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Abstract 21 

Rapid reproduction contributes to evolutionary fitness but can be lethal under stress. Microbes 22 

are thought to limit risk in clonal populations by bet hedging; the stochastic expression of a low 23 

frequency of slow growing cells constitutively resistant to unpredictable environmental stresses 24 

including antibiotics. However fitness depends on rapid recovery and resumption of growth in 25 

potentially lethal environments whose severity and duration are also unpredictable.  Here we 26 

describe trade-offs between osmotic stress-responsive signaling, survival and proliferation in 50 27 

ecologically distinct strains of budding yeast. By contrast with prior examples, programmed bet 28 

hedging responses were heritable, stress-specific and varied continuously in our population.  29 

During rapid growth strong osmotic stress signaling promoted survival. Weak signaling predicted 30 

lower viability, intense rebound signaling, and robust recovery. Older cultures survived and 31 

adapted to unprecedented stress with fitness depending on reproducible, strain-specific 32 

proportions of cells with divergent strategies. The most ‘cautious’ cells survive extreme stress 33 

without dividing; the most ‘reckless’ cells attempt to divide too soon and fail, killing both mother 34 

and daughter.  Heritable proportions of cautious and reckless cells generate a tunable, rapidly 35 

diversifying template for microbial bet hedging that resembles natural variation and would evolve 36 

in different patterns of environmental stress.37 
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In order to understand the evolutionary trajectories of populations and species we need to 38 

understand the effects of natural genetic variation on mechanisms of development and 39 

expression of phenotypic variation. The mapping between genetic variation and the spectrum of 40 

attributes and behaviors upon which selection acts defines population-level properties such as 41 

the capacity to evolve (evolvability), the capacity to withstand genetic and environmental 42 

perturbation (robustness or canalization), and the optimization, within a given genotype, of 43 

phenotypic responses across different environments (reaction norms)1–3. Here we describe 44 

strain-specific differences in hyperosmotic stress responsive signaling and associated behaviors 45 

in a synthetic population of budding yeast.  46 

The high osmolarity glycerol (HOG) signaling pathway is central to an elaborate stress 47 

response that reduces cellular damage and death in unpredictably changing osmotic 48 

environments where the balance between external solutes and free water pressure in the cell 49 

can change suddenly4. A main function of the HOG pathway is the production and accumulation 50 

of intracellular glycerol, which restores water balance and, as demonstrated by a large body of 51 

work from many labs, is essential for survival, adaptation and proliferation in hyperosmotic 52 

stress4–9.  In the wild, yeast and other microorganisms must balance immediate survival against 53 

evolutionary fitness. Multiplicative fitness favors clonal populations that respond as rapidly as 54 

possible to improved conditions with earlier cell cycle reentry and proliferation10. On the other 55 

hand, individual survival requires that cells carefully sense the amplitude and direction of 56 

environmental change to more safely reenter the cell cycle after stress7. The HOG pathway 57 

consists of at least two highly-conserved, multi-component osmotic stress sensors linked to a 58 

parallel series of at least 15 kinases and accessory proteins that ultimately alter the activity of 59 

nearly 10% of the yeast genome4,6. The sheer numbers of genes involved in HOG signaling, their 60 

conservation, and their elaborate circuitry suggest that a nuanced response to osmotic stress 61 

has been crucial and strongly selected throughout evolutionary history. As the hyperosmotic 62 

stress response of budding yeast has well-characterized and accessible signaling and 63 

phenotypic traits that can be measured in the lab and are almost certainly under strong selection 64 

in nature, this system is ideal for characterizing the mapping between signaling and behavior in a 65 

diverse population4,6,7. 66 

We measured osmotic stress signaling, survival and adaptation in both exponentially 67 

growing and nearly quiescent cultures of diploid yeast. As glycerol-3-phosphate dehydrogenase 68 

(GPD1) is rate-limiting for glycerol production11, the synthesis and accumulation of green 69 

fluorescent protein (GFP) integrated into the gene for GPD1 was a proxy for HOG pathway 70 

activity. A synthetic population of diverse yeast genotypes was made by crossing GPD1::GFP in 71 

the genetic background of a standard laboratory strain (BY4742 Mat alpha) to a panel of wild and 72 

industrial genetic backgrounds –e.g. fifty diverse haploids of the opposite mating type extracted 73 

from globally diverse, sequence-validated Saccharomyces cerivisiae diploid strains deposited to 74 

the collection of the Royal Netherlands Academy of Arts and Sciences over the past 100 years 75 

