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Summary 

Microbes limit risk in clonal populations by stochastic bet hedging, the low frequency expression 

of slow growing cells constitutively resistant to the unpredictable occurrence of environmental 

stress including antibiotics.  Also unpredictable are the severity and duration of stress.  Here we 

describe ‘tunable’ bet hedging in 50 ecologically-distinct strains of budding yeast – continuous 

variation in frequencies of cells with heritable patterns osmotic stress-responsive signaling, 

survival and proliferation.  Despite extensive variation in early mortality, after adaptation viability 

was perfectly restored in moderate osmotic stress.  In severe stress relative fitness depended 

on strain-specific proportions of cells with divergent strategies. ‘Cautious’ cells survived extreme 

stress without dividing; ‘reckless’ cells attempted to divide too soon and failed, killing both 

mother and daughter.  A heritable frequency of cautious and reckless cells produces a rapidly 

diversifying template for microbial bet hedging that resembles natural variation and is tunable by 

evolution in different patterns of environmental stress.  
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Introduction 

In order to understand the evolutionary trajectories of populations and species we need to 

understand the effects of natural genetic variation on mechanisms of development and 

expression of phenotypic variation. The mapping between genetic variation and the spectrum of 

attributes and behaviors upon which selection acts defines population-level properties such as 

evolvability (the capacity to evolve), robustness or canalization (the capacity to withstand 

genetic and environmental perturbation), and norms of reaction (optimization, within a given 

genotype, of phenotypic responses across different environments)(Kirschner and Gerhart, 1998; 

Rutherford, 2000; West-Eberhard, 2003). Here we describe strain-specific differences in 

hyperosmotic stress responsive signaling and associated behaviors in a synthetic population of 

budding yeast.  

The high osmolarity glycerol (HOG) signaling pathway is central to an elaborate stress 

response that reduces cellular damage and death in unpredictably changing osmotic 

environments where the balance between external solutes and free water pressure in the cell 

can change suddenly(Hohmann, 2002). A main function of the HOG pathway is the production 

and accumulation of intracellular glycerol, which restores water balance and, as demonstrated 

by a large body of work from many labs, is essential for survival, adaptation and proliferation in 

hyperosmotic stress(Babazadeh et al., 2014; Clotet and Posas, 2007; Hohmann, 2002; 

Hohmann et al., 2007; Nadal et al., 2002; Saito and Posas, 2012).  In the wild, yeast and other 

microorganisms must balance immediate survival against evolutionary fitness. Multiplicative 

fitness favors clonal populations that respond as rapidly as possible to improved conditions with 

earlier cell cycle reentry and proliferation(Ratcliff et al., 2014). On the other hand, individual 

survival requires that cells carefully sense the amplitude and direction of environmental change 

to more safely reenter the cell cycle after stress(Clotet and Posas, 2007). The HOG pathway 

consists of at least two highly-conserved, multi-component osmotic stress sensors linked to a 

parallel series of at least 15 kinases and accessory proteins that ultimately alter the activity of 

nearly 10% of the yeast genome(Hohmann, 2002; Saito and Posas, 2012). The sheer numbers 

of genes involved in HOG signaling, their conservation, and their elaborate circuitry suggest that 

a nuanced response to osmotic stress has been crucial and strongly selected throughout 

evolutionary history. As the hyperosmotic stress response of budding yeast has well-

characterized and accessible signaling and phenotypic traits that can be measured in the lab 

and are almost certainly under strong selection in nature(Clotet and Posas, 2007; Hohmann, 

2002; Saito and Posas, 2012), this system is ideal for characterizing the mapping between 

signaling and behavior in a diverse population. 

We measured osmotic stress signaling, survival and adaptation in both exponentially 

growing and nearly quiescent cultures of diploid yeast.  Glycerol-3-phosphate dehydrogenase 

(GPD1) is rate-limiting for glycerol production(Remize et al., 2001). We used the synthesis and 

accumulation of green fluorescent protein (GFP) integrated into the gene for GPD1 as a proxy 

for HOG pathway activity. A synthetic population of diverse yeast genotypes was made by 
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crossing GPD1::GFP in the genetic background of a standard laboratory strain (BY4742 

MATalpha) to a panel of wild and industrial genetic backgrounds –e.g. fifty different haploids of 

the opposite mating type extracted from globally diverse, sequence-validated strains of 

Saccharomyces cerivisiae deposited to the collection of the Royal Netherlands Academy of Arts 

and Sciences over the past 100 years (CBS; Table 1 and Table S1). 

 

 

Results 

 

Osmotic stress responses of young cultures 

The behavior of single cells before and after their exposure to osmotic stress was followed by 

time-lapse video microscopy of monolayer cultures in custom microfluidics devices(Bennett et 

al., 2008). When cells in exponential growth were exposed to sudden hyperosmotic stress, cell 

volume decreased, cell division and budding immediately stopped, and daughter cells 

retracted(Miermont et al., 2013).  After a lag period proportional to the severity of the stress 

GFP fluorescence driven by the GPD1 promoter began to accumulate in the cytoplasm of 

surviving cells.  Cells that did not accumulate GPD1::GFP to high levels did not survive or 

adapt, developed large vacuoles, and began to die, remaining in view as shrunken cell ghosts. 

As GFP accumulated to saturation levels in the surviving cells, they adapted to the higher 

osmotic pressure, resumed cell division, budded and began to divide with a longer half time, 

producing daughter cells with similarly high fluorescence(Miermont et al., 2013). 

Viability per culture and GPD1::GFP accumulation per cell were measured using flow 

cytometry of statistically large numbers of cells from all 50 strains (~10,000 cells / sample). The 

rate and extent of mean GPD1::GFP accumulation in exponentially growing cultures exposed to 

hyperosmotic media depended on the severity of the stress and the genetic background of each 

strain (Figures 1A and S1).  Prior to the osmotic stress mean GPD1::GFP fluorescence and 

viability were uncorrelated.  After 2 hours in moderate 0.75 M KCl viability decreased and 

became steeply correlated with accumulated GPD1::GFP (Figures1B and C).  As expected, 

natural variation in the strength of HOG signaling was directly responsible for variation among 

the strains in osmotic stress survival. 

 

Negative feedback drives a robust recovery   

The initially strong positive correlation between variation in GPD1::GFP accumulation and 

variation in viability reversed as cells adapted and began to divide (Figure 1C; 4 hours). This 

distinguished an early phase (0 – 2 hours) of the response when viability decreased markedly 

and acute HOG signaling promoted osmotic stress survival and a later phase (2 – 4 hours) 

when viability recovered but became negatively correlated with HOG signaling and GPD1::GFP 

accumulation. The switch from positive to negative correlations might have indicated that 

stronger HOG signaling, initially beneficial, suddenly caused lower viability.  However we think it 
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more likely that negative feedback increased signaling in the surviving cells of the less viable 

strains. Negative feedback controls, occurring at many levels and timescales, are present in 

essentially all of the varied mechanisms that act in concert to increase intracellular glycerol and 

restore water balance. For example (1) unequal water pressures activate osmotic stress 

sensors, glycerol channels and other pressure-sensitive components whose activities control 

and depend on water balance (e.g. see Figure 5 in Hohmann 2002(Hohmann, 2002; Saito and 

Posas, 2012)), (2) GPD1 indirectly controls and is controlled by osmotic stress-sensitive kinases 

that respond to upward and downward changes in water balance(Lee et al., 2012), and (3) 

nuclear Hog-1 MAP kinase increases the transcription of phosphatases that restore its own 

cytoplasmic localization and basal activity(Jacoby et al., 1997; Muzzey et al., 2009; Wurgler-

Murphy et al., 1997). 

Consistent with acting negative regulation there was a strong and highly significant 

correlation between early mortality (0 – 2 hour decreases in viability) and later accumulations of 

GPD1::GFP (2 – 4 hours; Table 2).  We reasoned that cells and strains that adapt quickly 

experience lower and less sustained effects of osmotic stress (e.g. water loss) with more rapidly 

attenuated HOG pathway activity and lower GPD1::GFP accumulation.  Conversely, surviving 

cells of strains that were slower to adapt and less viable would experience higher and more 

sustained osmotic (and likely other) stress(es). Prolonged osmotic stress would maintain HOG 

signaling and GPD1 transcription – which is also activated by general stress responses(Boy-

Marcotte et al., 1998) – further promoting GPD1::GFP accumulation (e.g. negative feedback 

regulation of viability by general stress responses). Indeed, even as GPD1::GFP and viability 

became negatively correlated, their rates of change remained positively correlated (Figure 1C, 2 

– 4 hours and insets; Table 2), prompting a parsimonious interpretation that osmotic stress 

signaling promotes adaptation and viability during both the initial and recovery phases of the 

response.  

