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Abstract 23 

Rapid reproduction contributes to evolutionary fitness but can be lethal under stress. Microbes 24 

are thought to limit risk in clonal populations by bet hedging; the stochastic expression of a low 25 

frequency of slow growing cells constitutively resistant to unpredictable environmental stresses 26 

including antibiotics. However fitness depends on rapid recovery and resumption of growth in 27 

potentially lethal environments whose severity and duration are also unpredictable.  Here we 28 

describe trade-offs between osmotic stress-responsive signaling, survival and proliferation in 50 29 

ecologically distinct strains of budding yeast. By contrast with prior examples, programmed bet 30 

hedging responses were heritable, stress-specific and varied continuously in our population.  31 

During rapid growth strong osmotic stress signaling promoted survival. Weak signaling predicted 32 

lower viability, intense rebound signaling and robust recovery. Older cultures survived and 33 

adapted to unprecedented stress with fitness depending on reproducible, strain-specific 34 

proportions of cells with divergent strategies. The most ‘cautious’ cells survive extreme stress 35 

without dividing; the most ‘reckless’ cells attempt to divide too soon and fail, killing both mother 36 

and daughter.  Heritable proportions of cautious and reckless cells generate a tunable, rapidly 37 

diversifying template for microbial bet hedging that resembles natural variation and would evolve 38 

in different patterns of environmental stress.39 
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In order to understand the evolutionary trajectories of populations and species we need to 40 

understand the effects of natural genetic variation on mechanisms of development and 41 

expression of phenotypic variation. The mapping between genetic variation and the spectrum of 42 

attributes and behaviors upon which selection acts defines population-level properties such as 43 

evolvability (the capacity to evolve), robustness or canalization (the capacity to withstand genetic 44 

and environmental perturbation), and reaction norms (the optimization, within a given genotype, 45 

of phenotypic responses across different environments)1–3. Here we describe strain-specific 46 

differences in hyperosmotic stress responsive signaling and associated behaviors in a synthetic 47 

population of budding yeast.  48 

The high osmolarity glycerol (HOG) signaling pathway is central to an elaborate stress 49 

response that reduces cellular damage and death in unpredictably changing osmotic 50 

environments where the balance between external solutes and free water pressure in the cell 51 

can change suddenly4. A main function of the HOG pathway is the production and accumulation 52 

of intracellular glycerol, which restores water balance and, as demonstrated by a large body of 53 

work from many labs, is essential for survival, adaptation and proliferation in hyperosmotic 54 

stress4–9.  In the wild, yeast and other microorganisms must balance immediate survival against 55 

evolutionary fitness. Multiplicative fitness favors clonal populations that respond as rapidly as 56 

possible to improved conditions with earlier cell cycle reentry and proliferation10. On the other 57 

hand, individual survival requires that cells carefully sense the amplitude and direction of 58 

environmental change to more safely reenter the cell cycle after stress7. The HOG pathway 59 

consists of at least two highly-conserved, multi-component osmotic stress sensors linked to a 60 

parallel series of at least 15 kinases and accessory proteins that ultimately alter the activity of 61 

nearly 10% of the yeast genome4,6. The sheer numbers of genes involved in HOG signaling, their 62 

conservation, and their elaborate circuitry suggest that a nuanced response to osmotic stress 63 

has been crucial and strongly selected throughout evolutionary history. As the hyperosmotic 64 

stress response of budding yeast has well-characterized and accessible signaling and 65 

phenotypic traits that can be measured in the lab and are almost certainly under strong selection 66 

in nature4,6,7, this system is ideal for characterizing the mapping between signaling and behavior 67 

in a diverse population. 68 

We measured osmotic stress signaling, survival and adaptation in both exponentially 69 

growing and nearly quiescent cultures of diploid yeast. Glycerol-3-phosphate dehydrogenase 70 

(GPD1) is rate-limiting for glycerol production11 so we used the synthesis and accumulation of 71 

green fluorescent protein (GFP) integrated into the gene for GPD1 as a proxy for HOG pathway 72 

activity. A synthetic population of diverse yeast genotypes was made by crossing GPD1::GFP in 73 

the genetic background of a standard laboratory strain (BY4742 MATalpha) to a panel of wild 74 

and industrial genetic backgrounds –e.g. fifty different haploids of the opposite mating type 75 

extracted from globally diverse, sequence-validated strains of Saccharomyces cerivisiae 76 

deposited to the collection of the Royal Netherlands Academy of Arts and Sciences over the past 77 

100 years (CBS; Table 1 and Table S1). 78 
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Osmotic stress signaling and behavior in young cultures 79 

The behavior of single cells before and after their exposure to osmotic stress was followed by 80 

time-lapse video microscopy of monolayer cultures in custom microfluidics devices12. When cells 81 

in exponential growth were exposed to sudden hyperosmotic stress, cell volume decreased, cell 82 

division and budding immediately stopped, and daughter cells retracted13.  After a lag period 83 

proportional to the severity of the stress GFP fluorescence driven by the GPD1 promoter began 84 

to accumulate in the cytoplasm of surviving cells.  Cells that did not accumulate GPD1::GFP to 85 

high levels did not survive or adapt, developed large vacuoles, and began to die, remaining in 86 

view as shrunken cell ghosts. As GFP accumulated to saturation levels in the surviving cells, 87 

they adapted to the higher osmotic pressure, resumed cell division, budded and began to divide 88 

with a longer half time, producing daughter cells with similarly high fluorescence13. 89 

Viability per culture and GPD1::GFP accumulation per cell were measured using flow 90 

cytometry of statistically large numbers of cells from all 50 strains (~10,000 cells / sample). The 91 

rate and extent of mean GPD1::GFP accumulation in exponentially growing cultures exposed to 92 

hyperosmotic media depended on the severity of the stress and the genetic background of each 93 

strain (Figures 1A and S1).  Prior to the osmotic stress mean GPD1::GFP fluorescence and 94 

viability were uncorrelated.  After 2 hours in moderate 0.75 M KCl viability decreased and 95 

became steeply correlated with accumulated GPD1::GFP (Figures1B and C).  As expected, 96 

natural variation in the strength of HOG signaling was directly responsible for variation among 97 

the strains in osmotic stress survival. 98 

 99 

Negative feedback drives a robust recovery   100 

The initially strong positive correlation between variation in GPD1::GFP accumulation and 101 

variation in viability reversed as cells adapted and began to divide (Figure 1C; 4 hours). This 102 

distinguished two phases of the response, an early phase (0 – 2 hours) when viability decreased 103 

markedly and acute HOG signaling promoted osmotic stress survival and a later phase (2 – 4 104 

hours) when viability recovered but became negatively correlated with HOG signaling and 105 

GPD1::GFP accumulation. The switch from positive to negative correlations might have indicated 106 

that stronger HOG signaling, initially beneficial, suddenly caused lower viability.  However we 107 

think it likely that negative feedback increased signaling in the surviving cells of the less viable 108 

strains. Negative feedback controls, occurring at many levels and timescales, are present in 109 

essentially all of the varied mechanisms that act in concert to increase intracellular glycerol and 110 

restore water balance. For example (1) unequal water pressures activate osmotic stress sensors, 111 

glycerol channels and other pressure-sensitive components whose activities control and depend 112 

on water balance (e.g. see Figure 5 in Hohman 20024,6), (2) GPD1 indirectly controls and is 113 

controlled by osmotic stress-sensitive kinases that respond to upward and downward changes in 114 

water balance14, and (3) nuclear Hog-1 MAP kinase increases the transcription of phosphatases 115 

that restore its own cytoplasmic localization and basal activity15–17. 116 
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Consistent with acting negative regulation, we found there was a strong and highly 117 

significant correlation between early mortality (0 – 2 hour decreases in viability) and later 118 

accumulations of GPD1::GFP (2 – 4 hours; Table 2).  We reasoned that cells and strains that 119 

adapt quickly experience lower and less sustained effects of osmotic stress (e.g. water loss) with 120 

more rapidly attenuated HOG pathway activity and lower GPD1::GFP accumulation.  121 

Conversely, surviving cells of strains that were slower to adapt and less viable would experience 122 

higher and more sustained osmotic stress (and likely other stresses). Prolonged osmotic stress 123 

would sustain HOG signaling and maintain GPD1 transcription – also activated by general stress 124 

responses18 – further promoting GPD1::GFP accumulation (e.g. negative feedback regulation of 125 

viability at the level of general stress responses). Indeed, even as GPD1::GFP and viability 126 

became negatively correlated, their rates of change remained positively correlated (Figure 1C, 2 127 

– 4 hours and insets; Table 2) prompting a parsimonious interpretation that osmotic stress 128 

signaling promotes adaptation and viability during both the initial and recovery phases of the 129 

response.  130 

By 4 hours all strains had adapted to a new steady state in 0.75M KCl and later viability 131 

remained largely unchanged (Figure 1C inset, lower right). Interestingly, initial decreases in 132 

steady-state viability (0 – 2 hour mortality) were almost perfectly restored by 4 hours (Figure 1D) 133 

and, remarkably, by 6 hours early mortality and recovery were over 98% correlated (R2 = 0.9852, 134 

