100–250 ms: p=0.117;
900–1050 ms: p=0.576). Contrarily a significant difference was observed be-
tween seen and unseen trials during the delay period (seen-unseen: 0.047±0.025
rad., p=0.033). Unlike seen trials (0.067±0.008 rad., p<0.001) the decoding of
unseen orientations did not reach statistical significance during the delay time
period (0.019±0.024 rad., p=0.332), but only reached significance after probe
onset (0.197±0.055, p=0.006). Additional analyses confirmed that these late
codes could not be solely explained by the correlation between the target and
the probe orientations (Figure S11).

Overall, these results confirm that visual information can be partially main-
tained even when the stimulus is reported as unseen.

3.5 The maintenance of sensory features is specifically af-
fected by visibility decisions.

In spite of being statistically detectable, the maintenance of unseen stimuli was
largely deteriorated as compared to that of seen stimuli. Indeed, the decod-
ing of the target presence positively correlated with subjective visibility ratings
(0-3) from ∼180 ms (Figure 4 b., R=0.066±0.008, p<0.001), and seen orien-
tations were better decoded than unseen ones (seen-unseen: 0.047±0.025 rad.,
p=0.033). This modulation of presence and orientation decoding scores as a
function of visibility was specific to the delay period, and was not observed
before ∼200 ms.

The modulation of sustained brain activity was specific to subjective cri-
teria, and was remarkably independent from the objective stimulus contrast.
Indeed, the contrast of the target modulated the early decoding scores of pres-
ence (R=0.187±0.014, p<0.001) and orientation (R=0.55±0.13, p=0.002), but
rapidly stopped influencing both of these codes during the delay period (Figure
4 c.). The modulations of decoding score by subjective visibility and target
contrast factors were significantly different from one another during the early
(∆R = 0.149 ± 0.014, p < 0.001) and delay time windows (∆R = −0.035 ±
0.009, p = 0.003), confirming the temporal specificity of these two factors. Note
that we did observe a weak correlation between orientation decodability and
target contrast after probe onset (R=0.325±0.129, p=0.0369) but the low con-
fidence of this unexpected effect, together with the absence of such trend in the
stronger presence decoding results, suggest a family-wise error.

Overall, these results suggest that the early encoding of the target features
was performed independently of visibility, and was solely modulated by stimulus
contrast. Conversely, the late processing stages were strongly modulated by
subjective visibility (confirming previous reports [6, 30, 10]) but not by the
objective stimulus contrast.
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3.6 The maintenance of seen and unseen information de-
pends on a long sequence of distributed neural assem-
blies

The temporal profile of decoding scores quantifies the amount of decodable in-
formation irrespective of the dynamics of its underlying neuronal substrate. To
investigate the functional organization underlying the encoding and the mainte-
nance of the target representation, we therefore applied temporal generalization
analyses by testing whether each estimator trained at a given time point could
generalize to all other time points. This analysis results in a generalization-
across-time (GAT) scoring matrix, where the y and x-axes correspond to train-
ing and testing times respectively, and where the diagonal directly corresponds
to the decoding scores presented in the previous sections (Figure S8). Different
functional organizations result in specific GAT matrices and can thus charac-
terize the functional organization underlying information maintenance (Figure
S9). For example, a sustained neural activity typically results in a square com-
ponent, whereas sequential neural activations are typically characterized by a
diagonal component.

The empirical GAT matrices of each decoded features were typically char-
acterized by i) an early reversal of the coding activity around ∼200 ms and
ii) a relatively ‘thin’ early ‘diagonal’ component and iii) a relatively ‘thick’ late
‘diagonal’ component (for the relevant features only). Such diagonal component
indicates that the ability of each estimator to generalize over time is relative brief
as compared to the time period during which the corresponding features can be
decoded. Diagonal components therefore indicate that the neuronal assemblies,
isolated by each estimator, code their respective features only in a transient
manner. Several weak off-diagonal components were also observed: orientation
estimators trained around 200 ms weakly anti-generalized from ∼500 to ∼750
ms (0.01 < p < 0.05) and presence estimators trained around 250 ms general-
ized up to 600 ms, whereas later estimators weakly anti-generalized from 700 ms
(0.01 < p < 0.05). These off-diagonal components suggest that the correspond-
ing neural assemblies were sustained or reactivated. However, these effects were
statistically weak and variable across presence and orientations estimators, and
therefore remain difficult to interpret.