By 4 hours all strains had adapted to a new steady state in 0.75M KCl and later 

viability remained largely unchanged (Figure 1C inset, lower right). Interestingly, initial 

decreases in steady-state viability (0 – 2 hour mortality) were almost perfectly restored by 4 

hours (Figure 1D) and, remarkably, by 6 hours early mortality and recovery were over 98% 

correlated (R2 = 0.9852, P<0.0001; not shown).  The biological robustness of adaptation and 

complete recovery of steady state viability further support the idea that negative feedback 

restores viability through continued activation of stress responses. Indeed, the continued 

accumulation of GPD1 and glycerol – directly responsible for restoration of water balance and 

reduction of osmotic stress –suggests that intracellular glycerol concentrations integrate the 

cumulative activities of many facets of the osmotic stress response (e.g. provides a plausible 

biological mechanism for “integral feedback” that virtually assures perfect adaptation(Muzzey et 

al., 2009; Yi et al., 2000); manuscript in review). However, despite their resilience, strains that 

were relatively slower to adapt would be ultimately less fit than rapidly adapting strains due to 

their higher death rate, slower recovery, and lower viabilities before and after adaptation. 
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Extreme stress resistance of older cultures  

By contrast with exponential cultures, when the aging yeast cultures (post-diauxic) were 

exposed to hyperosmotic media they survived and adapted after long periods in unprecedented 

conditions (Movies 1 and 2). As aging cultures deplete available glucose in their media they 

undergo a metabolic change called the diauxic shift(Galdieri et al., 2010). During post-diauxic 

growth stress response proteins accumulate, cell division slows and then stops, and cells enter 

quiescence(Gray et al., 2004). Remarkably, post-diauxic cultures survived up to 5 weeks in 3 M 

KCl (41/50 strains). They could not adapt and did not grow in 3 M KCl, but recovered rapidly 

and grew when plated on fresh isotonic media (‘static viability’; Figure 3A and Figure S2). When 

we tested their limits of adaptation in increasing concentrations of KCl all but one strain could 

grow on 2.6 M KCl media and three strains could grow on media containing 2.9 M KCl (Table 3). 

We are unaware of previous reports of such extreme osmotic stress survival or adaption limits 

for budding yeast of any growth stage or genotype. 

 

Heterogeneity of cells in older cultures 

By contrast with cultures in exponential growth, in post-diauxic growth the genetically identical 

cells within each strain and culture were surprisingly heterogeneous in their size, shape and 

signaling behaviors (compare the cell distributions in Figures S1 and S3).  Neither total 

GPD1::GFP fluorescence nor rates of change in fluorescence was strongly correlated with 

viability.  After several hours in 2.5 M KCl, GPD1::GFP increased sharply in one group of cells 

as they began to divide. More surprising, another group of cells induced GPD1::GFP to high 

levels, started to divide and then popped, killing both the mother and daughter (Movie 3). Other 

cells had slower signaling and cell division while the most ‘cautious’ groups of cells failed to 

signal or divide but remained in a cellular state of static viability without dividing.  

The unique signaling trajectories of most strains were highly reproducible (Figure S3). 

We used machine learning to assign the different behaviors of the cells in each sample to four 

Gaussian distributions (G0-G3) described by eight parameters – means and covariances – 

numbered according to their increasing levels of fluorescence. Only the mean level of 

GPD1::GFP pre-accumulated into cells of the G3 distribution of each strain during post-diauxic 

growth – prior to the osmotic challenge and therefore unrelated to osmotic stress signaling – 

predicted survival at any time. The amount of GPD1::GFP in G3 cells at time 0 predicted early 

but not later viability and this relationship was better fit by 2nd order quadratic rather than linear 

functions of GPD1::GFP (Table 4), showing that early survival was higher in strains with 

intermediate G3 accumulations (more variation explained and lower mean square errors). 

Despite the fine-scaled characterization of osmotic stress signaling behaviors of the different 

groups of cells in each strain, none of the distributions learned by the Gaussian mixture model, 

neither pre-accumulated G3, total GPD1::GFP fluorescence, nor stress-induced GPD1::GFP in 

any distribution, embodied features of osmotic stress signaling important for later survival.   
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Continuous variation in stress responses 

In order to map osmotic stress-responsive signaling onto survival more directly, we clustered 

the osmotic stress signaling trajectories of each strain using state vectors to describe directly 

GPD1::GFP distributions of cells in each culture unbiased by Gaussian assumptions or 

approximations. Based on their shared and strain-specific (heritable) signaling behaviors, the 50 

strains rapidly converged onto two large groups made up of six mean clusters (Figure 2). Each 

strain was further ordered within and between mean clusters based on their clustering statistics 

(Table 4), with their rank order describing increasingly rapid accumulations of GPD1::GFP and 

‘reckless’ signaling (Figure S4). Tellingly, both mean cluster and rank predicted viability over 

time (Figure 3A and Table 4), thereby confirming the biological relevance of ‘cautious’ versus 

‘reckless’ osmotic stress signaling, validating our clustering method and supporting the role of 

natural osmotic stress signaling differences between strains in shaping variation in fitness 

during osmotic stress.  

 

Evidence for bet hedging 

As cautious and reckless behaviors were found both within and between strains, we wondered 

whether bet hedging, the expression of alternate, conditionally-adaptive phenotypes within a 

clone of genetically identical organisms(King and Masel, 2007; Meyers and Bull, 2002; Philippi 

and Seger, 1989; Ratcliff et al., 2014; Simons, 2011), could explain the observed variation in 

osmotic stress signaling and survival.  By contrast with previously described stochastic bet 

hedging, where pre-adapted stress-resistant cells occur at low frequency in clonal 

populations(De Jong et al., 2011; Levy et al., 2012), ranked signaling responses were heritable, 

stress-specific and uncorrelated with the pre-adapted (G3) resistance acquired in post-diauxic 

growth. Strain viabilities varied depending on their rank and the severity of the osmotic 

environment.  Milder conditions favored higher-ranked strains with more aggressive osmotic 

stress signaling strategies, but with increasing time and harsher conditions more cautious 

strains and behaviors became more fit (Table 4). For example, W178 at rank 50 was most 

viable in moderate 0.75 M KCl, but the optimum shifted to rank 25 after 20 hours in 2.5 M KCl, 

20 after 72 hours, and 9.6 after 168 hours (1 week). After 168 hours, viability had decreased 

most among the most reckless, highest-ranked strains (S5).  To confirm that the increasing 

survival of cautious strains was correlated with their experience of osmotic stress and not simply 

time in culture, we again incubated cultures in 2.5 M KCl for 168 hours, but they were first 

exposed to a mild pre-stress (2 hours in 0.5 M KCl) to pre-induce osmotic stress proteins. If 

optimum rank depended solely on time independent of the degree of stress experienced by the 

different strains, then it should be unaffected by the short pre-stress. However, as predicted 

optimum rank shifted toward more reckless behaviors (rank 9.6 to rank 18; P<0.0001) in 

response to the pre-stress and viability increased by ~10%.  This suggests pre-treated cells 

experienced lower osmotic stress implying that the degree of stress directly determines the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2016. ; https://doi.org/10.1101/039982doi: bioRxiv preprint 

https://doi.org/10.1101/039982


 8

optimum rank. The strong correlation between relative fitness and signaling behavior with 

increasing osmotic stress is strong empirical evidence for bet hedging(Simons, 2011).   

After 168 hours in 2.5 M KCl, the most reckless cells in the highest-ranking strains 

began to selectively die and disappear.  For example, the replicate cultures of strain W242 (rank 

49) with lower viability had fewer cells with high accumulations of GPD1::GFP, smaller G3 

distributions, and correspondingly larger distributions of cells with lower mean GPD1::GFP 

(Figure 3B).  The selective loss of cells with the highest accumulations of GPD1::GFP could 

indicate that GPD1::GFP levels simply decrease over time.  However, G3 distributions were 

stable over most time points and in most strains (Figure 2).  We think it more likely that after 168 

hours the most aggressive cells attempt to divide and pop, preferentially decreasing G3 relative 

to the other distributions (e.g. Movie 3). Rapid signaling, adaptation and recovery of cell division, 

a fitness advantage in mild conditions, become a liability in severe or prolonged osmotic stress. 

On the other hand static viability would dramatically reduce evolutionary fitness in normal 

environments, but could allow more cautious cells and strains to survive severe stress.  

 

Evolution of bet hedging 

As cautious and reckless strains reliably express a range of cells with different behaviors and 

fitness depending on the environment, we wondered whether a simple, 2-state bet hedging 

model including heritable proportions of cautious and reckless cell types could account for the 

observed variation in osmotic stress signaling and explain the complex relationship between 

rank and viability. Assuming aggressive osmotic stress signaling with rapid recovery and 

resumption of growth is the default, ancestral behavior, we hypothesized a heritable probability 

of cautious signaling and behavior arose in response to the unpredictable severity and duration 

of potentially lethal osmotic environments.  To test this idea, we modeled the relative fitness of 

strains with different signaling strategies after several generations of growth, including abrupt 

changes between three osmotic stress environments that discriminate cautious versus reckless 

behavior: (E0) a permissive environment in which both cautious and reckless cells grow equally 

well, (E1) a restrictive environment approximating moderate osmotic stress where reckless cells 

divide and cautious cells survive without dividing, and (E2) a killing osmotic stress where 

reckless cells die and cautious cells survive without cell division.   