P<0.0001; not shown).  The biological robustness of adaptation and complete recovery of 135 

steady state viability further support the idea that negative feedback restores viability through 136 

continued activation of stress responses. Indeed, the continued accumulation of GPD1 and 137 

glycerol – directly responsible for restoration of water balance and reduction of osmotic stress –138 

suggests that intracellular glycerol concentrations integrate the cumulative activities of many 139 

facets of the osmotic stress response (e.g. provides a plausible biological mechanism for 140 

“integral feedback” that virtually assures perfect adaptation17,19; see included manuscript in 141 

preparation). However, despite their resilience, strains that were relatively slower to adapt would 142 

be ultimately less fit than rapidly adapting strains due to their higher death rate, slower recovery, 143 

and lower viabilities before and after adaptation. 144 

 145 

Extreme stress resistance of older cultures  146 

By contrast with exponential cultures, when the aging yeast cultures (post-diauxic) were exposed 147 

to hyperosmotic media they survived and adapted after long periods in unprecedented conditions 148 

(Movies 1 and 2). As aging cultures deplete available glucose in their media they undergo a 149 

metabolic change called the diauxic shift20. During post-diauxic growth stress response proteins 150 

accumulate, cell division slows and then stops, and cells enter quiescence21. Remarkably, 151 

post-diauxic cultures survived up to 5 weeks in 3 M KCl (41/50 strains). They could not adapt and 152 

did not grow in 3 M KCl, but recovered rapidly and grew when plated on fresh isotonic media 153 

(‘static viability’; Figure S2). When we tested their limits of adaptation in increasing 154 

concentrations of KCl all but one strain could grow on 2.6 M KCl media and three strains could 155 
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grow on media containing 2.9 M KCl (Table 3). We are unaware of previous reports of such 156 

extreme osmotic stress survival or adaption limits for budding yeast of any growth stage or 157 

genotype. 158 

 159 

Heterogeneity of cells in older cultures 160 

By contrast with cultures in exponential growth, in post-diauxic growth the genetically identical 161 

cells within each strain and culture were surprisingly heterogeneous in their signaling behaviors 162 

(compare Figures S1 and S3).  Neither total GPD1::GFP fluorescence nor rates of change in 163 

fluorescence was strongly correlated with viability.  After several hours in 2.5 M KCl GPD1::GFP 164 

increased sharply in one group of cells as they began to divide. More surprising, other cells 165 

induced GPD1::GFP to high levels, started to divide and then popped, killing both the mother and 166 

daughter (Movie 3). Another group of cells had slower signaling and cell division while the most 167 

‘cautious’ groups of cells failed to signal or divide but remained in a cellular state of static viability 168 

without dividing. 169 

We us flow cytometry to follow GPD1::GFP accumulation and survival of post diauxic 170 

cultures exposed to 2.5 M KCl as their osmotic stress responses evolved over 7 days. A 171 

Gaussian mixture model with Bayesian information criteria was used to assign the cells in each 172 

sample to four Gaussian distributions (G0-G3) described by eight parameters – means and 173 

covariances – numbered according to their increasing levels of fluorescence (Figure S3 and 174 

(https://figshare.com/s/8147275b62eb8d4db6bf/)).  Only GPD1::GFP pre-accumulated into cells 175 

of the G3 distribution during post-diauxic growth and prior to the osmotic challenge –therefore 176 

unrelated to osmotic stress signaling – predicted survival at any time. The amount of GPD1::GFP 177 

accumulated in G3 cells at time 0 predicted each strains early but not later viability, and this 178 

relationship was better fit by 2nd order quadratic rather than linear functions of GPD1::GFP (Table 179 

4), suggesting early survival was higher in strains with intermediate G3 accumulations (more 180 

variation explained and lower mean square errors). Despite the fine-scaled characterization of 181 

osmotic stress signaling behaviors of the different groups of cells in each strain, none of the 182 

distributions learned by the Gaussian mixture model, neither pre-accumulated G3, total 183 

GPD1::GFP fluorescence, nor stress-induced GPD1::GFP in any distribution, embodied features 184 

of osmotic stress signaling important for later survival.   185 

 186 

Continuous variation in stress responses 187 

In order to map osmotic stress-responsive signaling onto survival more directly we next 188 

quantified osmotic stress signaling behaviors of cells as they unfolded over time in 2.5 M KCl 189 

directly, unbiased by Gaussian assumptions or approximations. In brief, normalized levels of 190 

induced GPD1::GFP were binned (in a histogram or on a grid), creating a ‘sample vector’ of cell 191 

numbers in each of 100 successive intervals of fluorescence intensity (see methods). Next, 192 

sample vectors for increasing time points in each strain were linked to create time line vectors of 193 

sequential. For comparison of averaged strain behaviors the time line vectors were clustered 194 
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using a mean distance matrix, constructed from 17,000 randomly chosen permutations of the 195 

data over replicate samples and times (mean clusters; see methods).  Finally, the fraction of 196 

permutations in which each strain grouped with more than half of the other strains in its mean 197 

cluster was used to rank that strain’s behavior relative to the other strains in its group (clustering 198 

statistics; Table S2). 199 

The unique signaling trajectories of most strains were highly reproducible (Figure S3 200 

and (https://figshare.com/s/8147275b62eb8d4db6bf/)).  Based on their shared and 201 

strain-specific (heritable) signaling behaviors the 50 strains rapidly converged onto two large 202 

groups made up of six mean clusters (Figure 2). Each strain could be further ordered within and 203 

between mean clusters based on their clustering statistics, with their rank order describing 204 

increasingly rapid accumulations of GPD1::GFP and ‘reckless’ signaling (Figure S4). Tellingly, 205 

both mean cluster and rank predicted viability over time (Figure S5 and Table 4; respectively) 206 

thereby confirming the biological relevance of ‘cautious’ versus ‘reckless’ osmotic stress 207 

signaling, validating our clustering method and supporting the role of natural osmotic stress 208 

signaling differences between strains in shaping variation in fitness during osmotic stress.  209 

 210 

Evidence for bet hedging 211 

As cautious and reckless behaviors were found both within and between strains, we wondered 212 

whether bet hedging, the expression of alternate, conditionally-adaptive phenotypes within a 213 

clone of genetically identical organisms10,22–25, could explain the observed variation in osmotic 214 

stress signaling and survival.  For example, a low frequency of post-diauxic cells that are 215 

stress-resistant under normal growth conditions could represent the stochastic, pre-adaptive bet 216 

hedging previously documented in yeast and bacteria26,27.  By contrast with previously 217 

described microorganism bet hedging, the ranked responses to osmotic stress responses were 218 

heritable, stress-specific and uncorrelated with pre-adapted osmotic stress resistance acquired 219 

during post-diauxic growth.  The viability of different strains varied depending on their rank and 220 

the severity of the osmotic environment.  Higher-ranked strains with more aggressive osmotic 221 

stress signaling strategies favored milder conditions, but with increasing time in extreme osmotic 222 

stress more cautious strains and behaviors became more fit (Table 4). For example, W178 at 223 

rank 50 was most viable in moderate 0.75 M KCl, but the optimum shifted to the strain at rank 25 224 

after 20 hours in 2.5 M KCl, 20 after 72 hours, and 9.6 after 168 hours (1 week). After 168 hours, 225 

viability had decreased most among the most reckless strains (Figure S5).   226 

The correlation between relative fitness and signaling behavior under increasing 227 

osmotic stress provided strong empirical evidence for bet hedging23. To confirm that the 228 

increasing survival of strains with cautious signaling behaviors was correlated with the amount of 229 

osmotic stress experienced by the cells and not simply their time in culture, we tested the idea 230 

that the severity of osmotic stress increases with time in severe osmotic conditions. We again 231 

incubated cultures in 2.5 M KCl for 168 hours, but they were first exposed to a mild pre-stress (2 232 

hours in 0.5 M KCl) to pre-induce osmotic stress proteins and make them more resistant to 233 
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subsequent stress. If optimum rank depended solely on time, independent of the degree of stress 234 

experienced by the different strains, then it should be unaffected by the short pre-stress. 235 

However optimum rank shifted toward more reckless behaviors (rank 9.6 to rank 18; P<0.0001) 236 

in response to the pre-stress and viability increased by ~10%, as expected if the pre-treated cells 237 

experienced lower osmotic stress.   238 

After 168 hours in 2.5 M KCl the most reckless cells in the highest-ranking strains 239 

began to selectively die and disappear.  For example, the replicate cultures of strain W242 240 

(rank 49) that had lower viability also had fewer cells with high accumulations of GPD1::GFP, 241 

smaller G3 distributions, and correspondingly larger distributions with lower mean GPD1::GFP 242 

(Figure 3A).  The selective loss of cells with the highest accumulations of GPD1::GFP could 243 

indicate that GPD1::GFP levels simply decrease over time.  However, G3 distributions were 244 

stable over most time points and in most strains.  We think it more likely that after 168 hours in 245 

2.5 M KCl the most aggressive cells in the highest-ranking strains attempt to divide and fail (e.g. 246 

Movie 3). Rapid signaling and adaptation, a fitness advantage in milder conditions, becomes a 247 

liability in severe or prolonged osmotic stress. On the other hand static viability – the survival of 248 

non-dividing cells in 3 M KCl (Figures 2B and S2) – would usually dramatically reduce 249 

evolutionary fitness but it allows more cautious cells and strains to survive severe stress.  250 