The functional organization underlying these temporal generalization anal-
yses can be analyzed as a graph (Figure 6 a-c), where each node corresponds
to an estimator and each edge is defined as the ability of the corresponding
estimator to generalize to other time points. The overall layout depends on
the number and on the weight of their edges, and should thus be interpreted
in terms of overall topology, and not strictly on spatial location (see method).
Overall, the graph visualizations illustrate i) the strong diagonal component of
GAT matrices as a long chain of nodes and ii) the off-diagonal components as
edges that curve of this chains.

3.7 The meta-stability of neural assemblies correlates with
visibility, but remains detectable in unseen trials.

Temporal generalization analyses revealed a dominating diagonal component,
which suggests that the maintenance of sensory information is mainly performed
by a long sequence of neural assemblies. To test whether subjective visibility
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correlates with the stability of particular neural activities [18], we quantified the
ability of presence and orientation estimator to generalize over time as a func-
tion of visibility reports (Figure, 6 d.). Early estimators were typically more
transient (presence: 42±1 ms, orientation: 96±19 ms) than late estimators
(presence: 292±24 ms, p<0.001, orientation: 159±19 ms, p=0.010). Further-
more, the duration of early estimators did not significantly differ between seen
(presence: 39±1 ms; orientation: 30±28 ms) and unseen trials (presence: 39±1
ms, p=0.072; orientation: 43±47 ms, p=0.446). By contrast, the duration of
late estimators was significantly shorter for unseen (presence: 225±27 ms; ori-
entation: 31±35 ms) than for seen trials (presence: 287±25 ms, p=0.006; orien-
tation: 194±32 ms, p=0.0585), and the interaction between these early and late
durations was significant (presence: p < 0.001; orientation: p=0.0239). Overall,
these results confirm that i) early and late signals are typically transient and
sustained respectively ii) that visibility partially and specifically correlates with
the maintenance of late neural signals but iii) these results importantly show
that the neural assemblies recruited after ∼250 ms can maintain their activity
in unseen trials.

4 Discussion

4.1 Unseen but task-relevant sensory features can evoke
late and sustained representations.

Our behavioral results confirm previous findings showing that an unseen stim-
ulus can be maintained over time [13], and further demonstrate that unseen
but relevant sensory features can be decoded and tracked from subjects’ MEG
activity during a brief retention period.

Although unseen representations appear significantly deteriorated as com-
pared to seen ones, several results suggest that these sustained codes depend
on an active maintenance mechanism rather than on the passive residues of
sensory responses. Indeed, while all sensory features were decodable early on
after the onset of the stimulus (< ∼250 ms). Only the features relevant to the
task (presence, orientation and visibility of the stimulus) remained significantly
maintained during the retention period (>∼300 ms). These results therefore
suggest a dissociation between the automatic encoding and the selective main-
tenance of visual features. Topographical analyses strengthen this dissociation
by consistently showing a focal response over visual regions and a spatially dis-
tributed set of responses for the early and the delay time windows respectively.

This two-stage processing hypothesis fits with recent studies decoding visible
Gabor patches. Indeed, whereas Wolff et al. recently showed that a to-be-
maintained Gabor patch [31] can be decoded from EEG for approximately one
second, Ramkumar et al. [32], who decoded the orientation of task-irrelevant
visible Gabor patches with MEG, only observed significant decoding scores for
< 300 ms, despite higher signal to noise ratio than the one obtained in the
present study.

Together, these results therefore suggest that an active and selective neu-
ronal mechanism is recruited from ∼200 ms to selectively process and maintain
the visual feature of orientation which is relevant to the task, even when the
corresponding stimulus remains unseen.
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4.2 Residue of unseen stimuli can be selectively broad-
casted.