We modeled the heritable probability (P) of daughters with cautious signaling and 

behavior and asked whether it could evolve (0 ≤ P ≤ 1).  Our model calculates the relative 

fitness (cell numbers) of different strategies {0, 0.1, 0.2, … 0.9,1.0} after several generations 

under each of the 9 possible environmental shifts between three environments (Figure 3C). 

Most environmental shifts favor an optimum strategy of either all cautious (P = 1) or all reckless 

cell types (P = 0). Strictly intermediate strategies (0 < P < 1) and bet hedging prevail only when 

the osmotic environment shifts from moderate to more severe (E1 -> E2), with the optimum P 

depending on the number of generations in the first environment. Shorter lag periods – 

corresponding to less severe osmotic conditions – and more cell divisions in E1 initially favor 
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lower P and a higher proportion of reckless cells.  Longer lag periods – corresponding to more 

severe conditions and fewer cell divisions – favor higher P and a higher proportion of cautious 

cells.  Worsening environments are common in nature (for example, during fermentation or 

drying). Indeed, as predicted by the model, lower-ranked strains with more cautious signaling 

behaviors, longer lag periods and fewer attempted cell divisions were increasingly fit over time 

and with an increasing severity of osmotic stress.  Bet hedging in microorganisms was 

previously thought to arise almost exclusively through stochastic switching independent of 

unpredictable environmental shifts(De Jong et al., 2011; Levy et al., 2012; Ratcliff and Denison, 

2010; Ratcliff et al., 2014).  While simple, our model of heritable bet hedging generalizes to any 

stress response, providing conceptual framework for understanding how a heritable frequency 

of cautious cells can be tuned by evolution in different patterns of environmental stress. 

 

Discussion 

Classical evolutionary models assign fitness directly to genotypes, mutations, and mean trait 

values without consideration of the genotype-to-phenotype map.  On the other hand, molecular 

models provide detailed mechanisms of development but rarely consider the effects of natural 

genetic variation. Labyrinthine developmental mechanisms – themselves controlled by genetic 

variation – translate genotypes into phenotypes with a variable fidelity that allows for the 

possibility of phenotypic heterogeneity and the evolution of bi-stable states(Rutherford, 2003).  

Here we view well-characterized osmotic stress signaling responses on a backdrop of natural 

variation. This enabled our identification of negative feedback controlling a robust recovery of 

steady-state viability in exponential growth.  However microorganisms in nature spend a large 

fraction of their time in post-diauxic or quiescent phases and may encounter severe and 

unpredictable stresses (Gray et al., 2004). In post-diauxic growth, heritable variation in the 

distribution of cautious to reckless signaling is a risk-spreading strategy.  In yeast as in 

multicellular organisms fitness depends on rapid recovery and reproduction in capricious and 

potentially lethal environments whose severity and duration are also unpredictable(Ratcliff and 

Denison, 2010; Ratcliff et al., 2014). Our simple model of programmable bet hedging shows 

how yeast can evolve to balance constraints between osmotic stress survival and evolutionary 

fitness in different patterns of environmental stress. 
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Experimental procedures 

 

Strain acquisition and deposition 

Over 200 unique wild and industrial diploid strains of Saccharomyces cerevisiae were obtained 

from the fungal diversity collection of Centraalbureau voor Schimmelcultures (CBS), an institute 

of the Royal Netherlands Academy of Arts and Sciences in Utrecht, Netherlands 

(http://www.cbs.knaw.nl/index.php/collection/).  Strains modified for this report are listed in 

Tables 1 and S1.  They have been deposited to the Yeast Genetic Resources Lab of the 

National BioResource Project in Osaka, Japan (http://yeast.lab.nig.ac.jp/nig/index_en.html/). 

 

Haploid MATa library of wild and industrial genotypes 

The first step in our library construction pipeline was to delete the HO locus of each strain by 

replacement with the KanMX4 marker gene and “barcodes” to permanently label each strain 

while preventing homothalism (Table S1)30,31. The KanMX4 gene was PCR-amplified for this 

purpose with primers containing the barcode sequences32. Next, kanamycin-resistant 

transformants were grown in pre-sporulation medium containing 10% glucose followed by 

sporulation under starvation conditions in 1% potassium acetate.  Although the strains differ in 

their sporulation efficiency and optimal conditions (http://www.cbs.knaw.nl/Collections/), we 

found it was most efficient to put strains through repeated rounds of a general sporulation 

protocol rather than trying to optimize the conditions for each strain. The MATa haploids were 

identified by “schmoo” formation in 96-well plates containing alpha factor and confirmed by 

crossing to a G418-sensitive, clonNAT-resistant MATalpha tester strain and selection on 

double-antibiotic plates.  Next we deleted the URA3 gene using a standard gene deletion 

method and selected the ura3∆ clones by replica plating and selection on 5-FOA.  Finally, ho 

and ura3 deletions and the barcode sequences of each strain were verified by PCR and 

sequencing.  Forty-nine wild strains and a laboratory strain meeting these criteria were used in 

this study (see Tables 1 and S1 for strain details).   

 

Synthetic population of GPD1::GFP wild/lab diploids 

The MATalpha laboratory strain BY4742 was transformed to create a stably integrated 

GPD1::GFP reporter (G01) using a deletion cassette containing a URA3 marker for selection on 

SC-URA plates32,33.  A synthetic “population” of diploids was created by mating each strain in 

the library of MATa haploids (50 strains) with MATalpha G01 by mixing on SC-URA plates for 2 

hours followed by streaking onto selective SC-URA+G418 plates. The 50 resulting wild/lab 

diploid strains all have 50% of their genes and the GPD1::GFP reporter from strain G01 in the 

BY4742 laboratory strain background (Table 1).  After mating, it was necessary to screen for 

triploids or tetraploids, which express higher levels of GPD1::GFP and have higher tolerance to 

osmotic stress. Overnight cultures of wild/lab yeast were diluted 50-fold into fresh YPD+G418 

and grown for an additional 4 hours, fixed by 1:3 dilution into cold ethanol and re-suspended in 
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20 ug/ml RNAse A to digest ribonucleic acids.  Digested cells were stained with 30 ug/ml 

propidium iodide to label DNA and ploidy was determined by flow cytometry (FACS Calibur; 

Becton Dickinson). 

 

Exponential and post-diauxic cultures 

Fresh cultures were generated for each experiment by replicating frozen 96-well plates onto 

YPD+G418 agar followed by 4 days growth at 21° C. To obtain mid-exponential cultures, freshly 

patched cells were grown in 2 ml liquid YPD+G418 cultures at with rotation (72 rpm) at 21° C. 

for 2 days.  Two microliters of these suspensions were diluted into 2 ml of liquid YPD+G418 and 

grown at 21° C. for 14 hours (e.g. 5 rounds of cell division on average, with strain ODs ranging 

from 0.80 – 1.44).  For post-diauxic cultures, freshly patched cells were grown in 2 ml liquid 

YPD+G418 cultures at with rotation (72 rpm) at 21° C. for 4 days.  Strains cultured up to 8-days 

post-diauxic growth were tested for osmotic stress resistance and we found that 4 day cultures 

were already maximally resistant (not shown). 

 

Survival plating assays 

To determine the adaptation limit of each strain, post-diauxic cultures were diluted to OD600 of 

0.1 with exhausted YPD (to prevent re-growth), sonicated for 5 seconds at a low setting (2.5; 

Sonifier Cell Disrupter, Model W185) and plated (5 ul) on 96-well YPD plates containing KCl 

ranging from 2.0 to 3.0 M. Growth was examined for up to 2 months at 21° C. Viability and static 

survival under osmotic stress (Figures 2B and S2) was determined after incubation in 96-well 

microtiter plates containing liquid media with increasing concentrations of KCl for the times 

indicated, followed by plating on iso-osmolar YPD agar plates. 

 

Microfluidics 

We used custom made microfluidics devices with two fluid inputs as described12. When 

performing microfuidics with post-diauxic cells, post-diauxic cultures were inoculated into 

devices with exhausted YPD medium and allowed to stabilize for a few hours prior to osmotic 

stress.  Experiments were run at ambient room temperature and observed using a Nikon TS100 

inverted microscope. Recordings were made using a Photometrics CoolSnap HQ2 digital 

camera operated by Metavue (Molecular Dynamics). Analysis of acquired images was 

performed using Image J software (https://imagej.nih.gov/ij/). 