 251 

Evolution of bet hedging 252 

We’ve shown that heritable osmotic stress signaling behavior predicts survival in increasing 253 

severity and duration of osmotic stress. Since cautious and reckless strains reliably express a 254 

range of cells with different behaviors and fitness depending on the environment, we wondered 255 

whether a simple, 2-state bet hedging model with heritable proportions of cautious and reckless 256 

cell types could account for the observed variation in osmotic stress signaling and explain the 257 

complex relationship between rank and viability. We reasoned that aggressive osmotic stress 258 

signaling with rapid recovery and resumption of growth would have been the default, ancestral 259 

behavior and asked whether a heritable probability of cautious signaling and behavior could have 260 

arisen in response to the unpredictable severity and duration of potentially lethal osmotic 261 

environments.  In short, we assumed a heritable probability of daughters with cautious signaling 262 

and behavior (P) and asked whether it could evolve. 263 

We modeled the relative fitness of strains with different strategies P (0 ≤ P ≤ 1) after 264 

several generations of growth under abrupt changes between three very general osmotic stress 265 

environments (https://figshare.com/s/2c03544aef0c40cc86c2/). These environments discriminate 266 

cautious versus reckless behaviors: (E0) a permissive environment in which both cautious and 267 

reckless cells grow equally well, (E1) a restrictive environment approximating moderate osmotic 268 

stress reckless cells divide and cautious cells survive without dividing, and (E2) a killing osmotic 269 

stress where reckless cells die and cautious cells survive without cell division.  After several 270 

generations under each of the 9 possible environmental shifts between the three environments, 271 

we calculated the relative fitness (cell numbers) of each strategy. Most environmental shifts 272 
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favored an optimum strategy of either all cautious (P = 1) or all reckless cell types (P = 0; Figure 273 

3C). Strictly intermediate strategies (0 < P < 1) and bet hedging prevailed only when the osmotic 274 

environment shifted from moderate to more severe, with the optimum P depending on the 275 

number of generations in the first environment (E1 -> E2). Shorter lag periods – corresponding to 276 

less severe osmotic conditions – and more cell divisions in E1 initially favor lower P and a higher 277 

proportion of reckless cells.  Longer lag periods – corresponding to more severe conditions and 278 

fewer cell divisions – favor higher P and a higher proportion of cautious cells.  Indeed, 279 

worsening osmotic environments are common in nature (for example, during fermentation or 280 

drying). The post-diauxic cells and strains in our experiments experienced a worsening 281 

environment with increasing time in osmotic stress; as predicted by the model, lower-ranked 282 

strains with more cautious signaling behaviors, longer lag periods and fewer attempted cell 283 

divisions were increasingly fit over time and with an increasing severity of osmotic stress (Table 284 

4). 285 

While a 2-state model of bet hedging behaviors in three discrete environments is 286 

almost certainly overly simplistic relative to yeast in nature (and up to four learned distributions of 287 

cell types that best fit our data; Figure S3), it provides a conceptual framework for understanding 288 

variation in osmotic stress signaling strategies and generates testable hypotheses for further 289 

studies.  Bet hedging in microorganisms has been previously thought to arise almost exclusively 290 

through stochastic switching with a low probability of alternate phenotypes that are independent 291 

of the environmental challenge10,26–28.  By contrast, the variation in osmotic stress signaling and 292 

behavior we report here is a heritable, programmed response to osmotic stress. Strains display a 293 

wide range of cells displaying cautious behavior making this example one of few known for a 294 

microorganism that is similar to the rapidly diversifying, within-clutch bet hedging strategies of 295 

plants and animals10,28.  If the heritable probabilities of cautious cells and behavior were 296 

sculpted by selection, milder and/or slowly worsening osmotic environments would generate 297 

more reckless strains (e.g. W242, rank 49 isolated from rotting banana; W282, rank 48 isolated 298 

from fermenting fruit) and more severe or rapidly deteriorating osmotic environments would 299 

generate more cautious strains and behavior (e.g. W455, rank 1 from molasses; W217, rank 4 300 

from sugar cane syrup).  Indeed, even though our synthetic population is represented 301 

heterozygous wild/lab diploids rather than the inbred strains the general environment from which 302 

each strain was isolated weakly predicted its aggressiveness and plausibly suggests adaptation 303 

to growth in slowly rotting fruit or during wine fermentation favors more aggressive osmotic stress 304 

behaviors than growth in more severely hyperosmotic sugar cane syrups, molasses or olive 305 

wastes. 306 

Classical evolutionary models assign fitness directly to genotypes, mutations, and 307 

mean trait values without consideration of the genotype-to-phenotype map; molecular models 308 

provide detailed mechanistic outlines of development but rarely consider the effects of natural 309 

genetic variation.  The osmotic stress response is extensively characterized in a few strains and 310 

genotypes but until now osmotic stress signaling and behavior in a population had not been 311 
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examined. Labyrinthine developmental mechanisms, that are themselves controlled by genetic 312 

variation, translate genotypes into phenotypes with a variable fidelity that allows for the possibility 313 

of phenotypic heterogeneity and the evolution of bi-stable states29.  Our view of osmotic stress 314 

signaling and response on a backdrop of natural variation enabled the identification of negative 315 

feedback controlling a robust recovery of steady-state viability in exponential growth.  In 316 

post-diauxic cultures, continuous heritable variation in the distribution of cautious to reckless 317 

osmotic stress signaling is a risk spreading strategy.  Microorganisms in nature spend a large 318 

amount of their time in post-diauxic or quiescent phases21. Our simple, 2-state model 319 

demonstrates how post-diauxic cells and strains can balance constraints between survival and 320 

evolutionary fitness through programmed bet hedging responses adapted to different patterns of 321 

environmental stress.  322 
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Materials and methods 323 

Strain acquisition and deposition 324 

Over 200 unique wild and industrial diploid strains of Saccharomyces cerevisiae were obtained 325 

from the fungal diversity collection of Centraalbureau voor Schimmelcultures (CBS), an institute 326 

of the Royal Netherlands Academy of Arts and Sciences in Utrecht, Netherlands 327 

(http://www.cbs.knaw.nl/index.php/collection/).  Strains modified for this report are listed in 328 

Tables 1 and S1.  They have been deposited to the Yeast Genetic Resources Lab of the 329 

National BioResource Project in Osaka, Japan (http://yeast.lab.nig.ac.jp/nig/index_en.html/). 330 

 331 

Haploid MATa library of wild and industrial genotypes 332 

The first step in our library construction pipeline was to delete the HO locus of each strain by 333 

replacement with the KanMX4 marker gene and “barcodes” to permanently label each strain 334 

while preventing homothalism (Table S1)30,31. The KanMX4 gene was PCR-amplified for this 335 

purpose with primers containing the barcode sequences32. Next, kanamycin-resistant 336 

transformants were grown in pre-sporulation medium containing 10% glucose followed by 337 

sporulation under starvation conditions in 1% potassium acetate.  Although the strains differ in 338 

their sporulation efficiency and optimal conditions (http://www.cbs.knaw.nl/Collections/), we 339 

found it was most efficient to put strains through repeated rounds of a general sporulation 340 

protocol rather than trying to optimize the conditions for each strain. The MATa haploids were 341 

identified by “schmoo” formation in 96-well plates containing alpha factor and confirmed by 342 

crossing to a G418-sensitive, clonNAT-resistant MATalpha tester strain and selection on 343 

double-antibiotic plates.  Next we deleted the URA3 gene using a standard gene deletion 344 

method and selected the ura3∆ clones by replica plating and selection on 5-FOA.  Finally, ho 345 

and ura3 deletions and the barcode sequences of each strain were verified by PCR and 346 

sequencing.  Forty-nine wild strains and a laboratory strain meeting these criteria were used in 347 

this study (see Tables 1 and S1 for strain details).   348 

 349 

Synthetic population of GPD1::GFP wild/lab diploids  350 

The MATalpha laboratory strain BY4742 was transformed to create a stably integrated 351 

GPD1::GFP reporter (G01) using a deletion cassette containing a URA3 marker for selection on 352 

SC-URA plates32,33.  A synthetic “population” of diploids was created by mating each strain in 353 

the library of MATa haploids (50 strains) with G01 by mixing on SC-URA plates for 2 hours 354 

followed by streaking onto selective SC-URA+G418 plates. The 50 resulting wild/lab diploid 355 

strains all have 50% of their genes from the MATalpha GPD1::GFP reporter in the BY4742 356 

laboratory strain background (Table 1).  After mating, it was necessary to screen for triploids or 357 

tetraploids, which express higher levels of GPD1::GFP and have higher tolerance to osmotic 358 

stress. Overnight cultures of wild/lab yeast were diluted 50-fold into fresh YPD+G418 and grown 359 

for an additional 4 hours, fixed by 1:3 dilution into cold ethanol and resuspended in 20 ug/ml 360 

RNAse A to digest ribonucleic acids.  Digested cells were stained with 30 ug/ml propidium 361 
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iodide to label DNA and ploidy was determined by flow cytometry (FACS Calibur; Becton 362 

Dickinson). 363 

 364 

Exponential and post-diauxic cultures 365 

Fresh cultures were generated for each experiment by replicating frozen 96-well plates onto 366 

YPD+G418 agar followed by 4 days growth at 21° C. To obtain mid-exponential (ME) cultures, 367 

freshly patched cells were grown in 2 ml liquid YPD+G418 cultures at with rotation (72 rpm) at 368 