(CBS; Table 1 and Table S1). 76 
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HOG signaling and behavior in young cultures 77 

The behavior of single cells before and after their exposure to osmotic stress was followed by 78 

time-lapse video microscopy of monolayer cultures in custom microfluidics devices12. When cells 79 

in exponential growth were exposed to sudden hyperosmotic stress, cell volume decreased, cell 80 

division and budding immediately stopped, and daughter cells retracted13.  After a lag period 81 

proportional to the severity of the stress GFP fluorescence driven by the GPD1 promoter began 82 

to accumulate in the cytoplasm of surviving cells.  Cells that did not accumulate GPD1::GFP to 83 

high levels did not survive or adapt, developed large vacuoles, and began to die, remaining in 84 

view as shrunken cell ghosts. As GFP accumulated to saturation levels in the surviving cells, 85 

they adapted to the higher osmotic pressure, resumed cell division, budded and began to divide 86 

with a longer half time, producing daughter cells with similarly high fluorescence13. 87 

Viability per culture and GPD1::GFP accumulation per cell were measured using flow 88 

cytometry of statistically large numbers of cells from all 50 strains (~10,000 cells / sample; Figure 89 

S1). The rate and extent of mean GPD1::GFP accumulation in exponentially growing cultures 90 

exposed to hyperosmotic media depended on the severity of the stress and the genetic 91 

background of each strain (Figure 1A).  Prior to the osmotic stress mean GPD1::GFP 92 

fluorescence and viability were uncorrelated.  After 2 hours in moderate 0.75 M KCl viability 93 

decreased and became steeply correlated with accumulated GPD1::GFP (Figure1B and C).  As 94 

expected, natural variation in the strength of HOG signaling was directly responsible for variation 95 

among the strains in osmotic stress survival. 96 

 97 

Negative feedback drives a robust recovery   98 

The initially strong positive correlation between variation in GPD1::GFP accumulation and 99 

variation in viability reversed as cells adapted and began to divide (Figure 1C; 4 hours). This 100 

distinguished two phases of the response, an early phase (0 – 2 hours) when viability decreased 101 

markedly and acute HOG signaling promoted osmotic stress survival and a later phase (2 – 4 102 

hours) when viability recovered but became negatively correlated with HOG signaling and 103 

GPD1::GFP accumulation. The switch from positive to negative correlations might have indicated 104 

that stronger HOG signaling, initially beneficial, suddenly caused lower viability.  However we 105 

think it likely that negative feedback increased signaling in the surviving cells of the less viable 106 

strains. Negative feedback controls, occurring at many levels and timescales, are present in 107 

essentially all of the varied mechanisms that act in concert to increase intracellular glycerol and 108 

restore water balance. For example (1) unequal water pressures activate osmotic stress sensors, 109 

glycerol channels and other pressure-sensitive components whose activities control and depend 110 

on water balance (e.g. see Figure 5 in Hohman 20024,6), (2) GPD1p indirectly controls and is 111 

controlled by osmotic stress-sensitive kinases that respond to upward and downward changes in 112 

water balance14, and (3) nuclear Hog-1 MAP kinase increases the transcription of phosphatases 113 

that restore its own cytoplasmic localization and basal activity15–17. 114 
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Consistent with acting negative regulation, we found a strong and highly significant 115 

correlation between early mortality (0 – 2 hour decreases in viability) and later accumulations of 116 

GPD1::GFP (2 – 4 hours; Table 2).  We reasoned that cells and strains that adapt quickly 117 

experience lower and less sustained effects of osmotic stress (e.g. water loss) with more rapidly 118 

attenuated HOG pathway activity and lower GPD1::GFP accumulation.  Conversely, surviving 119 

cells of strains that were slower to adapt and less viable would experience higher and more 120 

sustained osmotic stress (and likely other stresses). Prolonged osmotic stress would sustain 121 

HOG signaling and maintain GPD1 transcription – also activated by general stress responses18 – 122 

further promoting GPD1::GFP accumulation (e.g. negative feedback regulation of viability at the 123 

level of general stress responses). Indeed, even as GPD1::GFP and viability became negatively 124 

correlated, their rates of change remained positively correlated (2 – 4 hours; Table 2) prompting 125 

a parsimonious interpretation that osmotic stress signaling promotes adaptation and viability 126 

during both the initial and recovery phases of the response (Figure 1C, insets).  127 