 

Flow cytometry 

For flow cytometry, after osmotic stress treatments 4 ml of PBS was added to each culture.  

Cells were isolated by centrifugation and resuspended in 1 ml PBS, transferred to FACS tubes, 

sonicated (5 seconds at level 3, Sonifier Cell Disrupter, Model W185) and stained with 3 ug/ml 

propidium iodide (PI) to monitor viability.  After 20 min GFP fluorescence and viability were 

quantified using a FACS Calibur flow cytometer (Becton Dickinson) that had been calibrated 
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prior to each use with SPHERO Rainbow Fluorescent Particles, 3.0 – 3.4 um (BD Biosciences).  

Flow cytometry data were gated using magnetic windows in FlowJo software to eliminate cell 

fragments, clumped and dead (PI-positive) cells (http://www.flowjo.com/).   

For analysis, raw data for the viable cells in each sample (forward scatter, side scatter and 

GFP fluorescence data; up to 10,000 cells/sample) were extracted into an SQL database.   Cell 

data were scaled for linearity (e.g. FLH11/3, FSC1/3, SSC1/2 for GFP fluorescence, forward 

scatter, and side scatter, respectively). Distributions of GPD1::GFP accumulation in exponential 

cultures were unimodal, and therefore well-defined using a single mean (e.g. Figure S1).  By 

contrast, GPD1::accumulations of cells in post-diauxic cultures were clearly multimodal at many 

time points (Figure S3).  To identify different distributions of cells we used machine learning was 

performed using the sklearn.mixture option in the Gaussian Mixture Model (GMM) algorithm of 

the Python scikit package (http://scikit-learn.org/).  The GMM algorithm identified parameters of 

the four most-likely Gaussian (defined by means and covariances) given the data for each 

sample. The 2-dimensional fits of GPD1::GFP and forward scatter data distinguished different 

cell types slightly better than fitting GPD1::GFP only; adding side scatter to fit distributions in 3-

dimensional space little additional resolution.  The number of Gaussians to be fit is a parameter 

that must be provided to the model.  We used Bayesian information criteria (BIC) to determine 

that the data were well described by four distributions. In samples containing obviously fewer 

than four distributions, the under-populated distributions were assigned a correspondingly low 

frequency of cells (see Figures S1 and S3).  

 

Clustering 

To group, and ultimately rank, the strains according to their osmotic stress signaling responses 

to 2.5 M KCl during post-diauxic growth we used hierarchical clustering with Wards method in 

the fastcluster Python implementation (http://www.jstatsoft.org/v53/i09/)34. First we created state 

vectors of each strains behavior. Cell distributions were binned onto a 100 X 100 2-D grid 

according to their GPD1::GFP and forward scatter data, smoothed with Python 

scipyndimage.filters.gaussian_filter and normalized to define a linear 10,000 element state 

vector for each sample (strain, time point).  While 100 bins on each axis where sufficient to 

capture detailed distributions while allowing efficient computation, we found stronger clustering 

when performing the same analysis using the combined GPD1::GFP and forward scattering 

data. The osmotic stress response up to 168 hours was defined by the vectors for each of the 7 

time points, successively appended to form a 70,000 element time-line vector representing the 

combined evolution of GPD1::GFP accumulation and forward scatter data.  

The time-line vectors were used to compute a distance matrix between strains using the 

symmetric Kullback-Leibler divergence. As each strains and time point was replicated between 

4 and 15 times, we controlled for variation in sampling and clustering outcomes by randomly 

drawing samples for each strain and time point with equal probability. Clustering was repeated 

for a total of 17,000 permutations requiring 43 hours of computation time on a 3.7 GHz Intel 
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7 iMac. This was sufficient to achieve stable Monte-Carlo statistics.  Computational sorting of 

time-series distributions resolved 6 clades differentiated for rates of GFP accumulation, 

adaptation and survival. The fraction of permutations in which each strain grouped with more 

than half of the other strains in its mean cluster was used to rank that strain’s behavior relative 

to the other strains in its group (clustering statistics; Table S2). 
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Figure legends 

 

Figure 1. Rate of change in osmotic stress signaling with negative feedback predicts 

survival and robust recovery of exponential cultures in moderate osmotic stress.  

A. Time course of mean accumulated GPD1::GFP fluorescence (AU) in exponential 

cultures exposed to 0.75 and 1.5 M KCl.  Each point represents an independent 

replicate measurement; curves connect strain means at each time (with a minimum of 3 

replicates for each point). In the absence of stress, all strains had high steady-state 

viability (propidium iodide dye exclusion; range 96.3 – 98.7%; mean 97.6%) and 

relatively low mean GFP fluorescence indicating low background activity of HOG 

pathway signaling through the GPD1 promoter and low GPD1::GFP accumulation (range 

12.7 – 34.8 AU; mean 18.8 AU).   

B. Pie charts showing relative changes in mean viability (shaded area), mortality (white 

area) and GPD1::GFP accumulation (opacity level) after 2 hours in 0.75M KCl with 

strains ordered by increasing viability at 2 hours.  The 2 hour viability was proportional to 

the 2 hour viability of non-disrupted controls with two intact copies of the GPD1 gene (R2 

= 0.7085; P<0.0001; not shown).   

C. Relationship between mean GPD1::GFP accumulation (AU) and viability in mid-

exponential cultures exposed to 0.75 M KCl for 0, 2, 4, and 6 hours (h).  Each data point 

represents the average of at least three replicates per strain (~10,000 cells/ sample). 

The ellipses indicate correlations between viability and fluorescence at alpha = 0.95. The 

inserts show relationships between changes in GPD1::GFP and viability over each time 

interval. 

D. Negative feedback drives a robust recovery of steady-state viability after 4 hours in 0.75 

M KCl. By linear regression recovery  = (0.7670) early mortality  + 3.4936 (R2 = 0.9351; 

P< 0.0001). Integral feedback control would assure perfect adaptation of stress 

responses, water balance and steady state viability (in preparation). Due to persistence 

in cultures of dead cells over the course of the experiment, 100% recovery of steady-

state viability is not possible. The data fit a model whereby surviving cells undergo ~3 

cell divisions in all strains. 

 

Figure 2. Continuous variation in signaling behaviors and survival of postdiauxic 

cultures exposed to severe osmotic stress.  

A. Strains classified by mean cluster (MC0 – MC5) and ranked top (1) to bottom (50) 

according to changes in GPD1::GFP accumulation (AU) over time (see Table S2 and 

methods). Each time point shows representative distributions of GPD1::GFP 

accumulation (green) and relative survival red (99.7% viability) to blue (11.7% viability). 

Cells above the 89th percentile (top 11%) are shown in black. Prior to osmotic challenge 
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steady-state viabilities were uniformly high (range 93.0 – 99.6%; mean 98.2%). Rank-

ordered mean clusters are topographically equivalent to a sequential ordering. 

B. Relative viability of post-diauxic cultures (WXXX.BY01 controls) incubated in 3 M KCl 

before plating on iso-osmolar media.  Cultures were re-ordered according to the ranked 

signaling behavior given in Figure 2A. Strains are color-coded as in Figure 1C for 

comparison of exponential and post-diauxic cultures.  The same experiment as originally 

plated is shown in Figure S1. 

 

Fig. 3. Cautious and reckless behaviors in a simple bet hedging model produces 

observed variation in survival.  

A. The most cautious behavior (static viability) of post-diauxic cells from strain W027 

exposed to 3 M in microfluidic chambers. Individual cell behaviors mirror population 

behaviors measured by flow cytometry – e.g longer lag periods and increased 

accumulations of GPD1::GFP with increasing osmotic stress. Colored traces indicate 

accumulated fluorescence (AU X 10-2) in representative cells at 1.5 (green), 2.0 (blue), 

2.5 (red) and 3.0 M KCl (yellow).  Arrows indicate average time to the first cell division 

+/- standard deviations. 

B. Mean cluster predicts viability in different osmotic environments.  Average viabilities 

among mean clusters for post-diauxic cultures in 2.5 M KCl for indicated times. 

Horizontal lines show overall average viability (all 50 strains). The numbers of strains in 

each mean cluster are 2 (MC0), 15 (MC1), 12 (MC2), 12 (MC3), 3 (MC4), 6 (MC5; see 

Figure 2).  Asterisks indicate significance at the ≤0.05 level by ANOVA or, where 

appropriate, Welch’s ANOVA (JMP statistical software, SAS Institute, Cary, NC).   

C. Rank predicts viability in different osmotic environments.  Shown are the best-fit curves 

for viability by rank in each of the environments listed (2nd order quadratic relationships; 

Table 4). The optimal signaling strategy (rank) shifted from higher (50; most reckless) to 

lower (most cautious) as the environment became progressively more severe. Dashed 

lines indicate the relationship between rank and viability was only marginally significant 

in that environment. 