21° C. for 2 days.  Two microliters of these suspensions were diluted into 2 ml of liquid 369 

YPD+G418 and grown at 21° C. for 14 hours (e.g. 5 rounds of cell division on average, with 370 

strain ODs ranging from 0.80 – 1.44).  For post-diauxic (PD) cultures, freshly patched cells were 371 

grown in 2 ml liquid YPD+G418 cultures at with rotation (72 rpm) at 21° C. for 4 days.  Strains 372 

cultured up to 8-days post-diauxic growth were tested for osmotic stress resistance and we found 373 

that 4 day cultures were already maximally resistant (not shown). 374 

 375 

Plating assays 376 

To determine the adaptation limit of each strain, post-diauxic cultures were diluted to OD600 of 0.1 377 

with exhausted YPD (to prevent re-growth), sonicated for 5 seconds at a low setting (2.5; Sonifier 378 

Cell Disrupter, Model W185) and plated (5 ul) on 96-well plates containing YPD without KCl 379 

(controls) or with KCl ranging from 2.0 to 3.0 M. Growth was tested after up to 2 months at 21° C. 380 

Viability and static survival under osmotic stress (Figures 2B and S2) was determined after 381 

incubation in liquid media with increasing concentrations of KCl followed by plating on 382 

iso-osmolar, YPD agar plates. 383 

 384 

Microfluidics 385 

We used custom made microfluidics devices with two fluid inputs as described12. When 386 

performing microfuidics with post-diauxic cells, post-diauxic cultures were inoculated into devices 387 

with exhausted YPD medium and allowed to stabilize for a few hours prior to osmotic stress. 388 

Experiments were run at ambient room temperature and observed using a Nikon TS100 inverted 389 

microscope. Recordings were made using a Photometrics CoolSnap HQ2 digital camera 390 

operated by Metavue (Molecular Dynamics). Analysis of acquired images was performed using 391 

Image J software (https://imagej.nih.gov/ij/).	392 

 393 

Flow cytometry 394 

For flow cytometry after osmotic stress 4 ml of PBS was added to each culture.  Cells were 395 

isolated by centrifugation and resuspended in 1 ml PBS, transferred to FACS tubes, sonicated (5 396 

seconds at level 3, Sonifier Cell Disrupter, Model W185) and stained with 3 ug/ml propidium 397 

iodide (PI) to monitor viability.  After 20 min GFP fluorescence and viability were quantified 398 

using a FACS Calibur flow cytometer (Becton Dickinson) that had been calibrated prior to each 399 

use with SPHERO Rainbow Fluorescent Particles, 3.0 – 3.4 um (BD Biosciences).  Flow 400 
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cytometry data were gated using magnetic windows in FlowJo software to eliminate cell 401 

fragments, clumped and dead (PI-positive) cells (http://www.flowjo.com/).  Raw data for the 402 

viable cells in each sample (forward scatter, side scatter and GFP fluorescence data of up to 403 

10,000 cells/sample) were extracted into an SQL database for analysis as described 404 

(https://figshare.com/s/52ef966b16cba7f41d7f/).  Cell data were scaled for linearity (e.g. 405 

FLH11/3, FSC1/3, SSC1/2 for GFP fluorescence, forward scatter, and side scatter, respectively; see 406 

(https://figshare.com/s/8147275b62eb8d4db6bf/) for scalings and 3 dimensional (3-D) 407 

projections of cells). Distributions of GPD1::GFP accumulation in exponential cultures were 408 

unimodal and therefore well-defined using a single mean (e.g. Figure S1 and	409 

(https://figshare.com/s/8b709fd16cccbabc2a5a/)).  By contrast, GPD1::accumulations of cells in 410 

post-diauxic cultures were clearly multimodal at many time points (Figure S3 and 411 

(https://figshare.com/s/8b709fd16cccbabc2a5a/).  We identified Multi-normal distributions of 412 

cells based on 2-dimensional fits of GPD1::GFP and forward scatter data. The 2-dimensional fits 413 

distinguished different signaling slightly better than fitting GPD1::GFP only; adding side scatter to 414 

fit distributions in 3-dimensional space provided no additional resolution of cell types (see 415 

(https://figshare.com/s/8147275b62eb8d4db6bf/) for planar projections of each sample in 3 416 

dimensions).  Machine learning was performed on each sample using the sklearn.mixture 417 

option in the Gaussian Mixture Model (GMM) algorithm of the Python scikit package 418 

(http://scikit-learn.org/).  The number of Gaussians to be fit is a parameter that must be provided 419 

to the model.  We used Bayesian information criteria (BIC) to determine that the data were well 420 

described by four distributions. The GMM algorithm identified parameters of the four most-likely 421 

Gaussian (defined by means and covariances) given the data for each sample. In samples 422 

containing obviously fewer than four distributions, the under-populated distributions were 423 

assigned a correspondingly low frequency of cells (see Figures S1, S3 and associated links to 424 

complete data sets given above).  425 

 426 

Clustering  427 

To group, and ultimately rank, the strains according to their osmotic stress signaling responses 428 

to 2.5 M KCl during post-diauxic growth we used hierarchical clustering with Wards method in the 429 

fastcluster Python implementation (http://www.jstatsoft.org/v53/i09/)34. First we created state 430 

vectors of each strains behavior. Cell distributions were binned onto a 100 X 100 2-D grid 431 

according to their GPD1::GFP and forward scatter data, smoothed with Python scipy 432 

ndimage.filters.gaussian_filter and normalized to define a linear 1000 element state vector for 433 

each sample (strain, time point).  While 100 bins on each axis where sufficient to capture 434 

detailed distributions while allowing efficient computation, we found stronger clustering when 435 

performing the same analysis using the combined GPD1::GFP and forward scattering data. The 436 

osmotic stress response up to 168 hours was defined by the vectors for each of the 7 time 437 

points, successively appended to form a 7,000 element time-line vector representing the 438 

combined evolution of GPD1::GFP accumulation and forward scatter data.  439 
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The time-line vectors were used to compute a distance matrix between strains using 440 

the symmetric Kullback-Leibler divergence. As each strains and time point was replicated 441 

between 4 and 15 times, we controlled for variation in sampling and clustering outcomes by 442 

randomly drawing samples for each strain and time point with equal probability. Clustering was 443 

repeated for a total of 17000 permutations requiring 43 hours of computation time on a 3.7 GHz 444 

Intel 7 iMac. This was sufficient to achieve stable Monte-Carlo statistics.  Computational sorting 445 

of time-series distributions resolved 6 clades differentiated for rates of GFP accumulation, 446 

adaptation and survival. 447 

 448 

Bet hedging model 449 

Annotated code for our model of bet hedging with heritable probability binary cautious versus 450 

reckless bet hedging is publicly available (https://figshare.com/s/2c03544aef0c40cc86c2/). In 451 

brief, the bet hedging ‘strategy’ P was defined as the heritable probability of cautious cells for 0 ≤ 452 

P ≤ 1. Relative fitness was measured for representative strategies (0, 0.1,0.2,…1.0) after 10 453 

generations in each environment. Nine possible 2-state environmental shifts between three 454 

general osmotic stress environments were considered: permissive (E0; all cells grow equally 455 

well), restrictive (E1; reckless cells divide, cautious cells survive without dividing), and killing (E2; 456 

reckless cells die, cautious cells survive without cell division). For simplicity, the natural attrition 457 

of older cells (death and disappearance) and rates of cell division were assumed to be equal for 458 

all cell types. Results were independent of the number of generations in the first environment 459 

except as shown when E1 was the first environment. 460 

461 
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Tables 577 

Table 1. Strains and aliases used in this study. See Table S1 for details about each of the 49 578 

wild haploid strain derivatives (WHXXX). For brevity, figures are labeled with the wild parent 579 

strain number (WXXX; see Table S1 for details). 580 

 581 
Strain Genotype Source 

WHXXX MATa ura3∆0 ho∆::barcode::KanMX4 
Haploid MATa isolates of wild strains. This study; see 
Table S1 for details. 

BY41 
MATa his3D1 leu2∆0 met15∆0 ura3∆0 flo8-1 
ho∆::barcode::KanMX4 

Barcoded, MATa derivative of BY4742 used as a 
control genotype for the laboratory strain background. 
This study. 

BY4742 
(BY01) 

MATalpha his3D1 leu2∆0 lys2∆0 ura3∆0 
flo8-1 

MATalpha laboratory strain.  BY4741 and BY4742 
backgrounds derive from a wild diploid isolated in 
Merced, California in 1938 on figs (EM9335; S228C36).  
They are distinguished primarily by the many 
generations it has been under laboratory selection. 

G01 
MATalpha his3D1 leu2∆0 lys2∆0 ura3∆0 
flo8-1 gpd1D::GFP::URA3 

Used for monitoring GPD1. BY4742 background; this 
study.  

WXXX.BY16 
MATa/MATalpha LYS2/lys2∆0 ura3∆0/URA3 
FLO8/flo8-1 ho∆::barcode::KanMX4/ho 

Controls.  A set of 49 wild/lab plus 1 BY41.BY16 
control for effect of marker gene deletions. This study; 
see Table S1 for details. 

WXXX.G01 

MATa/MATalpha HIS3/his3D1 LEU2/leu2∆0 
LYS2/lys2∆0 ura3∆0/ura3∆0 FLO8/flo8-1 
ho∆::barcode::KanMX4/ho 
GPD1/gpd1D::GFP::URA3 

Synthetic population of wild/lab diploids for GPD1 
quantification. This study; see Table S1 for details. 