To test current neuronal models of visual awareness, we assessed with tempo-
ral generalization analyses whether unseen stimuli could be maintained locally
and/or dynamically, and whether they could be broadcasted in a similar way
to seen stimuli. The resulting matrices were mainly dominated by a diagonal
pattern lasting for more than 800 ms. Such long diagonal patterns, typical of
a sequential processing ([28], Figure S9), suggest that the corresponding neural
representation is coded i) transiently (each neural assembly is active for a shorter
time window than the length of the diagonal), ii) redundantly (the same family
of linear regressors decode the activity from different (sets of) brain regions)
and iii) sequentially (the estimators are activated one after the other).

Similar long diagonal patterns have been repeatedly observed with EEG or
MEG in recent visual studies [10, 31, 33, 34, 35, 36, 37] as well as auditory and
olfactory studies [38, 39]. Together, these diagonal patterns strengthen a series
of anatomical and functional studies unraveling the hierarchical organization of
the cortex [40, 41, 42]. Our results supplement this view by suggesting that
visual information can be broadcasted across the cortical hierarchy even when
the stimulus remains subjectively invisible. Indeed, unseen stimuli were neither
characterized by an early disruption of the diagonal pattern as expected from
a lack of broadcast, nor by a sustained activation of early processing stages, as
expected from a maintenance mechanisms confined to early visual cortices. On
the contrary, our results suggest that the dynamical maintenance and the broad-
cast of visual information were qualitatively similar across visibility conditions
(Figure 7).

4.3 Unconscious representations can be weakly meta-stable.

Could this long diagonal reflect a purely feedforward phenomenon and thus
support Recurrent Theory [3]? Our results demonstrate that the width of the
temporal generalization diagonal increases from a few dozens of milliseconds
before ∼250 ms to a few hundreds of milliseconds thereafter. As this width
depends on the duration of activation of the corresponding neural assemblies,
our results suggest that visual stimuli first recruits a series transient processing
stage and subsequently evoke meta-stable responses from ∼250 ms. This obser-
vation fits with the ‘ignition’ phenomenon observed with scalp (e.g. [6, 30, 10]
and intracranial recordings [43, 44, 3]).

Critically however, the width of the diagonal observed in the unseen condi-
tions also thickens after ∼250 ms, suggesting that meta-stability is not unique to
subjectively visible stimuli. Although this result challenges Recurrence Theory,
it remains compatible with its original empirical support. Indeed, the intracra-
nial studies distinguishing feedforward and recurrent processing as a function
of visibility strictly focused on early visual regions [3, 4]. On the contrary the
present MEG study investigates meta-stable neural activity across a wide vari-
ety of brain regions, and in fact suggests that early visual responses detectable
with MEG are brief in both seen and unseen conditions. In the future, intracra-
nial recordings of associative cortices could help overcome the spatial resolution
of MEG and directly investigate the existence of recurrent processing during un-
conscious working memory task. Such approach could also help distinguishing
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silent working memory mechanisms from neuronal activity invisible to MEG
recordings because of unaligned axons, or components not tangential to the
MEG sensors [45].

4.4 Conscious perception is a distributed decision inde-
pendent from maintenance mechanisms.

Overall, the present study demonstrates that a low-level stimulus reported as
completely unseen can be partially broadcasted to multiple brain areas, and be
locally maintained in late processing stages. The present findings call for a par-
tial revision of the neuronal mechanisms of visual awareness, but nevertheless
remain profoundly compatible with their original empirical support. In partic-
ular, the time courses of the MEG topographies courses largely confirm that i)
unseen visual features first evoke an early and automatic neural response that
depends on the objective but not on the subjective properties of the stimulus,
whereas ii) later neural responses are specifically modulated by subjective vis-
ibility, which consequently makes the detection of late unconscious processing
difficult to detect.