After 4 hours all strains had adapted to a new steady state in 0.75M KCl and later 128 

viability remained largely unchanged (Figure 1C inset, lower right). Interestingly, initial decreases 129 

in steady-state viability (0 – 2 hour mortality) were almost perfectly restored by 4 hours (Figure 130 

1D).  Notably, by 6 hours early mortality and recovery were 98% correlated (R2 = 0.9852, 131 

P<0.0001; not shown).  The biological robustness of adaptation and complete recovery of 132 

steady state viability further support the idea that negative feedback restores viability through 133 

continued activation of stress responses. Indeed, continued accumulation of GPD1 and glycerol 134 

– directly responsible for restoration of water balance and reduction of osmotic stress –suggests 135 

that the accumulation of glycerol integrates the cumulative activities of many facets of the 136 

osmotic stress response (e.g. a plausible biological mechanism for “integral feedback”19). The 137 

presence of integral feedback virtually assures perfect adaptation17,19. However, despite their 138 

resilience, strains that were relatively slower to adapt would be ultimately less fit than rapidly 139 

adapting strains due to their higher death rate, slower recovery, and lower steady-state viabilities 140 

before and after hyperosmotic shifts. 141 

 142 

Extreme stress resistance of older cultures  143 

By contrast with exponential cultures, when the aging yeast cultures (post-diauxic) were exposed 144 

to hyperosmotic media they survived and adapted after long periods in unprecedented conditions 145 

(Movies 1 and 2). As aging cultures deplete available glucose in their media they undergo a 146 

metabolic change called the diauxic shift20. During post-diauxic growth stress response proteins 147 

accumulate, cell division slows and then stops, and cells enter quiescence21. Post-diauxic 148 

cultures survived up to 5 weeks in 3 M KCl (41/50 strains). They could not adapt and did not 149 

grow in 3 M KCl, but recovered rapidly and grew when plated on fresh isotonic media (‘static 150 

viability’; Figure S2). When we tested their limits of adaptation in increasing concentrations of KCl 151 

all but one strain could grow on 2.6 M KCl media and, remarkably, three strains grew on media 152 
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containing 2.9 M KCl (Table 3). We are unaware of previous reports of such extreme osmotic 153 

stress survival or adaption limits for budding yeast of any growth stage or genotype. 154 

 155 

Heterogeneity of older cultures 156 

By contrast with cultures in exponential growth, in post diauxic growth the genetically identical 157 

cells within each strain and culture were surprisingly heterogeneous in size, shape and signaling 158 

behaviors (compare Figures S1 and S3).  Neither total GPD1::GFP fluorescence nor rates of 159 

change in fluorescence was strongly correlated with viability.  After several hours in 2.5 M KCl 160 

GPD1::GFP increased sharply in one group of cells as they began to divide. More surprising, 161 

other cells also induced GPD1::GFP to high levels, started to divide and then popped, killing both 162 

the mother and daughter (Movie 3). Another group of cells had slower signaling and cell division 163 

while the most ‘cautious’ cells failed to signal or divide but remained in a cellular state of static 164 

viability without dividing. 165 

We used a Gaussian mixture model to assign the cells in each sample to four 166 

Gaussian distributions described by eight parameters – means and covariances – numbered 167 

according to increasing levels of fluorescence (G0-G3 distributions; Figure S3).  Only 168 

GPD1::GFP pre-accumulated into cells of the G3 distribution during post-diauxic growth prior to 169 

the osmotic challenge and therefore unrelated to osmotic stress signaling, predicted survival at 170 

any time.  The expression of a low frequency of cells in each strain expressing stress resistance 171 

in rich media and normal growth conditions could be analogous to previously-defined stochastic 172 

bet hedging in yeast and bacteria22,23.  The amount of GPD1::GFP accumulated in G3_0 cells 173 

predicted early but not later viability, and this relationship was better fit by 2nd order quadratic 174 

rather than linear functions of GPD1::GFP, suggesting early survival was higher in strains with 175 

intermediate G3 level signaling (more variation explained and lower mean square errors; Table 176 