582 
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Table 2. Negative feedback between rates of change in mean GPD1::GFP accumulation 583 

and viability among strains.  To control for potential deviations from normality, parametric 584 

(Pearson’s) and non-parametric (Spearman’s) pairwise correlations between rates of change in 585 

GPD1::GFP accumulation and viability within (upper 3 rows) and between 2 hours time intervals 586 

(below).  Changes occurring in earlier intervals, potentially causal for later changes, are listed 587 

first.  As in Figure 1 all 50 strains were tested at 0, 2, and 4 hours and 18 strains were tested at 588 

6 hours (mean values represent a minimum of 3 replicates per strain).  Significant comparisons 589 

are indicated in bold. 590 

 591 

 

 
 

 
    Prob>|r| 

N Variable Interval 
(hrs) Variable Interval 

(hrs) 
Pearson's 

r 
Spearman's 

r  Pearson's Spearman's 

50 ∆GPD1::GFP 0 – 2 ∆viability 0 – 2 0.8235 0.7725 <.0001 <.0001 
50 ∆GPD1::GFP 2 – 4 ∆viability 2 – 4 0.7739 0.7217 <.0001 <.0001 
18 ∆GPD1::GFP 4 – 6 ∆viability 4 – 6 -0.2354 -0.1992 0.3470 0.4282 
50 ∆viability 0 – 2 ∆GPD1::GFP 2 – 4 -0.7867 -0.7411 <.0001 <.0001 
50 ∆viability 0 – 2 ∆viability 2 – 4 -0.9670 -0.9503 <.0001 <.0001 
50 ∆GPD1::GFP 0 – 2 ∆GPD1::GFP 2 – 4 -0.7685 -0.7697 <.0001 <.0001 
50 ∆GPD1::GFP 0 – 2 ∆viability 2 – 4 -0.8082 -0.7696 <.0001 <.0001 
18 ∆viability 0 – 2 ∆viability 4 – 6 -0.1407 -0.2178 0.5777 0.3854 
18 ∆viability 0 – 2 ∆GPD1::GFP 4 – 6 -0.3704 -0.2549 0.1303 0.3073 
18 ∆GPD1::GFP 0 – 2 ∆viability 4 – 6 -0.0456 -0.0464 0.8573 0.8548 
18 ∆GPD1::GFP 0 – 2 ∆GPD1::GFP 4 – 6 -0.4319 -0.4572 0.0735 0.0565 
18 ∆viability 2 – 4 ∆viability 4 – 6 -0.0100 0.0733 0.9685 0.7726 
18 ∆viability 2 – 4 ∆GPD1::GFP 4 – 6 0.4316 0.3333 0.0737 0.1765 
18 ∆GPD1::GFP 2 – 4 ∆viability 4 – 6 0.1400 0.1207 0.5796 0.6332 
18 ∆GPD1::GFP 2 – 4 ∆GPD1::GFP 4 – 6 0.3731 0.3602 0.1273 0.1421 

 592 
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Table 3. Growth of post-diauxic cells at unprecedented limits of adaptation.  Shown are 594 

concentrations of agar media on which post-diauxic strains could grow and form colonies. 595 

 596 
[KCl] M Wild/lab (GPD1) diploids* 

2.0 W455 

2.6 W027, W035, W167, W202, W203, W242, W285, W454 

2.7 
W033, W041, W042, W134, W136, W150, W166, W178, W195, W215, W217, W219, W235, W248, 
W282, W291, W292, W294, BC41 

2.8 
W037, W044, W050, W153, W157, W163, W164, W179, W189, W206, W238, W244, W245, W249, 
W255, W276, W301, W340 

2.9 W173, W211, W343 

 597 
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Table 4.  Osmotic stress signaling behavior (rank) predicted early and late viability of 599 

post-diauxic cultures in osmotic stress. Least squares predictions of early and late viability by 600 

linear and 2nd order quadratic fits of fluorescence pre-accumulated into the G3 Gaussian at time 601 

0 (G3_0) and ranked signaling behavior of 50 strains.  The Bonferroni cutoff at the 0.05 level, 602 

based on 4 tests per data set, was 0.0125.  Significant fits with lowest root mean squared errors 603 

and highest fraction of variation explained (R2) shown in bold, predicted values for optimum (x) 604 

and value at optimum (y) for non-significant fits are marked NS.   605 

 606 

  
G3 fluorescence (AU) 

at time 0 
Signaling (rank) 

  quadratic linear quadratic linear 
0 hours, 0M KCl         
  probability > F 0.0006 0.0016 0.9629 0.8454 
  R_square 0.2715 0.1891 0.0016 0.0008 
  root_mean_square_error 1.3935 1.4548 1.6313 1.6149 
  max_viability at optimum (%) 98.8   NS 98.2   
  optimum AU or rank 2626.6   NS 31.9   
20 hours, 2.5M KCl     
 probability > F < 0.0001 < 0.0001 0.0055 0.6023 
 R_square 0.4286 0.3138 0.1987 0.0057 
 root_mean_square_error 7.0949 7.6940 8.4022 9.2615 
 max_viability at optimum (%) 86.7  86.3  
 optimum AU or rank 2662.5  24.4  
48 hours, 2.5M KCl         
  probability > F < 0.0001 0.0003 0.0013 0.9159 
  R_square 0.3148 0.2371 0.2464 0.0002 
  root_mean_square_error 7.6281 8.1323 8.1679 9.3096 
  max_viability at optimum (%) 82.2   82.9   
  optimum AU or rank 2622.3   25.7   
72 hours, 2.5M KCl     
 probability > F 0.0010 0.0033 0.0062 0.8464 
 R_square 0.2556 0.1660 0.1943 0.0008 
 root_mean_square_error 9.9877 10.4608 10.3903 11.4501 
 max_viability at optimum (%) 73.5  74.3  
 optimum AU or rank 2586.8  25.1  
96 hours, 2.5M KCl         
  probability > F 0.0060 0.0018 0.0065 0.0954 
  R_square 0.1956 0.1862 0.1927 0.0569 
  root_mean_square_error 8.4186 8.3789 8.4338 9.0201 
  max_viability at optimum (%) 71.7   71.0   
  optimum AU or rank 3389.8   21.3   
120 hours, 2.5M KCl     
 probability > F 0.0791 0.0413 0.0004 0.0037 
 R_square 0.1023 0.0839 0.2859 0.1625 
 root_mean_square_error 8.5666 8.5636 7.6405 8.1881 
 max_viability at optimum (%) NS 67.7  74.7  
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 optimum AU or rank NS 1679  18.1  
144 hours, 2.5M KCl         
  probability > F 0.3473 0.1675 0.0047 0.0501 
  R_square 0.0440 0.0393 0.2038 0.0776 
  root_mean_square_error 9.6837 9.6059 8.8377 9.4123 
  max_viability at optimum (%) NS 61.9   68.3   
  optimum AU or rank NS 1481.3   20.4   
168 hours, 2.5M KCl     
 probability > F 0.1785 0.3433 <0.0001 < 0.0001 
 R_square 0.0707 0.0187 0.5733 0.4911 
 root_mean_square_error 12.3795 12.5879 8.3885 9.0652 
 max_viability at optimum (%) NS 56.2  68.4  
 optimum AU or rank NS 2077  9.7  
24 hours, 3M KCl         
  probability > F 0.0107 0.0292 < 0.0001 < 0.0001 
  R_square 0.1757 0.0952 0.5254 0.2980 
  root_mean_square_error 11.8963 12.3332 9.0267 10.8635 
  max_viability at optimum (%) 71.7   65.0   
  optimum AU or rank 2029.2   18.1   
48 hours, 3M KCl     
 probability > F 0.0294 0.0140 < 0.0001 0.0003 
 R_square 0.1394 0.1193 0.5382 0.2402 
 root_mean_square_error 12.8903 12.9029 9.4420 11.9849 
 max_viability at optimum (%) NS 57.1  62.3  
 optimum AU or rank NS 2867.3  19.7  
72 hours, 3M KCl         
  probability > F 0.0519 0.0395 < 0.0001 0.0002 
  R_square 0.1183 0.0853 0.5459 0.2460 
  root_mean_square_error 12.4241 12.5218 8.9158 11.3687 
  max_viability at optimum (%) NS 51.4   56.9   
  optimum AU or rank NS 2651   19.7   
Adaptation limit      
 probability > F 0.5435 0.2699 0.0002 0.0086 
 R_square 0.0262 0.0258 0.3099 0.1379 
 root_mean_square_error 0.1344 0.1330 0.1132 0.1251 
 max_concentration optimum (M) NS 2.8  2.8  
 optimum AU or rank NS -95.6  31.2  

 607 
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Table S1.  Haploid derivatives of wild strains.  The source for all wild strains in this study 609 

was the strain collection of the Royal Netherlands Academy of Arts and Sciences over the past 610 

100 years (Table 1 and Table S1).  This resource has been deposited at the Yeast Genetic 611 

Resources Lab of the National BioResource Project in Osaka, Japan.  612 

 613 
Alias MAT Genotype Comments 

WH027 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 459; isolated in 1938 in Castellina, Italy from 
grape must; barcode #29(Uptag sequence:  
GGCCCGCACACAATTAGGAA, Downtag sequence:  
GCGCCGCATTAACTAAACTA) 