D. Cells with the most aggressive signaling began to die after long periods in severe stress 

leaving increasing fraction of cells with lower GPD1::GPF accumulations.  Shown are 

distributions of accumulated GPD1::GFP fluorescence (AU) and viability in replicate 

cultures of W242 (rank 49) in 5 replcate cultures after 168 hours in 2.5 M KCl.  Mean (x), 

standard deviation (std), and weight (w; the fraction of cells in each distribution) are 

given.  Sum (red) shows the cumulative fit of the 4 learned Gaussians.  

E. A simple bet hedging model with heritable proportions of cautious and reckless cells 

produces observed variation in survival.  Bet hedging strategy P was defined as the 

probability of cautious cells for 0 ≤ P ≤ 1. Relative fitness was measured for all strategies 

after 10 generations in each environment. All nine possible 2-state environmental shifts 
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between three general osmotic stress environments were considered: permissive (E0; all 

cells grow equally well), restrictive (E1; reckless cells divide, cautious cells survive 

without dividing), and killing (E2; reckless cells die, cautious cells survive without cell 

division). Bet hedging and intermediate strategies (0 < P < 1) were most fit only when 

the environment shifted from moderate to more severe (E1 -> E2).  When E1 was the 

first environment, the optimum strategy P depended on generation number. 
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Tables 

Table 1. Strains and aliases used in this study. See Table S1 for details about each of the 49 

wild haploid strain derivatives (WHXXX). For brevity, figures are labeled with the wild parent 

strain number (WXXX; see Table S1 for details). 

 
Strain Genotype Source 

WHXXX MATa ura3∆0 ho∆::barcode::KanMX4 
Haploid MATa isolates of wild strains. This 

study; see Table S1 for details. 

BY41 
MATa his3D1 leu2∆0 met15∆0 ura3∆0 

flo8-1 ho∆::barcode::KanMX4 

Barcoded, MATa derivative of BY4742 used 

as a control genotype for the laboratory strain 

background. This study. 

BY4742 

(BY01) 

MATalpha his3D1 leu2∆0 lys2∆0 ura3∆0 

flo8-1 

MATalpha laboratory strain.  BY4741 and 

BY4742 backgrounds derive from a wild 

diploid isolated in Merced, California in 1938 

on figs (EM93(30); S228C(31)).  They are 

distinguished primarily by the many 

generations it has been under laboratory 

selection. 

G01 
MATalpha his3D1 leu2∆0 lys2∆0 ura3∆0 

flo8-1 gpd1D::GFP::URA3 

Used for monitoring GPD1. BY4742 

background; this study.  

WXXX.BY16 

MATa/MATalpha LYS2/lys2∆0 

ura3∆0/URA3 FLO8/flo8-1 

ho∆::barcode::KanMX4/ho 

Controls.  A set of 49 wild/lab plus 1 

BY41.BY16 control for effect of marker gene 

deletions. This study; see Table S1 for 

details. 

WXXX.G01 

MATa/MATalpha HIS3/his3D1 

LEU2/leu2∆0 LYS2/lys2∆0 

ura3∆0/ura3∆0 FLO8/flo8-1 

ho∆::barcode::KanMX4/ho 

GPD1/gpd1D::GFP::URA3 

Synthetic population of wild/lab diploids for 

GPD1 quantification. This study; see Table 

S1 for details. 
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Table 2. Negative feedback between rates of change in mean GPD1::GFP accumulation 

and viability among strains.  Correlations confirm causality between rates of change in 

GPD1::GFP accumulation and viability within (upper 3 rows) and between 2 hour time intervals 

(below).  Changes occurring in earlier intervals are listed first.  To control for potential deviations 

from normality, both parametric (Pearson’s) and non-parametric (Spearman’s) pairwise 

correlations are shown.  As in Figure 1 all 50 strains were tested at 0, 2, and 4 hours and 18 

strains were tested at 6 hours (mean values represent a minimum of 3 replicates per strain).  

Significant comparisons are in bold (JMP statistical software, SAS Institute; Cary, NC). 

 

 
 

 
    Prob>|r| 

N Variable Interval 
(hrs) Variable Interval 

(hrs) 
Pearson's 

r 
Spearman's 

r  Pearson's Spearma

50 ∆GPD1::GFP 0 – 2 ∆viability 0 – 2 0.8235 0.7725 <.0001 <.0001
50 ∆GPD1::GFP 2 – 4 ∆viability 2 – 4 0.7739 0.7217 <.0001 <.0001
18 ∆GPD1::GFP 4 – 6 ∆viability 4 – 6 -0.2354 -0.1992 0.3470 0.4282
50 ∆viability 0 – 2 ∆GPD1::GFP 2 – 4 -0.7867 -0.7411 <.0001 <.0001
50 ∆viability 0 – 2 ∆viability 2 – 4 -0.9670 -0.9503 <.0001 <.0001
50 ∆GPD1::GFP 0 – 2 ∆GPD1::GFP 2 – 4 -0.7685 -0.7697 <.0001 <.0001
50 ∆GPD1::GFP 0 – 2 ∆viability 2 – 4 -0.8082 -0.7696 <.0001 <.0001
18 ∆viability 0 – 2 ∆viability 4 – 6 -0.1407 -0.2178 0.5777 0.3854
18 ∆viability 0 – 2 ∆GPD1::GFP 4 – 6 -0.3704 -0.2549 0.1303 0.3073
18 ∆GPD1::GFP 0 – 2 ∆viability 4 – 6 -0.0456 -0.0464 0.8573 0.8548
18 ∆GPD1::GFP 0 – 2 ∆GPD1::GFP 4 – 6 -0.4319 -0.4572 0.0735 0.0565
18 ∆viability 2 – 4 ∆viability 4 – 6 -0.0100 0.0733 0.9685 0.7726
18 ∆viability 2 – 4 ∆GPD1::GFP 4 – 6 0.4316 0.3333 0.0737 0.1765
18 ∆GPD1::GFP 2 – 4 ∆viability 4 – 6 0.1400 0.1207 0.5796 0.6332
18 ∆GPD1::GFP 2 – 4 ∆GPD1::GFP 4 – 6 0.3731 0.3602 0.1273 0.1421

 
 

Table 3. Growth of post-diauxic cells at unprecedented limits of adaptation.  Shown are 

concentrations of agar media on which post-diauxic strains could grow and form colonies. 

 
[KCl] M Wild/lab (GPD1) diploids* 

2.0 W455 

2.6 W027, W035, W167, W202, W203, W242, W285, W454 

2.7 
W033, W041, W042, W134, W136, W150, W166, W178, W195, W215, W217, W219, 

W235, W248, W282, W291, W292, W294, BY41 

2.8 
W037, W044, W050, W153, W157, W163, W164, W179, W189, W206, W238, W244, 

W245, W249, W255, W276, W301, W340 

2.9 W173, W211, W343 
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Table 4.  Osmotic stress signaling behavior (rank) predicted early and late viability of 

post-diauxic cultures in osmotic stress. Least squares predictions of early and late viability 

by linear and 2nd order quadratic fits of fluorescence pre-accumulated into the G3 Gaussian at 

time 0 (G3_0) and ranked signaling behavior of 50 strains.  The Bonferroni cutoff at the 0.05 

level, based on 4 tests per data set, was 0.0125 (JMP statistical software, SAS Institute; Cary, 

NC).  Significant fits with lowest root mean squared errors and highest fraction of variation 

explained (R2) shown in bold, predicted values for optimum (x) and value at optimum (y) for non-

significant fits are shown for comparison. 