Such unconscious broadcast and maintenance mechanisms could directly
account for the existence of late and sustained unconscious brain responses
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14], and yet continue to support the idea that
subjective visibility is a perceptual decision computed after ∼200 ms by a large
network of neural modules [46, 17, 47, 48, 4, 49]. In this view, many neural
modules can maintain residual sensory evidence long after an invisible stimu-
lus is gone, but this lingering information, in a given trial, remains too similar
to noise for subjective inference processes to conclude to the presence of the
stimulus.
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5 Figures
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Visual maintenance under backward masking.

Figure 1: a. Subjects had to mentally maintain the orientation of a masked
Gabor patch to compare it to a visual probe (clockwise or anti-clockwise tilt
forced choice). At each trial, subjects reported the visibility of the target with
a 4-point scale. b. The proportion of visibility reports for target absent trials
and each level of contrast. c. Forced-choice tilt discrimination performance
correlates with visibility reports, but nevertheless remains significantly above
chance in trials reported as unseen. Error bars indicate the standard error of
the mean (SEM). d. Norm of the planar gradiometers evoked by the target
(present–absent trials).
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Decoding target and probe orientations.

Figure 2:
a. The linear-circular correlations between MEG signals and target angle peak
around ∼100-250 ms over centro-posteriors regions. Topographies depict the

combined effect sizes for each pair of gradiometer. b-d. Decoded target (green)
and probe angles (turquoise) for each possible stimulus. c. Histograms of angle

errors obtained in four time regions of interest locked to target onset. Error
bars indicate the SEM across subjects and filled areas indicate chance level.
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Parallel encoding of multiple sensory and decision features.

Figure 3: Time course of decoding performance for each sensory and decisional
feature. Filled areas and thick lines indicate significant decoding scores (cluster
corrected, p < 0.05) and dotted lines indicate theoretical chance level. For
each feature, the corresponding coding topographies are depicted with combined
gradiometers in each of the four time windows of interest.

17

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040030doi: bioRxiv preprint 

https://doi.org/10.1101/040030


The maintenance of unseen information is diminished but remains
above chance.

Figure 4: Left. Decoding subscores of the target presence as a function of time
and visibility (red: seen, blue: unseen; for clarity purposes, the decoding scores
are estimated against all absent trials). The decoding scores of target presence
were specifically modulated by the contrast of the target contrasts from ∼80
to 300 ms (orange) and by visibility ratings from ∼180 ms (purple). Right.
Decoding subscores of the target angle as a function of time and visibility.
The time courses are down-sampled for visualization purposes. Target angle
decoding scores were modulated by target contrasts during the early and the
probe time periods, and by visibility ratings during the delay period.
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Evidence of meta-stable and dynamic forms of maintenance with
temporal generalization.

Figure 5: Temporal generalization matrices computed for the most relevant
sensory and decisional features. Significant clusters (p < 0.01) are contoured
with a dashed line. Diagonal clusters indicate that the coding MEG response
changes over times. Below chance generalizations (blue) indicate a reversal
of a brain activity (e.g. P1 / N1 couple). The time of course of decoding
performance of five estimators (blue lines) trained at 100, 300, 500, 700 and
900 ms and compared against the diagonal of the GAT matrix (black lines).
Filled areas indicate significant difference between the diagonal and the selected
estimator; thick lines indicate scores significantly different from chance level.
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Topology of the coding dynamics.

Figure 6: Top. Temporal generalization matrices are transformed into a graph
of in which each node represent an estimator trained at a particular time point
(color coded with a rainbow spectrum: blue=0, red=1000 ms) and each edge rep-
resent the extent to which each decoder generalize across time point (red=above
chance generalization, blue=anti-generalization). The topology of the graph is
summarized in 2D by attracting co-activated estimators towards one another.
Middle. The dominating diagonal component of the GAT matrices translates
in a long chain of nodes for the decoding of target presence (left) and target
orientation (right). Off-diagonal generalizations, indicating the reactivation of
early processing units, tend to curve this long chain. Coding dynamics show
the decoding score of each estimator at five time samples. Bottom. The mean
temporal generalization of early (100-250 ms) and late estimator (300-800 ms)
reveals the meta-stability of each processing stage. Early processing stages are
transient and independent of visibility for both presence and orientation codes.
Late processing stage are maintained for several hundreds of ms in seen trials
(red), but are reduced (target presence: ∼100 ms) or non-significant (target
orientation) in unseen trials (blue).
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Modulation of the target presence decoding by contrast and
visibility factors