WH030 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1508; isolated in 1927 from starter for 
sorghum brandy; YH note: mating defective, hard to make wild/lab 
diploids; barcode #16(Uptag sequence: 
GTCCGAACTATCAACACGTA, Downtag sequence: 
GCGCACGAGAAACCTCTTAA) 

WH033 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 405; isolated in 1925 in West Africa from 
catabo for billi wine, from Osbeckia grandiflora; barcode 
#187(Uptag sequence: CCGTGTACTGAATTACGATC, Downtag 
sequence: CCATCTTTGGTAATGTGAGG) 

WH035 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 5822; isolated in 1967 from malt wine; 
barcode #30(Uptag sequence: GGTCTATGCAAACACCCGAA, 
Downtag sequence: GCCGTCTTGACAACCTTATA) 

WH037 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1395; isolated in 1922 from an unknown 
source; barcode #235(Uptag sequence: 
GGCTAAGGGACAACACCTCA, Downtag sequence: 
GCCCGGCACATAGAAGTAAC) 

WH041 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 5635; isolated in 1958 in South Africa from 
grape must; barcode #2(Uptag sequence: 
CCATGATGTAAACGATCCGA, Downtag sequence: 
TATATGGCAGCAGATCGCCG) 

WH042 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 3081; isolated in 1958 in Spain from alpechin; 
barcode #12(Uptag sequence: GTGCGAACCAACGTACTACA, 
Downtag sequence: GCAGGAACACCACAGGGTTA) 

WH044 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 422; isolated in 1926 in Odessa, Ukraine from 
beer; barcode #135(Uptag sequence: 
CCCGCGATTGTAATGAATAG, Downtag sequence: 
CATACTACGTGGGACAGTTG) 

WH050 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 5112; isolated in 1962 in Spain from grape 
must; barcode #49(Uptag sequence: 
CTTACTGATAGCGTAGAGGT, Downtag sequence: 
GTGGTCTGCAAACCCAACAA) 

WH134 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 2964; isolated in 1947 in Copenhagen, 
Denmark from distiller’s rum yeast; barcode #18(Uptag sequence: 
GCCCTGATAACAAGGTGTAA, Downtag sequence: 
GCGCCTATTACACAAACGTA) 
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WH136 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 2811; isolated in 1957 from wine; wine yeast; 
barcode #20(Uptag sequence: GTGAGCGAAACACCGCGTAA, 
Downtag sequence: GGTAATACGCAACTCCTCTA) 

WH150 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 2962; isolated in 1947 in Copenhagen, 
Denmark from distiller’s rum; barcode #15(Uptag sequence: 
GCCGTAGCCACAAGAGTTAA, Downtag sequence: 
GCGGCCACTTACACAAATTA) 

WH153 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 6458; isolated in 1972; barcode #37(Uptag 
sequence: GGGACCGCCAAAGCTATCAA, Downtag sequence: 
GTGAACAATAACGGCCTTGA) 

WH157 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 6506; isolated in 1973 in UK brewery; killer 
yeast; barcode #53(Uptag sequence: 
CTGAGCGTAGGATATTCCGT, Downtag sequence: 
GCCGGTCGCAAACTCATAAA) 

WH163 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 6914; isolated in 1977 in Spain from white 
wine; barcode #51(Uptag sequence: 
CTACGTCGGCTCATAGTCGT, Downtag sequence: 
GCTCTCGGCCAAGGAAACAA) 

WH164 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 6978; isolated in 1984 from wine; wine yeast; 
barcode #59(Uptag sequence: CACTCGGATTCAGTTCTAGT, 
Downtag sequence: GGCCTTGCCAAACAGTCAAA) 

WH166 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 7072; isolated in 1980 from distillate; barcode 
#62(Uptag sequence: CCTAGTTCGAGATTGCGAGT, Downtag 
sequence: GTGGTCGCCCAAGCAACAAA) 

WH167 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 7173; isolated in 1985 from catabo for billi 
wine; wine yeast; barcode #43(Uptag sequence: 
CAGTATGCTAGATTCCGGGT, Downtag sequence: 
GTCCTCGCAAGAAAGGCCAA) 

WH173 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 8615; isolated in 1998 in Italy from grape 
must; dry yeast for wine making; barcode #61(Uptag sequence: 
CCTGTAGTACGAGTATGAGT, Downtag sequence: 
GGTCTGCCCAAAGTCACAAA) 

WH178 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1192; isolated in 1928 from wine; wine yeast; 
barcode #155(Uptag sequence: CGCACACGATTAAGGTCCAG, 
Downtag sequence: CACTGTTGGTAAGGTCTATG) 

WH179 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1193; isolated in 1928 from wine; wine yeast; 
barcode #70(Uptag sequence: CAATAGGGTGTGACAGTTCT, 
Downtag sequence: CTACTTCGCGTGAGCTGGTT) 

WH189 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1241; isolated in 1930 from an unknown 
source ; barcode #212(Uptag sequence: 
CCACTTAGTTCAATAGGCGC, Downtag sequence: 
CCGAGTATTACATTCTCACG) 
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WH195 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1256; isolated in 1937 from port wine; barcode 
#123(Uptag sequence: CGTGGAGCAGTTCGTATAAT, Downtag 
sequence: CTCGACGCTGGACGTTATGT) 

WH202 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 7372; isolated in 1988; killer yeast, K2Rd 
(Young & Yagiu), K2R2 (Wickner); barcode #119(Uptag sequence: 
CAACGTAGAGTGAGGTACAT, Downtag sequence: 
CACTTAGCTTAGACTCGTGT) 

WH203 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 7438; isolated in 1989 from wine; wine yeast; 
barcode #65(Uptag sequence: CTTTCGGACGTATGTGCAGT, 
Downtag sequence: CCTTGATGATAGAGGGCTTT) 

WH206 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 7833; isolated in 1994 in Missouri, USA from 
lung of a man with immune deficiency syndrome; virulent strain; 
barcode #82(Uptag sequence: CATACAAAGAGAGGTGTCCT, 
Downtag sequence: CCCTTGCGATTGGTGCAGTT) 

WH211 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 7838; isolated in 1994 in USA from patient; 
barcode #144(Uptag sequence: CGATACAAGTAAGTTGCGAG, 
Downtag sequence: CCTCTTACGAGATAGCGGTG) 

WH215 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 7962; isolated in 1984 in Sao Paulo, Brazil 
from fermenting concentrated syrup from sugar cane; barcode 
#94(Uptag sequence: CCCGATTGAGGCATGGTTAT, Downtag 
sequence: CGCTTCGAGTATGGGATATT) 

WH217 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 7964; isolated in 1995 in Sao Paulo, Brazil 
from fermenting concentrated syrup from sugar cane; barcode 
#92(Uptag sequence: CGCGGAGTATAGAGCTTTAT, Downtag 
sequence: CAATCGCTCGGAGGCGTATT) 

WH219 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 439 ; isolated in 1933 in Lager Schartel, 
Germany from Silvaner grapes; barcode #93(Uptag sequence: 
CGACCCTGATGATCCTTTAT, Downtag sequence: 
CTACGGGCTCGATGCCTATT) 

WH235 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 5952; isolated in 1968; barcode #102(Uptag 
sequence: GGCTACGATACATCTTCATC, Downtag sequence: 
CATTTGTAACCAGTTCGCTC) 

WH238 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 6223; isolated in 1969 in Chile from grape 
juice; radiation resistant; barcode #104(Uptag sequence: 
CTATGTGCGGTAAGACGTAT, Downtag sequence: 
CGGCGTAGATTGTTAGCATT) 

WH242 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 6333; isolated in 1942 in Costa Rica from 
rotting banana; Strain name NRRL Y-1350 (synonymous 
designation; NRRL YB-210, NRRL-210, NRRL-B210; Mortimer and 
Johnston (1986), Genetics 113: 35); barcode #56(Uptag sequence: 
CCTGTAGATTGACGTGTAGT, Downtag sequence: 
GCCCTCGTGACAAATCGAAA) 
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WH244 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 8266; isolated in 1996 from rotting fig; Strain 
name X2180, derived from S288C by self-diploidization (Mortimer 
and Johnston (1986), Genetics 113: 35). Did not survive 
freeze-drying.; barcode #122(Uptag sequence: 
CAGAGGGCACTGTTCTTAAT, Downtag sequence: 
CCCTGCTGTAGAGGTTATGT) 

WH245 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 3000; isolated in 1956 in Pakistan from palm 
wine; wine yeast; barcode #138(Uptag sequence: 
CACATCGTTTAACACTGGAG, Downtag sequence: 
CTAGGAGGTTACAGTCATTG) 

WH248 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 8049; isolated in 1981 from fish food; feed for 
fish and crustaceans; barcode #108(Uptag sequence: 
CGACCCGATGTAGTAGATAT, Downtag sequence: 
CCGCCGGATGTGATATAATT) 

WH249 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 6069; isolated in 1981; hybrid strain (Y55-2 x 
JJ101); barcode #87(Uptag sequence: 
CACTGTGACCGAGGGATACT, Downtag sequence: 
CGCGCTATTATACTCGACTT) 

WH255 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 3090; isolated in 1958 from white grape must; 
barcode #72(Uptag sequence: CACTGTGGACGATACGGTCT, 
Downtag sequence: CTGTACGTGCGATACTCGTT) 