S3).  Despite the fine-scaled characterization of osmotic stress signaling behaviors of different 177 

groups of cells in each strain, none of the distributions learned by the Gaussian mixture model – 178 

neither pre-accumulated G3_0, total GPD1::GFP fluorescence, nor stress-induced GPD1::GFP in 179 

any distribution – embodied features of the osmotic stress signaling that were important for later 180 

survival.   181 

 182 

Continuous variation in signaling behavior 183 

In order to map osmotic stress-responsive signaling onto survival more directly we next 184 

quantified osmotic stress signaling behaviors of cells in each strain directly, as they unfolded 185 

over time, unbiased by Gaussian assumptions or approximations. First, normalized levels of 186 

induced GPD1::GFP were binned (as in a histogram), creating a ‘sample vector’ of cell numbers 187 

in each of 100 successive intervals of fluorescence intensity. Next, sample vectors for increasing 188 

time points in each strain were linked to create time line vectors (700-mers). For comparison of 189 

averaged strain behaviors the time line vectors were clustered using a mean distance matrix, 190 

constructed from 17,000 randomly chosen permutations of the data over replicate samples and 191 
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times (mean clusters; see methods).  Finally, the fraction of permutations in which each strain 192 

grouped with more than half of the other strains in its mean cluster was used to rank that strain’s 193 

behavior relative to the other strains in its group (clustering statistics; Table 4). 194 

The unique signaling trajectories of most strains were highly reproducible (Figure S3).  195 

Based on their shared and strain-specific (heritable) signaling behaviors the 50 strains rapidly 196 

converged onto two large groups made up of six mean clusters (Figure 2). Each strain could be 197 

further ordered within and between mean clusters and clades based on their clustering statistics, 198 

with their rank order describing increasingly rapid accumulations of GPD1::GFP and ‘reckless’ 199 

signaling (Figure S4). Tellingly, both mean cluster and rank now predicted viability over time 200 

(Figure S5 and Table 4; respectively) thereby confirming the biological relevance of ‘cautious’ 201 

versus ‘reckless’ osmotic stress signaling, validating the clustering method and supporting the 202 

role of natural osmotic stress signaling differences between strains in shaping variation in fitness 203 

during osmotic stress.  204 

 205 

Evidence for bet hedging 206 

As cautious and reckless behaviors were found both within and between strains, we wondered 207 

whether bet hedging, the expression of alternate, conditionally-adaptive phenotypes within a 208 

clone of genetically identical organisms10,24–27, could explain the observed variation in osmotic 209 

stress signaling and survival.  Indeed, rank predicted survival in several different osmotic 210 

environments. Higher-ranked strains with more aggressive osmotic stress signaling strategies 211 

were favored in milder conditions, but with increasing time in extreme osmotic stress more 212 

cautious strains and behaviors became more fit (Table 4). For example, W178 at rank 50 was 213 

most viable in moderate 0.75 M KCl, but the optimum rank shifted to 25 after 20 hours in 2.5 M 214 

KCl, 20 after 72 hours, and 9.6 after 168 hours (1 week).  Viability after 168 hours decreased 215 

most markedly among the most reckless strains (Figure S5).   216 

Demonstration of differential relative fitness of strains with more cautious behavior 217 

under increasing osmotic stress constitutes strong empirical evidence for bet hedging25. To 218 

confirm that the relative fitness of ‘cautiousness’ was really correlated to the amount of stress, we 219 

tested the idea that the yeast experienced increasing stress over time in severe osmotic 220 

conditions. We again incubated cultures in 2.5 M KCl for 168 hours, but they were first exposed 221 

to a mild pre-stress (2 hours in 0.5 M KCl) to pre-induce osmotic stress proteins and make them 222 

more resistant to subsequent stress. If the optimum rank depended solely on time independent of 223 

the degree of stress experienced by different strains, then it should be unaffected by the short 224 

pre-stress. However optimum rank was shifted toward more reckless behaviors (rank 9.6 to rank 225 

18; P<0.0001) after the pre-stress and viability increased by ~10% as expected if the pre-treated 226 

cells experienced lower osmotic stress.  After 168 hours in 2.5 M KCl the most reckless cells in 227 

the highest-ranking strains began to selectively disappear.  For example, replicate cultures of 228 

strain W242 (rank 49) that had lower viability also had fewer cells with high accumulations of 229 

GPD1::GFP, smaller G3 distributions, and correspondingly larger distributions with lower mean 230 
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GPD1::GFP (Figure 3A).  The loss of cells with the highest accumulations of GPD1::GFP could 231 

indicate that GPD1::GFP levels simply decrease over time.  However, G3 distributions were 232 

stable over most time points and in most strains.  More likely, after 168 hours in 2.5 M KCl the 233 

most aggressive cells in the highest-ranking strains attempt to divide and fail (e.g. Movie 3). This 234 

suggests that rapid signaling and adaptation, a fitness advantage in milder conditions, becomes 235 

a liability in severe or prolonged osmotic stress. On the other hand static viability – the survival of 236 

non-dividing cultures in 3 M KCl (Figure 3B) – would usually have dramatically reduced 237 

evolutionary fitness, but allows more cautious cells and strains to survive severe stress.  238 