Figure 7: Top. Analyzing the temporal generalization matrices of target pres-
ence in unseen and seen trials separately confirmed that unseen information i) is
encoded in all processing stages preceding probe onset, and ii) leads to partially
meta-stable activity in late processing stages (i.e. thickening of late components
of the diagonal). Bottom. Decoding scores of target presence were specifically
modulated by the contrast (left) and the visibility (right) of the target during
early (< 300ms) and late time windows (>200 ms) respectively. Significant
GAT clusters (p <.01) are contoured.

21

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040030doi: bioRxiv preprint 

https://doi.org/10.1101/040030


MEG analysis

Figure S8: All MEG analyses aimed at identifying the regression coefficient(s)
(w) of the single or multi-channel MEG signals (X) to an experimental condition
(y) for each subject and at each time point separately. The vector y represents
one sensory or decision features at each trial. Our ability to regress the MEG
signals to categorical, ordinal and circular variables is summarized with an Area
Under the Curve (AUC), R coefficient and angular error respectively. Note that
for circular data, the linear function consisted in fitting the sine and cosine of
y. In multivariate analyses, each trial xinX can be interpreted as a point in
space where each dimension corresponds to an MEG sensor recorded at a given
time. Decoding scores across time are estimated by repeatedly applying such
multivariate analysis at different time points. Finally, temporal generalization
analyses consist in quantifying the extent to which each estimator, fitted at a
given time point, is able to generalize to other time points and typically result in
a 2D generalization-across-time (GAT) matrix in which the y-axis corresponds
to the time at which the estimator was fitted, and the x-axis, to the time at
which the estimator was scored across trials.

6 Supplementary Figures
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Temporal generalization analyses dissociate different functional
architectures.

Figure S9: Different neural architectures can maintain information over time.
For example, a unique early processing stage can directly maintain its activity
while broadcasting its information to other areas (‘Global maintenance’). Al-
ternatively, the neural activity can be sequentially recoded by a long hierarchi-
cal network (‘Hierarchy’). Other architectures based on sustained or dynamical
feedback and/or horizontal connections can form different families of neural net-
works. While all of these networks can present similar, and potentially identical
decoding scores across time, their GAT patterns are often distinguishable.

Task-relevant versus task-irrelevant codes.

Figure S10: When pulled together, task-relevant decoding scores (target pres-
ence, orientation and visibility, in red) can be sustainably decoded from ∼80
ms up to the end of the trial. On the contrary, task-irrelevant features (target
spatial frequency, phase and contrast, in black) can only be decoded between
∼80 and 250 ms. Thick lines indicate cluster corrected p < 0.05. Yellow areas
indicate when relevant decoding scores are significantly different from irrelevant
decoding scores.
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The decoding of the target orientation after probe onset cannot be
exclusively explained by the orientation of the probe.

Figure S11: a. Decoding error relative to the target (left) and to the probe
(right) for estimators trained on the target (top) or on the probe (bottom)
separately for each target-probe tilt condition (brown versus steel blue). The
decoding of the target after probe onset (900–1050 ms) is biased toward the
probe (top left), but remains correlated with the orientation of the target (top
right). These results confirm that both the orientations of the target and of
the probe can be decoded after probe onset. b-d. The temporal generalization
matrices and the decoding time course of the target-bias effects confirm that we
can decode the orientation of the target independently of the probe throughout
the entire epoch. c. Target-bias analyses applied separately for seen (red),
unseen (blue) and virtual trials (black), confirm that unseen stimulus can be
decoded early after probe onset. Error bar indicate SEM across subjects, stars
indicate significant (p < 0.05 target-bias effect.)