 

  
G3 fluorescence (AU) 

at time 0 
Signaling (rank) 

  quadratic linear quadratic linear 
0 hours, 0M KCl         

  probability > F 0.0006 0.0016 0.9629 0.8454 

  R_square 0.2715 0.1891 0.0016 0.0008 

  root_mean_square_error 1.3935 1.4548 1.6313 1.6149 

  max_viability at optimum (%) 98.8   NS 98.2   
  optimum AU or rank 2626.6   NS 31.9   
20 hours, 2.5M KCl     

 probability > F < 0.0001 < 0.0001 0.0055 0.6023 

 R_square 0.4286 0.3138 0.1987 0.0057 

 root_mean_square_error 7.0949 7.6940 8.4022 9.2615 

 max_viability at optimum (%) 86.7  86.3  

 optimum AU or rank 2662.5  24.4  

48 hours, 2.5M KCl         

  probability > F < 0.0001 0.0003 0.0013 0.9159 

  R_square 0.3148 0.2371 0.2464 0.0002 

  root_mean_square_error 7.6281 8.1323 8.1679 9.3096 

  max_viability at optimum (%) 82.2   82.9   
  optimum AU or rank 2622.3   25.7   
72 hours, 2.5M KCl     

 probability > F 0.0010 0.0033 0.0062 0.8464 

 R_square 0.2556 0.1660 0.1943 0.0008 

 root_mean_square_error 9.9877 10.4608 10.3903 11.4501 

 max_viability at optimum (%) 73.5  74.3  

 optimum AU or rank 2586.8  25.1  

96 hours, 2.5M KCl         

  probability > F 0.0060 0.0018 0.0065 0.0954 

  R_square 0.1956 0.1862 0.1927 0.0569 

  root_mean_square_error 8.4186 8.3789 8.4338 9.0201 

  max_viability at optimum (%) 71.7   71.0   

  optimum AU or rank 3389.8   21.3   
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120 hours, 2.5M KCl     

 probability > F 0.0791 0.0413 0.0004 0.0037 

 R_square 0.1023 0.0839 0.2859 0.1625 

 root_mean_square_error 8.5666 8.5636 7.6405 8.1881 

 max_viability at optimum (%) NS 67.7  74.7  

 optimum AU or rank NS 1679  18.1  

144 hours, 2.5M KCl         

  probability > F 0.3473 0.1675 0.0047 0.0501 

  R_square 0.0440 0.0393 0.2038 0.0776 

  root_mean_square_error 9.6837 9.6059 8.8377 9.4123 

  max_viability at optimum (%) NS 61.9   68.3   

  optimum AU or rank NS 1481.3   20.4   

168 hours, 2.5M KCl     

 probability > F 0.1785 0.3433 <0.0001 < 0.0001 

 R_square 0.0707 0.0187 0.5733 0.4911 

 root_mean_square_error 12.3795 12.5879 8.3885 9.0652 

 max_viability at optimum (%) NS 56.2  68.4  

 optimum AU or rank NS 2077  9.7  

24 hours, 3M KCl         

  probability > F 0.0107 0.0292 < 0.0001 < 0.0001 

  R_square 0.1757 0.0952 0.5254 0.2980 

  root_mean_square_error 11.8963 12.3332 9.0267 10.8635 

  max_viability at optimum (%) 71.7   65.0   

  optimum AU or rank 2029.2   18.1   

48 hours, 3M KCl     

 probability > F 0.0294 0.0140 < 0.0001 0.0003 

 R_square 0.1394 0.1193 0.5382 0.2402 

 root_mean_square_error 12.8903 12.9029 9.4420 11.9849 

 max_viability at optimum (%) NS 57.1  62.3  

 optimum AU or rank NS 2867.3  19.7  

72 hours, 3M KCl         

  probability > F 0.0519 0.0395 < 0.0001 0.0002 

  R_square 0.1183 0.0853 0.5459 0.2460 

  root_mean_square_error 12.4241 12.5218 8.9158 11.3687 

  max_viability at optimum (%) NS 51.4   56.9   

  optimum AU or rank NS 2651   19.7   

Adaptation limit      

 probability > F 0.5435 0.2699 0.0002 0.0086 

 R_square 0.0262 0.0258 0.3099 0.1379 

 root_mean_square_error 0.1344 0.1330 0.1132 0.1251 

 max_concentration optimum (M) NS 2.8  2.8  

 optimum AU or rank NS -95.6  31.2  
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Supplemental Information 

 

Supplemental Figure Legends 

Figure S1. Monophasic GPD1::GFP accumulation in exponential cultures. 

Representative samples of exponential cultures exposed to 0.75 M KCl for the times shown.  

Learned frequency distributions of GPD1::GFP accumulation (AU) with mean (x), standard 

deviation (std), and weight (w; the fraction of cells in each distribution) are given (zero-weighted 

distributions not shown). Sum (red) shows the cumulative fit of the 4 learned Gaussians.  The 

18 representative strains are color-coded as in Figure 1B. Data for all strains were normalized 

for comparison. 

Figure S2. Static viability and survival in extreme osmotic stress. 

Post-diauxic cultures were incubated for up to 5 weeks in 3 M KCl before plating on iso-osmolar 

media.  This experiment, intended as a purely qualitative assessment of viability after long 

exposures to 3.0 M KCl extreme osmotic stress, was repeated once.  A plate key is given in 

Table S3; the same data sorted by rank are shown in Figure 2B. 

Figure S3a-c. Multiphasic distributions of GPD1::GFP accumulation in post diauxic 

cultures.   

Representative replicates of post-diauxic cultures exposed to 2.5 M KCl for the times shown. 

Learned distributions of GPD1::GFP accumulation (AU) with mean (x), standard deviation (std), 

and weight (w; the fraction of cells in each distribution) are given (zero-weighted distributions 

not shown).  Sum (red) shows the cumulative fit of the 4 learned Gaussians. The 18 

representative strains are color-coded as in Figure 1B. 

Figure S4. Rank predicts osmotic stress signaling behavior.  

The average percent of cells in each strain above a threshold set at the top 11% of 

accumulation of GPD1::GFP normalized across all post-diauxic cultures. Strains were exposed 

to 2.5 M KCl for increasing times shown and ordered according to rank.  The number of strains 

in each mean clusters is indicated with increasingly lighter grey scale in their order of 

“recklessness” signaling: 2 strains (MC0), 15 (MC1), 12 (MC3), 12 (MC2), 6 (MC5), 3 (MC4). 

The 18 representative strains are color-coded as in Figure 1B. 
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Movie Legends 

 

Movie 1. Exponential W027 cells seeded with a single post diauxic cell of the same genotype 

(box). Media was switched to 1.5M KCl at time 0, GPD1::GFP fluorescence is shown in green. 

Time stamp shown in upper right. 

 

Movie 2.  Post-diauxic W027 cells exposed to 1.5 M KCl, GPD1::GFP fluorescence is shown in 

green. Time stamp shown in upper right. 

 

Movie 3.  Post-diauxic W027 cells exposed to 2.5 M KCl, GPD1::GFP fluorescence is shown in 

green.  Time stamp shown in upper right. 
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Table S1. Haploid derivatives of wild strains.   

The source for all wild strains in this study was the strain collection of the Royal Netherlands 

Academy of Arts and Sciences over the past 100 years (Table 1 and Table S1).  This resource 

has been deposited at the Yeast Genetic Resources Lab of the National BioResource Project in 

Osaka, Japan. 
Alias MAT Genotype Comments 

WH027 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 459; isolated in 1938 in Castellina, Italy from 

grape must; barcode #29(Uptag sequence:  

GGCCCGCACACAATTAGGAA, Downtag sequence:  

GCGCCGCATTAACTAAACTA) 

WH030 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1508; isolated in 1927 from starter for 

sorghum brandy; YH note: mating defective, hard to make wild/lab 

diploids; barcode #16(Uptag sequence: 

GTCCGAACTATCAACACGTA, Downtag sequence: 

GCGCACGAGAAACCTCTTAA) 

WH033 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 405; isolated in 1925 in West Africa from 

catabo for billi wine, from Osbeckia grandiflora; barcode 

#187(Uptag sequence: CCGTGTACTGAATTACGATC, Downtag 

sequence: CCATCTTTGGTAATGTGAGG) 

WH035 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 5822; isolated in 1967 from malt wine; 

barcode #30(Uptag sequence: GGTCTATGCAAACACCCGAA, 

Downtag sequence: GCCGTCTTGACAACCTTATA) 

WH037 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1395; isolated in 1922 from an unknown 

source; barcode #235(Uptag sequence: 

GGCTAAGGGACAACACCTCA, Downtag sequence: 

GCCCGGCACATAGAAGTAAC) 

WH041 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 5635; isolated in 1958 in South Africa from 

grape must; barcode #2(Uptag sequence: 

CCATGATGTAAACGATCCGA, Downtag sequence: 

TATATGGCAGCAGATCGCCG) 

WH042 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 3081; isolated in 1958 in Spain from 

alpechin; barcode #12(Uptag sequence: 

GTGCGAACCAACGTACTACA, Downtag sequence: 

GCAGGAACACCACAGGGTTA) 

WH044 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 422; isolated in 1926 in Odessa, Ukraine 

from beer; barcode #135(Uptag sequence: 

CCCGCGATTGTAATGAATAG, Downtag sequence: 

CATACTACGTGGGACAGTTG) 

WH050 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 5112; isolated in 1962 in Spain from grape 

must; barcode #49(Uptag sequence: 

CTTACTGATAGCGTAGAGGT, Downtag sequence: 

GTGGTCTGCAAACCCAACAA) 
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WH134 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 2964; isolated in 1947 in Copenhagen, 

Denmark from distiller’s rum yeast; barcode #18(Uptag sequence: 

GCCCTGATAACAAGGTGTAA, Downtag sequence: 

GCGCCTATTACACAAACGTA) 

WH136 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 2811; isolated in 1957 from wine; wine yeast; 

barcode #20(Uptag sequence: GTGAGCGAAACACCGCGTAA, 

Downtag sequence: GGTAATACGCAACTCCTCTA) 