 239 

Evolution of bet hedging 240 

Heritable osmotic stress signaling behavior predicted survival in increasing severity and duration 241 

of osmotic stress. Since cautious and reckless strains reliably expressed a range of cells with 242 

different behaviors and fitness depending on the environment we wondered if a simple, 2-state 243 

bet hedging model including a heritable control of the relative proportions of cautious and 244 

reckless cell types could account for the observed variation in osmotic stress signaling and 245 

explain the complex relationship between rank and viability. If more aggressive osmotic stress 246 

signaling with rapid recovery and resumption of growth in potentially lethal environments were 247 

the default, ancestral behaviors, then cautious signaling and behavior could have arisen as a 248 

later, adaptive response to the unpredictable severity and duration of potentially lethal osmotic 249 

environments. We therefore assumed that the heritable probability of daughters with cautious 250 

signaling and behavior (P) was the derived, bet-hedging trait and asked whether it could evolve. 251 

We considered changes between three very general osmotic stress environments that 252 

discriminate cautious versus reckless behaviors: (E0) a permissive environment in which both 253 

cautious and reckless cells grow equally well, (E1) a restrictive environment approximating 254 

moderate osmotic stress reckless cells divide and cautious cells survive without dividing, and 255 

(E2) a killing osmotic stress where reckless cells die and cautious cells survive without cell 256 

division.  After several generations including each of 9 possible environmental shifts between 257 

the three environments, we calculated the relative fitness (cell numbers) of each strategy 258 

(probability (P) of cautious cells where 0 ≤ P ≤ 1). Most environmental shifts favor optimum 259 

strategies of either all cautious (P = 1) or all reckless cell types (P = 0; Figure 3D). Strictly 260 

intermediate strategies (0 < P < 1) and bet hedging prevail only when the osmotic environment 261 

shifted from moderate to more severe, with the optimum P depending on the number of 262 

generations in the first environment (E1 -> E2). Shorter lag periods – corresponding to less 263 

severe osmotic conditions – and more cell divisions in E1 initially favor lower P and a higher 264 

proportion of reckless cells.  Longer lag periods – corresponding to more severe conditions and 265 

fewer cell divisions – favor higher P and a higher proportion of cautious cells.  Indeed, 266 

worsening osmotic environments are common in nature (for example, during fermentation or 267 

drying). A worsening environment was experienced with increasing time by the cells and strains 268 

in our experiments; lower-ranked strains with more cautious signaling behaviors, longer lag 269 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/039982doi: bioRxiv preprint 

https://doi.org/10.1101/039982


 

 

9	

periods and fewer attempted cell divisions were increasingly fit over time and with increasing 270 

severity of osmotic stress (Table 4). 271 

While the 2-state model of bet hedging behaviors may be overly simplistic relative to up 272 

to four learned distributions of cell types that best fit the data (Figure S3), it provides a conceptual 273 

framework for understanding the observed variation in osmotic stress signaling strategies and 274 

generates testable hypotheses for further studies.  Bet hedging in microorganisms has been 275 

previously thought to arise almost exclusively through stochastic switching with a low probability 276 

of alternate phenotypes that are independent of the environmental challenge10,22,23,28.  By 277 

contrast, the variation in osmotic stress signaling and behavior we observe is heritable, occurs in 278 

a programmed response of cells to the osmotic stress and, since strains have a low to high 279 

frequency of cells displaying cautious behavior, is one of few known examples in a 280 

microorganism similar to the rapidly diversifying, within-clutch bet hedging strategies of plants 281 

and animals10,28.  If the heritable probabilities of cautious cells and behavior we observed were 282 

sculpted by selection, we reasoned that milder and/or slowly worsening osmotic environments 283 

would generate more reckless strains (e.g. W242, rank 49 isolated from rotting banana; W282, 284 

rank 48 isolated from fermenting fruit) and more severe or rapidly deteriorating osmotic 285 

environments would generate more cautious strains and behavior (e.g. W455, rank 1 from 286 

molasses; W217, rank 4 from sugar cane syrup).  Indeed, even though our synthetic population 287 

is represented by lab/wild heterozygotes rather than inbred strains, we found that the general 288 

environment from which each strain was isolated weakly predicted its aggressiveness (but not 289 

rank; mean percent of cells above threshold, P = 0.030 by ANOVA), plausibly suggesting 290 

adaptation to growth in rotting fruit or wine fermentation favors more aggressive osmotic stress 291 

behavior than growth in more hyperosmotic sugar cane syrups, molasses or olive wastes. 292 