WH276 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1394; isolated in 1924 from pressed yeast; 
distillery yeast; barcode #176(Uptag sequence: 
CCACCGATGTAATTTGAGTC, Downtag sequence: 
CACTCTGCGTTAATGTTGGG) 

WH282 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1460; isolated in 1927 in Indonesia from 
fermenting fruit; barcode #115(Uptag sequence: 
CATACTTAGGGATCAGGGAT, Downtag sequence: 
CCTTGTCTGAGAGCCGTTGT) 

WH285 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1479; isolated in 1928 from wine; wine yeast; 
barcode #240(Uptag sequence: GCGGCCAATAGTAAACTTCA, 
Downtag sequence: GCCGCCGTGATAAGAAACAC) 

WH291 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1576; isolated in 1931 in Sulawesi, Indonesia 
from sap of Arenga palm; barcode #117(Uptag sequence: 
CCTGAGGACTTATTCACGAT, Downtag sequence: 
CATTGGATTAGACCGTGTGT) 

WH292 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1582; isolated in 1948 in Portugal from wine; 
barcode #118(Uptag sequence: CCGATTAGAGGTTGACAGAT, 
Downtag sequence: CACTGACTTCGAGGTCGTGT) 

WH294 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1585; isolated in 1934 from sake-moto; sake 
yeast; barcode #180(Uptag sequence: 
CATTAAGGCGCACGTTTATC, Downtag sequence: 
CTATCCTAGAGATTTGAGGG) 

WH301 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 1594; isolated in 1936 from juice of aren palm; 
barcode #182(Uptag sequence: CACGTTTGCGAATAGGTATC, 
Downtag sequence: CAGATACTATTAAGTGCCGG) 
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WH340 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 2805; isolated in 1954 from wine; wine yeast, 
particularly suitable for fruit wines; barcode #233(Uptag sequence: 
GCCGGGCTTAAATTGAATCA, Downtag sequence: 
GCTCCGACTGAAGAACTAAC) 

WH343 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 2808; isolated in 1954 from grapes (Blauer 
Portugieser); wine yeast, suitable for fruit wines, yields more than 
18% of alcohol; barcode #224(Uptag sequence: 
CCCGTGAATATAAGTGAAGC, Downtag sequence: 
CCTGGATTTGAAGCGTATAG) 

WH454 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 6412; isolated in 1952 from sake; sake yeast; 
barcode #192(Uptag sequence: CCTTAGGGATAATGAGTTGC, 
Downtag sequence: CCAGTGTTCTAACGTGCAGG) 

WH455 a 
MATa ura3∆0 
ho∆::barcode::KanMX4 

Original CBS #: CBS 440; isolated in 1934 in Taiwan from 
molasses; barcode #249(Uptag sequence: 
GCCCAGGCTAAATGTTAAGA, Downtag sequence: 
GAAGTACGCTCAAGACCGAC) 

BC4741 
(BY41) 

a 
MATa his3D1 leu2∆0 
met15∆0 ura3∆0 flo8-1 
ho∆::barcode::KanMX4 

Original CBS #: Lab strain, BY4741; isolated in 1938 in Merced, 
CA, USA from rotting fig; derived from S288C, of which strain 88% 
of the gene pool is contributed by strain EM93 (Mortimer and 
Johnston (1986), Genetics 113: 35). Barcode #266(Uptag 
sequence: GGCCTAACTCAACAGACGGA, Downtag sequence: 
GCGCTCGACTAAGAGAAACC) 

 614 
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Table S2. Clustering statistics used to rank signaling behavior. Statistics showing the 616 

fraction of 17,000 permutations in which strains were clustered with at least 50% of the other 617 

strains in each mean cluster.  These data were used to rank total signaling behaviors from most 618 

cautious (1) to most reckless (50) based on the fraction of time each strain was associated with 619 

its mean cluster (characteristic of that cluster).  See Figure 2. 620 

 621 

Rank Cluster Strain MC0 MC1 MC3 MC2 MC5 MC4 

1 MC0 W455 0.8484 0.1516 0 0 0 0 

2 MC0 W167 0.8365 0.1635 0 0 0 0 

3 MC1 W219 0.6375 0.3625 0 0 0 0 

4 MC1 W217 0.5536 0.4460 0.0004 0 0 0 

5 MC1 W027 0.5214 0.4755 0.0028 0.0002 0 0 

6 MC1 W042 0.4850 0.4892 0.0191 0.0044 0.0023 0.0001 

7 MC1 W235 0.1976 0.5532 0.2266 0.0226 0 0.0002 

8 MC1 W340 0.1700 0.5803 0.2354 0.0142 0 0 

9 MC1 W454 0.3355 0.6610 0.0034 0 0 0 

10 MC1 W134 0.1686 0.7376 0.0821 0.0117 0 0 

11 MC1 W276 0.1617 0.7643 0.0658 0.0083 0 0 

12 MC1 W294 0.1692 0.7834 0.0440 0.0034 0 0 

13 MC1 W157 0.1195 0.7851 0.0866 0.0088 0 0 

14 MC1 W202 0.1671 0.7855 0.0446 0.0027 0 0 

15 MC1 W238 0.1337 0.8048 0.0580 0.0036 0 0 

16 MC1 W035 0.1293 0.8086 0.0572 0.0050 0 0 

17 MC1 W248 0.1494 0.8331 0.0172 0.0003 0 0 

18 MC3 W130 0.0003 0.0671 0.7020 0.2307 0 0 

19 MC3 W136 0 0.0092 0.6572 0.3334 0.0002 0 

20 MC3 W203 0.0025 0.1348 0.6410 0.2214 0.0002 0 

21 MC3 W285 0.0003 0.0806 0.6245 0.2924 0.0022 0 

22 MC3 W163 0.0011 0.1474 0.6228 0.2285 0.0002 0 

23 MC3 W206 0 0.0036 0.6203 0.3747 0.0014 0 

24 MC3 BY41 0 0.0123 0.6102 0.3768 0.0008 0 

25 MC3 W041 0.0002 0.0233 0.5625 0.4090 0.0050 0 

26 MC3 W343 0.0012 0.0432 0.5522 0.3910 0.0123 0.0002 

27 MC3 W292 0.0201 0.1962 0.4883 0.2893 0.0062 0 

28 MC3 W189 0.0001 0.0205 0.4757 0.4715 0.0319 0.0003 

29 MC3 W211 0 0 0.3698 0.5572 0.0696 0.0033 

30 MC2 W245 0 0 0.2579 0.6898 0.0523 0 

31 MC2 W291 0 0 0.2211 0.6786 0.0994 0.0009 

32 MC2 W164 0 0 0.1517 0.6601 0.1852 0.0031 
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33 MC2 W249 0 0 0.3349 0.6417 0.0233 0.0001 

34 MC2 W166 0 0 0.3372 0.6407 0.0220 0.0001 

35 MC2 W179 0 0.0002 0.3569 0.6212 0.0217 0 

36 MC2 W244 0 0 0.1478 0.6160 0.2225 0.0137 

37 MC2 W173 0 0.0003 0.3801 0.6005 0.0188 0.0002 

38 MC2 W215 0 0.0012 0.3162 0.6000 0.0815 0.0011 

39 MC2 W037 0 0 0.0714 0.5308 0.3863 0.0115 

40 MC2 W255 0 0.0011 0.4771 0.5141 0.0077 0 

41 MC2 W050 0 0 0.0567 0.4672 0.4417 0.0343 

42 MC5 W044 0 0 0.0021 0.0728 0.8501 0.0750 

43 MC5 W195 0 0 0.0019 0.0744 0.8501 0.0736 

44 MC5 W301 0 0 0.0029 0.0882 0.8203 0.0887 

45 MC5 W150 0.0001 0.0004 0.0006 0.0414 0.7978 0.1598 

46 MC5 W033 0 0 0 0.0279 0.7196 0.2525 
47 MC5 W153 0 0 0 0.0181 0.6545 0.3274 
48 MC4 W282 0 0 0 0 0.0596 0.9404 
49 MC4 W242 0 0 0 0.0002 0.1477 0.8521 
50 MC4 W178 0 0 0 0.0017 0.1697 0.8286 

 622 

 623 

Table S3 624 

Plate key 625 

Left 626 

 

1 2 3 4 5 6 

A W027.BY01 W044.BY01 W153.BY01 W173.BY01 W203.BY01 W235.BY01 

B W033.BY01 W050.BY01 W157.BY01 W178.BY01 W206.BY01 W238.BY01 

C W035.BY01 W130.BY01 W163.BY01 W179.BY01 W211.BY01 W242.BY01 

D W037.BY01 W134.BY01 W164.BY01 W189.BY01 W215.BY01 W244.BY01 

E W041.BY01 W136.BY01 W166.BY01 W195.BY01 W217.BY01 W245.BY01 

F W042.BY01 W150.BY01 W167.BY01 W202.BY01 W219.BY01 W248.BY01 

 627 
Right 628 

 

1 2 3 

A W249.BY01 W292.BY01 W455.BY01 

B W255.BY01 W294.BY01  
C W276.BY01 W301.BY01 

 
D W282.BY01 W340.BY01 

 
E W285.BY01 W343.BY01 

 
F W291.BY01 W454.BY01 

 
 629 
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Figure legends 631 

Figure 1. Rate of change in osmotic stress signaling with negative feedback predicts 632 

survival and robust recovery of exponential cultures in moderate osmotic stress.  633 