WH150 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 2962; isolated in 1947 in Copenhagen, 

Denmark from distiller’s rum; barcode #15(Uptag sequence: 

GCCGTAGCCACAAGAGTTAA, Downtag sequence: 

GCGGCCACTTACACAAATTA) 

WH153 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 6458; isolated in 1972; barcode #37(Uptag 

sequence: GGGACCGCCAAAGCTATCAA, Downtag sequence: 

GTGAACAATAACGGCCTTGA) 

WH157 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 6506; isolated in 1973 in UK brewery; killer 

yeast; barcode #53(Uptag sequence: 

CTGAGCGTAGGATATTCCGT, Downtag sequence: 

GCCGGTCGCAAACTCATAAA) 

WH163 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 6914; isolated in 1977 in Spain from white 

wine; barcode #51(Uptag sequence: 

CTACGTCGGCTCATAGTCGT, Downtag sequence: 

GCTCTCGGCCAAGGAAACAA) 

WH164 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 6978; isolated in 1984 from wine; wine yeast; 

barcode #59(Uptag sequence: CACTCGGATTCAGTTCTAGT, 

Downtag sequence: GGCCTTGCCAAACAGTCAAA) 

WH166 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 7072; isolated in 1980 from distillate; 

barcode #62(Uptag sequence: CCTAGTTCGAGATTGCGAGT, 

Downtag sequence: GTGGTCGCCCAAGCAACAAA) 

WH167 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 7173; isolated in 1985 from catabo for billi 

wine; wine yeast; barcode #43(Uptag sequence: 

CAGTATGCTAGATTCCGGGT, Downtag sequence: 

GTCCTCGCAAGAAAGGCCAA) 

WH173 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 8615; isolated in 1998 in Italy from grape 

must; dry yeast for wine making; barcode #61(Uptag sequence: 

CCTGTAGTACGAGTATGAGT, Downtag sequence: 

GGTCTGCCCAAAGTCACAAA) 

WH178 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1192; isolated in 1928 from wine; wine yeast; 

barcode #155(Uptag sequence: CGCACACGATTAAGGTCCAG, 

Downtag sequence: CACTGTTGGTAAGGTCTATG) 

WH179 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1193; isolated in 1928 from wine; wine yeast; 

barcode #70(Uptag sequence: CAATAGGGTGTGACAGTTCT, 

Downtag sequence: CTACTTCGCGTGAGCTGGTT) 
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WH189 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1241; isolated in 1930 from an unknown 

source ; barcode #212(Uptag sequence: 

CCACTTAGTTCAATAGGCGC, Downtag sequence: 

CCGAGTATTACATTCTCACG) 

WH195 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1256; isolated in 1937 from port wine; 

barcode #123(Uptag sequence: CGTGGAGCAGTTCGTATAAT, 

Downtag sequence: CTCGACGCTGGACGTTATGT) 

WH202 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 7372; isolated in 1988; killer yeast, K2Rd 

(Young & Yagiu), K2R2 (Wickner); barcode #119(Uptag sequence: 

CAACGTAGAGTGAGGTACAT, Downtag sequence: 

CACTTAGCTTAGACTCGTGT) 

WH203 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 7438; isolated in 1989 from wine; wine yeast; 

barcode #65(Uptag sequence: CTTTCGGACGTATGTGCAGT, 

Downtag sequence: CCTTGATGATAGAGGGCTTT) 

WH206 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 7833; isolated in 1994 in Missouri, USA from 

lung of a man with immune deficiency syndrome; virulent strain; 

barcode #82(Uptag sequence: CATACAAAGAGAGGTGTCCT, 

Downtag sequence: CCCTTGCGATTGGTGCAGTT) 

WH211 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 7838; isolated in 1994 in USA from patient; 

barcode #144(Uptag sequence: CGATACAAGTAAGTTGCGAG, 

Downtag sequence: CCTCTTACGAGATAGCGGTG) 

WH215 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 7962; isolated in 1984 in Sao Paulo, Brazil 

from fermenting concentrated syrup from sugar cane; barcode 

#94(Uptag sequence: CCCGATTGAGGCATGGTTAT, Downtag 

sequence: CGCTTCGAGTATGGGATATT) 

WH217 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 7964; isolated in 1995 in Sao Paulo, Brazil 

from fermenting concentrated syrup from sugar cane; barcode 

#92(Uptag sequence: CGCGGAGTATAGAGCTTTAT, Downtag 

sequence: CAATCGCTCGGAGGCGTATT) 

WH219 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 439 ; isolated in 1933 in Lager Schartel, 

Germany from Silvaner grapes; barcode #93(Uptag sequence: 

CGACCCTGATGATCCTTTAT, Downtag sequence: 

CTACGGGCTCGATGCCTATT) 

WH235 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 5952; isolated in 1968; barcode #102(Uptag 

sequence: GGCTACGATACATCTTCATC, Downtag sequence: 

CATTTGTAACCAGTTCGCTC) 

WH238 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 6223; isolated in 1969 in Chile from grape 

juice; radiation resistant; barcode #104(Uptag sequence: 

CTATGTGCGGTAAGACGTAT, Downtag sequence: 

CGGCGTAGATTGTTAGCATT) 
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WH242 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 6333; isolated in 1942 in Costa Rica from 

rotting banana; Strain name NRRL Y-1350 (synonymous 

designation; NRRL YB-210, NRRL-210, NRRL-B210; Mortimer 

and Johnston (1986), Genetics 113: 35); barcode #56(Uptag 

sequence: CCTGTAGATTGACGTGTAGT, Downtag sequence: 

GCCCTCGTGACAAATCGAAA) 

WH244 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 8266; isolated in 1996 from rotting fig; Strain 

name X2180, derived from S288C by self-diploidization (Mortimer 

and Johnston (1986), Genetics 113: 35). Did not survive freeze-

drying.; barcode #122(Uptag sequence: 

CAGAGGGCACTGTTCTTAAT, Downtag sequence: 

CCCTGCTGTAGAGGTTATGT) 

WH245 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 3000; isolated in 1956 in Pakistan from palm 

wine; wine yeast; barcode #138(Uptag sequence: 

CACATCGTTTAACACTGGAG, Downtag sequence: 

CTAGGAGGTTACAGTCATTG) 

WH248 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 8049; isolated in 1981 from fish food; feed for 

fish and crustaceans; barcode #108(Uptag sequence: 

CGACCCGATGTAGTAGATAT, Downtag sequence: 

CCGCCGGATGTGATATAATT) 

WH249 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 6069; isolated in 1981; hybrid strain (Y55-2 x 

JJ101); barcode #87(Uptag sequence: 

CACTGTGACCGAGGGATACT, Downtag sequence: 

CGCGCTATTATACTCGACTT) 

WH255 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 3090; isolated in 1958 from white grape 

must; barcode #72(Uptag sequence: 

CACTGTGGACGATACGGTCT, Downtag sequence: 

CTGTACGTGCGATACTCGTT) 

WH276 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1394; isolated in 1924 from pressed yeast; 

distillery yeast; barcode #176(Uptag sequence: 

CCACCGATGTAATTTGAGTC, Downtag sequence: 

CACTCTGCGTTAATGTTGGG) 

WH282 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1460; isolated in 1927 in Indonesia from 

fermenting fruit; barcode #115(Uptag sequence: 

CATACTTAGGGATCAGGGAT, Downtag sequence: 

CCTTGTCTGAGAGCCGTTGT) 

WH285 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1479; isolated in 1928 from wine; wine yeast; 

barcode #240(Uptag sequence: GCGGCCAATAGTAAACTTCA, 

Downtag sequence: GCCGCCGTGATAAGAAACAC) 

WH291 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1576; isolated in 1931 in Sulawesi, Indonesia 

from sap of Arenga palm; barcode #117(Uptag sequence: 

CCTGAGGACTTATTCACGAT, Downtag sequence: 

CATTGGATTAGACCGTGTGT) 

WH292 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1582; isolated in 1948 in Portugal from wine; 

barcode #118(Uptag sequence: CCGATTAGAGGTTGACAGAT, 

Downtag sequence: CACTGACTTCGAGGTCGTGT) 
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WH294 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1585; isolated in 1934 from sake-moto; sake 

yeast; barcode #180(Uptag sequence: 

CATTAAGGCGCACGTTTATC, Downtag sequence: 

CTATCCTAGAGATTTGAGGG) 

WH301 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 1594; isolated in 1936 from juice of aren 

palm; barcode #182(Uptag sequence: 

CACGTTTGCGAATAGGTATC, Downtag sequence: 

CAGATACTATTAAGTGCCGG) 

WH340 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 2805; isolated in 1954 from wine; wine yeast, 

particularly suitable for fruit wines; barcode #233(Uptag sequence: 

GCCGGGCTTAAATTGAATCA, Downtag sequence: 