Classical evolutionary models assign fitness directly to genotypes, mutations, and 293 

mean trait values without consideration of the genotype-to-phenotype map; molecular models 294 

provide detailed mechanistic understanding of development but rarely consider the effects of 295 

natural genetic variation.  The osmotic stress response is extensively characterized in a few 296 

strains and genotypes but until now osmotic stress signaling and behavior in a population had 297 

not been documented. Labyrinthine developmental mechanisms – themselves controlled by 298 

genetic variation – translate genotypes into phenotypes with a variable fidelity that allows for the 299 

possibility of phenotypic heterogeneity and the evolution of bi-stable states29.  Our view of 300 

osmotic stress signaling and response on a backdrop of natural variation enabled identification of 301 

negative feedback controlling a robust recovery of steady-state viability in exponential growth.  302 

In post diauxic cultures continuous, heritable variation in the distribution of cautious to reckless 303 

osmotic stress signaling is a risk spreading strategy.  Microorganisms in nature including yeast 304 

spend a high fraction of their time in post-diauxic or quiescent phases21. Our simple, 2-state 305 

model demonstrates how cells and strains can balance constraints between survival and 306 

evolutionary fitness through programmed bet hedging responses that are adapted to different 307 

patterns of environmental stress.  308 
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Materials and methods 309 

Strain acquisition and deposition 310 

Wild and industrial diploid strains of Saccharomyces cerevisiae were obtained from the fungal 311 

diversity collection of Centraalbureau voor Schimmelcultures (CBS), an institute of the Royal 312 

Netherlands Academy of Arts and Sciences in Utrecht, Netherlands 313 

(http://www.cbs.knaw.nl/index.php/collection).  Strains modified for this report are listed in 314 

Tables 1 and S1.  They have been deposited to the Yeast Genetic Resources Lab of the 315 

National BioResource Project in Osaka, Japan (http://yeast.lab.nig.ac.jp/nig/index_en.html). 316 

 317 

Creation of haploid MATa library of wild and industrial genotypes 318 

For unique identification of each strain and prevention of homothalism, the HO locus of each wild 319 

or industrial diploid strain was deleted and replaced with the KanMX4 marker gene and unique 320 

barcode sequences30,31. The KanMX4 gene was PCR-amplified for transformation of each strain 321 

with primers containing unique sets of barcode sequences32 (Table S1). Kanamycin-resistant 322 

transformants were sporulated in 1% potassium acetate sporulation medium and MATa haploids 323 

were selected by testing for schmoo formation in 96-well plates containing alpha factor. Mating 324 

type was confirmed by test mating with a dominantly marked MATa tester strain on replica plates.  325 

The URA3 gene of the sporulated wild haploids (MATa) was deleted using standard gene 326 

deletion method.  In brief, pJL164 plasmid DNA was transformed and cells were plated onto 327 

YPD plate grown for overnight at 30oC.  Cells were replica plated on 5-FOA and grown for 2 328 

days at 30oC. The ho and ura3 deletions and barcode sequences were verified by PCR and 329 

resulting wild haploids were in many cases validated by their colony morphologies.  Forty-nine 330 

wild strains and a laboratory strain met these criteria (see Tables 1 and S1 for strain details).   331 

 332 

Construction of synthetic population of GPD1::GFP wild/lab diploids  333 

The common laboratory strain BY stably integrated GFP reporter strain was created by replacing 334 

the GPD1 gene with GFP gene using a deletion cassette containing a URA3 marker for selection 335 

of transformants on SC-URA plates32,33.  Wild MATa haploids were mated with MATalpha GFP 336 

reporter strains.  Briefly, MATa and MATalpha cells were mixed on SC-URA plates for 2 hours 337 

and streaked onto selective SC-URA+G418 plates. To test the BY4742 background for low 338 

function alleles that could critically compromise osmotic stress function, a homozygous 339 

laboratory strain was made by crossing BY4742a to cells of the opposite mating type to create a 340 