A. Time course of mean accumulated GPD1::GFP fluorescence in exponential cultures 634 

exposed to 0.75 and 1.5 M KCl.  Each point represents an independent replicate 635 

measurement; curves connect strain means at each time (with a minimum of 3 replicates 636 

for each point). In the absence of stress, all strains had high steady-state viability 637 

(propidium iodide dye exclusion; range 96.3 – 98.7%; mean 97.6%) and relatively low 638 

mean GFP fluorescence indicating low background activity of HOG pathway signaling 639 

through the GPD1 promoter and low GPD1::GFP accumulation (range 12.7 – 34.8 AU; 640 

mean 18.8 AU).   641 

B. Pie charts show relative changes in mean viability (shaded area), mortality (white area) 642 

and GPD1::GFP accumulation (opacity level) after 2 hours in 0.75M KCl.  Strains 643 

ordered by viability at 2 hours. The viability at 2 hours was proportional to the 2 hour 644 

viability of non-disrupted controls having two intact copies of the GPD1 gene (R2 = 645 

0.7085; P<0.0001; not shown).   646 

C. Relationship between mean GPD1::GFP accumulation and viability in mid-exponential 647 

cultures exposed to 0.75 M KCl for 0, 2, 4, and 6 hours (h).  Each data point represents 648 

the average of at least three replicates per strain (~10,000 cells/ sample). The ellipses 649 

indicate correlations between viability and fluorescence at alpha = 0.95. The inserts show 650 

relationships between changes in GPD1::GFP and viability over each time interval.	651 

D. Plausible integral feedback drives a robust recovery of steady-state viability after 4 hours 652 

in 0.75 M KCl.  Integrating feedback control would assure perfect adaptation of stress 653 

responses, water balance and steady state viability (included manuscript in preparation).  654 

By linear regression recovery  = (0.7670) early mortality  + 3.4936 (R2 = 0.9351; P< 655 

0.0001). Note that the persistence in cultures of dead cells over the course of the 656 

experiment precludes 100% recovery of steady-state viability, the data fit a model 657 

whereby surviving cells in adapted strains undergo 3 cell divisions.	658 

	659 

Figure 2. Continuous variation in signaling behaviors and survival of postdiauxic cultures 660 

exposed to severe osmotic stress.  661 

A. Strains classified by mean cluster (MC0 – MC5) and ranked top (1) to bottom (50) 662 

according to changes in GPD1::GFP accumulation over time (see Table S2 and methods). 663 

Each time point shows representative distributions of GPD1::GFP accumulation (green) 664 

and relative survival red (99.7% viability) to blue (11.7% viability). Cells above the 89th 665 

percentile (top 11%) are shown in black. Prior to osmotic challenge steady-state viabilities 666 

were uniformly high (range 93.0 – 99.6%; mean 98.2%). Rank-ordered mean clusters are 667 

topographically equivalent to a sequential ordering.	668 
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B. Relative viability of post-diauxic cultures (WXXX.BY01 controls) incubated in 3 M KCl 669 

before plating on iso-osmolar media.  Cultures were re-ordered according to the ranked 670 

signaling behavior given in Figure 2A. The same experiment as originally plated is shown 671 

in Figure S1. Strains are color-coded as in Figure 1C for comparison of exponential and 672 

post-diauxic cultures.	673 

	674 

Figure 3. A simple bet hedging model with heritable proportions of cautious and reckless 675 

cells produces observed variation in survival.  676 

A. Cells with the most aggressive signaling began to die after long periods in severe stress 677 

leaving increasing fraction of cells with lower GPD1::GPF accumulations.  Shown are 678 

distributions of accumulated GPD1::GFP and viability in replicate cultures of W242 (rank 679 

49) in 5 replcate cultures after 168 hours in 2.5 M KCl.  Mean (x), standard deviation 680 

(std), and weight (w; the fraction of cells in each distribution) are given.  Sum (red) 681 

shows the cumulative fit of the 4 learned Gaussians.  682 

B. Static viability of post-diauxic cells of strain W027 exposed to 3 M in microfluidic 683 

chambers.  Individual cell behaviors mirror population behaviors measured by flow 684 

cytometry – e.g longer lag periods and increased accumulations of GPD1::GFP with 685 

increasing osmotic stress. Colored traces indicate accumulated fluorescence in 686 

representative cells in 1.5 (green), 2.0 (blue), 2.5 (red) and 3.0 M KCl (yellow).  Arrows 687 

indicate average time to the first cell division +/- standard deviations. 688 

C. A simple 2-state bet hedging model with heritable production of cautious (static) and 689 

reckless cell types.  Bet hedging strategy P was defined as the probability of cautious 690 

cells for 0 ≤ P ≤ 1. Relative fitness was measured for all strategies after 10 generations in 691 

each environment. All nine possible 2-state environmental shifts between three general 692 

osmotic stress environments were considered: permissive (E0; all cells grow equally well), 693 

restrictive (E1; reckless cells divide, cautious cells survive without dividing), and killing 694 

(E2; reckless cells die, cautious cells survive without cell division). Bet hedging and 695 

intermediate strategies (0 < P < 1) were most fit only when the environment shifted from 696 

moderate to more severe (E1 -> E2).  When E1 was the first environment, the optimum 697 

strategy P depended on generation number. 698 

 699 

Movie 1. Higher relative fitness of post-diauxic cells in extreme stress.  Exponential 700 

W027.G01 seeded with a single post-diauxic cell of the same genotype (box). Cells were allowed 701 

to grow for 4 hours and then exposed to 1.5 M KCl at time 0h.  Most cells rapidly die (as they fill 702 

with vacuoles) however the single post-diauxic cell expresses a high level of GPD1::GFP, adapts, 703 

and begins to divide. 704 

  705 
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Movie 2. Adaptation and growth of post diauxic cells.  After about 4 hours in 1.5 M KCl 706 

W027.G01 express high levels of GPD1::GFP, adapt, and begin to divide.  Cells that did not 707 

express GPD1::GFP accumulate vacuoles and die. 708 

 709 

Movie 3.  Reckless cells attempt to divide and fail in extreme osmotic stress.  After 30 710 

hours in 2.5 M KCl some post diauxic W027.G01 induce GFP to high levels, attempt cell division 711 

and pop, killing both mother and daughter.  We think all strains have both cautious and reckless 712 

cell types; W027 (rank 5) is a relatively cautious strain. 713 

 714 

Figure S1. Monophasic GPD1::GFP accumulations in exponential cultures is described 715 

well by distribution means.  Representative samples of exponential cultures exposed to 0.75 716 

M KCl for the times shown.  Learned distributions of GPD1::GFP accumulation with mean (x), 717 

standard deviation (std), and weight (w; the fraction of cells in each distribution) are given 718 

(zero-weighted distributions not shown).  Sum (red) shows the cumulative fit of the 4 learned 719 

Gaussians.  The 18 representative strains are color-coded as in Figure 1B. 720 

 721 

Figure S2. Static viability and survival of post-diauxic cultures in extreme osmotic stress. 722 

Strains were incubated for up to 5 weeks in 3 M KCl before plating on iso-osmolar media.  A 723 

plate key is given in Table S3; the same data sorted by rank are shown in Figure 2B. This 724 

experiment, a qualitative assessment of viability, was repeated only once. 725 

 726 

Figure S3a–c. Reproducibility of multiphasic distributions of GPD1::GFP in post diauxic 727 

cultures under severe osmotic stress.  Representative replicates of post-diauxic cultures 728 

exposed to 2.5 M KCl for the times shown. Learned distributions of GPD1::GFP accumulation 729 

with mean (x), standard deviation (std), and weight (w; the fraction of cells in each distribution) 730 

are given (zero-weighted distributions not shown).  Sum (red) shows the cumulative fit of the 4 731 

learned Gaussians. The 18 representative strains are color-coded as in Figure 1B. 732 

 733 

Figure S4. Rank predicts increasingly aggressive osmotic stress signaling behavior. The 734 

average percent of cells in each strain above a threshold set at the top 11% of accumulation of 735 

GPD1::GFP normalized across all post-diauxic cultures. Strains were exposed to 2.5 M KCl for 736 

increasing times shown and ordered according to rank.  The number of strains in each mean 737 

clusters are indicated with increasingly lighter grey scale in their order of “recklessness” signaling 738 

(MC0, MC1, MC3, MC2, MC5, MC4). The numbers of strains in each mean cluster are 2 (MC0), 739 

15 (MC1), 12 (MC3), 12 (MC2), 6 (MC5), 3 (MC4). The 18 representative strains are color-coded 740 

as in Figure 1B. 741 

 742 

Figure S5. Mean cluster membership predicts viability over time in 2.5 M KCl.  Shown are 743 

average viabilities among strains in each mean cluster and time point (shading).  Asterisks 744 
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indicate significance at the ≤0.05 level by ANOVA or, where appropriate, Welch’s ANOVA.  The 745 

numbers of strains in each mean cluster are 2 (MC0), 15 (MC1), 12 (MC2), 12 (MC3), 3 (MC4), 6 746 

(MC5; see Figure 2). Horizontal lines indicate the overall average viability (50 strains) at each 747 

time point. 748 

 749 
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