GCTCCGACTGAAGAACTAAC) 

WH343 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 2808; isolated in 1954 from grapes (Blauer 

Portugieser); wine yeast, suitable for fruit wines, yields more than 

18% of alcohol; barcode #224(Uptag sequence: 

CCCGTGAATATAAGTGAAGC, Downtag sequence: 

CCTGGATTTGAAGCGTATAG) 

WH454 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 6412; isolated in 1952 from sake; sake yeast; 

barcode #192(Uptag sequence: CCTTAGGGATAATGAGTTGC, 

Downtag sequence: CCAGTGTTCTAACGTGCAGG) 

WH455 a 
MATa ura3∆0 

ho∆::barcode::KanMX4 

Original CBS #: CBS 440; isolated in 1934 in Taiwan from 

molasses; barcode #249(Uptag sequence: 

GCCCAGGCTAAATGTTAAGA, Downtag sequence: 

GAAGTACGCTCAAGACCGAC) 

BC4741 

(BY41) 
a 

MATa his3D1 leu2∆0 

met15∆0 ura3∆0 flo8-1 

ho∆::barcode::KanMX4 

Original CBS #: Lab strain, BY4741; isolated in 1938 in Merced, 

CA, USA from rotting fig; derived from S288C, of which strain 88% 

of the gene pool is contributed by strain EM93 (Mortimer and 

Johnston (1986), Genetics 113: 35). Barcode #266(Uptag 

sequence: GGCCTAACTCAACAGACGGA, Downtag sequence: 

GCGCTCGACTAAGAGAAACC) 
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Table S2. Clustering statistics used to rank signaling behavior. 

Statistics showing the fraction of 17,000 permutations in which strains were clustered with at 

least 50% of the other strains in each mean cluster.  These data were used to rank total 

signaling behaviors from most cautious (1) to most reckless (50) based on the fraction of time 

each strain was associated with its mean cluster (characteristic of that cluster).  See Figure 2.   

 
Rank Cluster Strain MC0 MC1 MC3 MC2 MC5 MC4 

1 MC0 W455 0.8484 0.1516 0 0 0 0 

2 MC0 W167 0.8365 0.1635 0 0 0 0 

3 MC1 W219 0.6375 0.3625 0 0 0 0 

4 MC1 W217 0.5536 0.4460 0.0004 0 0 0 

5 MC1 W027 0.5214 0.4755 0.0028 0.0002 0 0 

6 MC1 W042 0.4850 0.4892 0.0191 0.0044 0.0023 0.0001 

7 MC1 W235 0.1976 0.5532 0.2266 0.0226 0 0.0002 

8 MC1 W340 0.1700 0.5803 0.2354 0.0142 0 0 

9 MC1 W454 0.3355 0.6610 0.0034 0 0 0 

10 MC1 W134 0.1686 0.7376 0.0821 0.0117 0 0 

11 MC1 W276 0.1617 0.7643 0.0658 0.0083 0 0 

12 MC1 W294 0.1692 0.7834 0.0440 0.0034 0 0 

13 MC1 W157 0.1195 0.7851 0.0866 0.0088 0 0 

14 MC1 W202 0.1671 0.7855 0.0446 0.0027 0 0 

15 MC1 W238 0.1337 0.8048 0.0580 0.0036 0 0 

16 MC1 W035 0.1293 0.8086 0.0572 0.0050 0 0 

17 MC1 W248 0.1494 0.8331 0.0172 0.0003 0 0 

18 MC3 W130 0.0003 0.0671 0.7020 0.2307 0 0 

19 MC3 W136 0 0.0092 0.6572 0.3334 0.0002 0 

20 MC3 W203 0.0025 0.1348 0.6410 0.2214 0.0002 0 

21 MC3 W285 0.0003 0.0806 0.6245 0.2924 0.0022 0 

22 MC3 W163 0.0011 0.1474 0.6228 0.2285 0.0002 0 

23 MC3 W206 0 0.0036 0.6203 0.3747 0.0014 0 

24 MC3 BY41 0 0.0123 0.6102 0.3768 0.0008 0 

25 MC3 W041 0.0002 0.0233 0.5625 0.4090 0.0050 0 

26 MC3 W343 0.0012 0.0432 0.5522 0.3910 0.0123 0.0002 

27 MC3 W292 0.0201 0.1962 0.4883 0.2893 0.0062 0 

28 MC3 W189 0.0001 0.0205 0.4757 0.4715 0.0319 0.0003 

29 MC3 W211 0 0 0.3698 0.5572 0.0696 0.0033 

30 MC2 W245 0 0 0.2579 0.6898 0.0523 0 

31 MC2 W291 0 0 0.2211 0.6786 0.0994 0.0009 
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32 MC2 W164 0 0 0.1517 0.6601 0.1852 0.0031 

33 MC2 W249 0 0 0.3349 0.6417 0.0233 0.0001 

34 MC2 W166 0 0 0.3372 0.6407 0.0220 0.0001 

35 MC2 W179 0 0.0002 0.3569 0.6212 0.0217 0 

36 MC2 W244 0 0 0.1478 0.6160 0.2225 0.0137 

37 MC2 W173 0 0.0003 0.3801 0.6005 0.0188 0.0002 

38 MC2 W215 0 0.0012 0.3162 0.6000 0.0815 0.0011 

39 MC2 W037 0 0 0.0714 0.5308 0.3863 0.0115 

40 MC2 W255 0 0.0011 0.4771 0.5141 0.0077 0 

41 MC2 W050 0 0 0.0567 0.4672 0.4417 0.0343 

42 MC5 W044 0 0 0.0021 0.0728 0.8501 0.0750 

43 MC5 W195 0 0 0.0019 0.0744 0.8501 0.0736 

44 MC5 W301 0 0 0.0029 0.0882 0.8203 0.0887 

45 MC5 W150 0.0001 0.0004 0.0006 0.0414 0.7978 0.1598 

46 MC5 W033 0 0 0 0.0279 0.7196 0.2525 

47 MC5 W153 0 0 0 0.0181 0.6545 0.3274 

48 MC4 W282 0 0 0 0 0.0596 0.9404 

49 MC4 W242 0 0 0 0.0002 0.1477 0.8521 

50 MC4 W178 0 0 0 0.0017 0.1697 0.8286 

 
 
 

Table S3. Plate key for Figure S2. 

 
1 2 3 4 5 6 

A W027.BY01 W044.BY01 W153.BY01 W173.BY01 W203.BY01 W235.BY01 

B W033.BY01 W050.BY01 W157.BY01 W178.BY01 W206.BY01 W238.BY01 

C W035.BY01 W130.BY01 W163.BY01 W179.BY01 W211.BY01 W242.BY01 

D W037.BY01 W134.BY01 W164.BY01 W189.BY01 W215.BY01 W244.BY01 

E W041.BY01 W136.BY01 W166.BY01 W195.BY01 W217.BY01 W245.BY01 

F W042.BY01 W150.BY01 W167.BY01 W202.BY01 W219.BY01 W248.BY01 

1 2 3 
A W249.BY01 W292.BY01 W455.BY01 
B W255.BY01 W294.BY01  
C W276.BY01 W301.BY01 

 
D W282.BY01 W340.BY01 

 
E W285.BY01 W343.BY01 

 
F W291.BY01 W454.BY01 

 
Bet hedging model 
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Annotated code for our model of bet hedging with heritable probability of binary, cautious versus 

reckless bet hedging is publicly available (https://figshare.com/s/2c03544aef0c40cc86c2). The 

bet hedging ‘strategy’ P was defined as the heritable probability of cautious cells for 0 ≤ P ≤ 1. 

Nine possible 2-state environmental shifts between three general osmotic stress environments 

were considered: permissive (E0; all cells grow equally well), restrictive (E1; reckless cells 

divide, cautious cells survive without dividing), and killing (E2; reckless cells die, cautious cells 

survive without cell division).  The relative fitness of representative strategies (0, 0.1, 0.2, …1.0; 

number of surviving cells in each strategy divided by the total number of surviving cells across 

all strategies) was calculated after 10 generations in each environment except as shown on 

Figure 3c.  For simplicity, the natural attrition of older cells (death and disappearance) and rates 

of cell division were assumed to be equal for all strains. Results were independent of the 

number of generations in the first environment except as shown when E1 was the first 

environment. 

 

 

Databases and linked archives  

Flow cytometry database (annotated) 

(https://figshare.com/s/52ef966b16cba7f41d7f/) 

Python script for bet hedging model 

(https://figshare.com/s/2c03544aef0c40cc86c2/) 

Figure S1 complete data set 

(https://figshare.com/s/8b709fd16cccbabc2a5a/) 

Figure S3 complete data set 

(https://figshare.com/s/8147275b62eb8d4db6bf/) 

Excel file with tables and raw data 

(https://figshare.com/s/00a7bf31d2791922f1d8/) 
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