50th strain in our population (BY4741alpha; Table 2). 341 

 342 

Ploidy analysis 343 

Polyploids had higher GFP and tolerance to osmotic stress.  To screen for triploids or 344 

tetraploids obtained after mating, wild/lab yeast were inoculated into 2 ml YPD with appropriate 345 

antibiotics and cultured for 24 h at 21oC on rotator after which 40 ul of the cultured cells were 346 

then added to fresh 2 ml YPD and cultured for 4 h at 21oC on rotator.  800 ul of cells were fixed 347 
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with 1.7 ml cold ethanol and stored at -20oC at least 20 minutes, centrifuged at 2300 rpm for 5 348 

min, washed with 100 mM Tris-HCl (pH 7.8) twice, and suspended in 500 ul of 100 mM Tris-HCl 349 

(pH 7.8).  To digest ribonucleic acids 10 ul of 10 mg/ml RNase A was added to cell suspension 350 

and they were incubated for at least 60 min at 37oC.  Digested cells were then centrifuged at 351 

2300 rpm for 5 min and suspended in 500 ul of FACS buffer (0.5 M Tris-HCl, pH 7.5, MgCl, 352 

NaCl.).  To dissociate cell clumps cells, they were sonicated for 10 sec at setting 3 (Sonifier Cell 353 

Disrupter, Model W185).  Cells were stained with 30 ug/ml Propidium Iodide (PI).  After leaving 354 

them for 20 min in the dark, cells were examined for their ploidy with FACS Calibur (Becton 355 

Dickinson). 356 

 357 

Plating assays 358 

Cells cultured in YPD with G418 for 4 d at 21 oC on rotator were diluted to OD600 0.1 with 359 

exhausted YPD and sonicated for 5 sec at setting 2.5.  5 ul of cells were plated on YPD with or 360 

without KCl and incubated at 21 oC for 2 months. To determine adaptation limits at which strains 361 

could resume growth in concentrations up to 3 M KCl, we inoculated PD cells in a 96-well plate, 362 

agar media containing increasing concentrations of KCl ranging from 2 to 3 M.  After 2-months 363 

incubation at 21oC, we documented adaptation limit, the highest concentration of KCl in which 364 

colonies could grow.   365 

 366 

Microfluidics 367 

We employed custom made microfluidics devices with two fluid inputs as described previously12.  368 

Experiments were run at ambient room temperature.  Yeast cells were observed using Nikon 369 

TS100 and recorded using a digital camera (Photometrics CoolSnap HQ2) operated by Metavue 370 

(Molecular Dynamics).  Analysis of acquired images was performed using Image J software. 371 

 372 

Flow cytometry 373 

After osmotic stress challenge 4 ml of PBS was added to each tube.  Cells were isolated by 374 

centrifugation and resuspended in 1 ml PBS, transferred to FACS tubes, sonicated, and stained 375 

with 3 ug/ml propidium iodide (PI) to monitor viability.  After 20 min GFP fluorescence and 376 

viability were quantified in a FACS Calibur flow cytometer (Becton Dickinson).  Data were 377 

initially analyzed using magnetic windows in FlowJo software to eliminate cell fragments and 378 

dead (PI-positive) cells. 379 

 380 

Flow cytometry data analysis 381 

Raw cell data were initially processed and trimmed to identify cells and the fraction of viable cells 382 

using magnetic windows in FloJO data analysis software.  Cell data for each sample including 383 

forward scatter and GFP fluorescence data were then extracted into an executable SQL 384 

database for analysis of single cell data.  We performed multi-normal fits to extract quantitative 385 

values of GPD1::GFP for the different cellular conditions of a strain at a given time point. The 386 
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exact number of distributions to be fit is a parameter that is not determined by the model and was 387 

determined from the data. We found that fitting both GPD1::GFP and forward scatter worked 388 

slightly better than GPD1::GFP in fitting the data, and that 4 distributions provided more stable 389 

fits than 3 distributions.< Figure S3- fit distributions G0-G4). Multi-normal fits were performed with 390 

the sklearn.mixture.GMM Gaussian Mixture Model algorithm of Python scikit package 391 

(http://scikit-learn.org/stable/index.html). The exact number of distributions to be fit is a 392 

parameter that is not determined by the model, not determined from the data.  We found that 393 

fitting both GPD1::GFP and forward scatter worked slightly better than GPD1::GFP in fitting the 394 

data, and that 4 distributions was better (smaller ??) than 3 distributions.< Figure S3- fit 395 

distributions G0-G4).  396 

 397 

Clustering 398 

We used a clustering algorithm of GDP1::GFP accumulations to characterize the signaling 399 

behaviors of the strains over time. In brief, the GPD1::GFP distribution of each strain at every 400 

time point was converted into a vector of cell density (numbers of cells) in a small section (100 401 

sections) of a normalized density plot of cells at each time point.  Two-dimensional clustering on 402 

the Kullbak-Leibler distance function was used to follow the behavior of each strain over time.  403 