24

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/040030doi: bioRxiv preprint 

https://doi.org/10.1101/040030


7 Supplementary Materials

7.1 Is the decoding of the target orientation after probe
onset explained by the orientation of the probe?

Decoding the orientation of the target after the onset of the probe is ambiguous,
because the angles of these two stimuli correlated: the probe orientation was
either tilted 30◦ or -30◦ to the target. The fact that probe estimators did not
predict the orientation of the probe (figure 3), is already indicative that the
correlation between the target and probe angles is unlikely to fully account for
the target angle decoding scores obtained after probe onset. To formally test
this issue, we nevertheless ran a series of control analyses.

Method To test whether the decoding of the target orientation was influenced
by the orientations of the target and/or of the probe, we quantified, separately
for each prediction of each target angle estimator, the angle errors ∆ relative to
the target angle (∆TT = ŷTarget − yTarget) and to the probe angle respectively
(∆TP = ŷTarget−yProbe). These angle errors were then compared as a function
of the single-trial target-probe tilt). The rational of this analysis stems from
a simple principle: if the target angle decoding depends solely on probe angle,
then the decoding angle error relative to the probe angle should not vary as a
function of target – probe tilt. To test this hypothesis we thus computed the
correlation coefficient R2 between the angle error obtained in each trial and the
target-probe tilt (-1 or 1) with a circular linear correlation. To obtain a signed
bias estimate, we computed.

bias =
√
corr(∆, tilt)2 × sign(〈∆× tilt〉)

where 〈∆ × tilt〉 is the mean of the product between the angle error and the
direction of the tilt across trials, applied complex space (see method).

This measure of decoding bias thus ranges between [−1, 1] and its chance
level is 0. Second-order statistical analyses of biases can thus be applied for
each decoding analyses of circular data in a similar way to the other analyses
of the present study.

Such estimates can thus quantifies the extent to which target angle estima-
tors are biased towards the target relative to the probe (∆TP ) as well as to the
target (∆TT ). To completely estimate the independence between the decoded
angles of the target and of the probe, we also tested how probe angle estimators
were biased relative to the target (∆PT ) and to the probe (∆PP ).

Results We i) analyzed trials as a function of the probe-target tilt (clockwise
or counter-clockwise) and ii) quantified the errors of decoding angle relative
to target (∆TT ) and relative to the probe (∆TP ) separately. The rational of
this analysis is based on the following principle: should the decoding scores be
exclusively driven by the probe, the decoding error relative to the probe should
be independent of the target-probe tilt.

The results precisely rejected this hypothesis (Figure S11): while the pres-
ence of the probe did contribute to the decoding of the target angle, ∆TP

critically varied as a function of the target-probe tilt, indicating that the de-
coding error relative to the probe was biased towards the angle of the target.
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This effect was observed from ∼100 ms after target onset and up to the end of
the epoch (100–250 ms: R=0.208±0.006, p<0.001, 300–800 ms: 0.131±0.014,
p<0.001, 900–1050 ms: 0.093±0.022, p=0.001). Critically, the effect of ∆TP

remained significant after probe onset for both seen (R=0.094±0.032, p=0.010)
and unseen trials (R=0.161±0.062, p=0.004). To check the validity of this ad-
hoc analysis, we also tested it on ‘virtual’ trials. Specifically, we arbitrarily
assigned absent trials with a random target probe tilt value, and successfully
verified that its decoding error relative to the probe angle (∆V P ) did not vary
with the virtual tilt (R=0.023±0.027, p=0.412). We also successfully tested
these analyses on the baseline time window of seen, unseen and virtual trials
(0–100 ms, all p > 0.05).

Finally, we applied reciprocal analyses to the estimators trained on the probe
angle. Interestingly, ∆PP did not vary with tilt (R=-0.013±0.012, p=0.2043),
and this lack of effect was significantly smaller than ∆TP (R=-0.106±0.023,
p<0.001). These results indicate that the decoding of the probe angle was not
affected by the target and thus shows that the neural representations respec-
tively coding for the target and for the probe are, at least partially, independent
and simultaneously encoded in the brain.
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