Strains and timepoints were replicated between 4 and 15 times. To control for variation in 404 

sampling and clustering outcomes samples were randomly drawn for each strain and time point 405 

with equal probability for 17000 permutations.  406 

Strains were ranked from most static signaling to most aggressive, providing a 407 

continuous relationship between signaling, survival and adaptation with the number of 408 

permutations in which strains clustered with a majority of other strains in their clade was used to 409 

rank strains from the most static to the most aggressive.  Computational sorting of time-series 410 

distributions resolved 6 clades differentiated for rates of GFP accumulation, adaptation and 411 

survival.  We used a clustering algorithm of GDP1::GFP and forward scatter accumulations to 412 

characterize the signaling behaviors of the strains over time. We found that clustering based on 413 

both the combined GPD1::GFP and forward scatter  data worked slightly better than only 414 

GPD1::GFP. In brief, for an experiment we consider for each cell the  GPD1::GFP and forward 415 

scatter data. This 2D distribution of each strain at every time point was converted first into a 2D 416 

100x100 grid with binned values, then into a normalized linear 1000 elements state vector 417 

characteristic for the GPD1::GFP and forward scatter data of cells at each time point. The 418 

vectors for all the n time points were then successively appended to form a nx1000 time line 419 

vector representing the time course of the combined GPD1::GFP and forward scatter data. The 420 

vectors were then used to compute a distance matrix between strains at each time point using a 421 

Kullback-Leibler divergence based distance function. We used hierarchical clustering with 422 

Ward”s method using the fastcluster implementation in Python34(http://www.jstatsoft.org/v53/i09/).  423 

We found stronger cluster when performing the same analysis using the combined GPD1::GFP 424 

and forward scattering for each cell in the flow cytometry, and unless stated otherwise the 425 
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reported results are in this case. Data from experimental replicates were representatively 426 

sampled for each time point to generate a random average sampling of time line vectors for each 427 

strain. 428 

 429 

Bet hedging model 430 

The bet hedging ‘strategy’ P was defined as the heritable probability of cautious cells for 0 ≤ P ≤ 431 

1. Relative fitness was measured for representative strategies (0, 0.1,0.2,…1.0) after 10 432 

generations in each environment. Nine possible 2-state environmental shifts between three 433 

general osmotic stress environments were considered: permissive (E0; all cells grow equally 434 

well), restrictive (E1; reckless cells divide, cautious cells survive without dividing), and killing (E2; 435 

reckless cells die, cautious cells survive without cell division). For simplicity, the natural attrition 436 

of older cells and rates of cell division were assumed to be equal for all cell types. 437 

Results were independent of the number of generations in the first environment except as shown 438 

when E1 was the first environment.  439 

440 
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Tables 544 

Table 1. Strains and aliases used in this study. See Table S1 for details about each of the 49 545 

wild haploid strain derivatives (WHXXX). For brevity, figures are labeled with the wild parent 546 

strain number (WXXX; see Table S1 for details).   547 

 548 
Strain Genotype Source 

WHXXX MATa ura3D0 hoD::barcode::KanMX4 
This study; haploid Mata isolates of wild strains. See 
Table S1 for details. 

BY41 
MATa his3D1 leu2D0 met15D0 ura3D0 flo8-1 
hoD::barcode::KanMX4 

Mata derivative of BY4742. 

BY4742 
MATalpha his3D1 leu2D0 lys2D0 ura3D0 
flo8-1 

This study; BY4741 and BY4742 backgrounds 
derive from a wild diploid isolated in Nerced, 
California in 1938 on figs (EM9335; S228C36).  They 
are distinguished primarily by the many generations 
it has been under laboratory selection. 

G01 
MATalpha his3D1 leu2D0 lys2D0 ura3D0 
flo8-1 gpd1D::GFP::URA3 

This study; BY4742 background.  For monitoring 
GPD1. 

WXXX.BY16 
MATa/MATalpha LYS2/lys2D0 ura3D0/URA3 
FLO8/flo8-1 hoD::barcode::KanMX4/ho 

This study; 49 wild/lab plus 1 BY41 control. See 
Table S1 for details. 

WXXX.G01 

MATa/MATalpha HIS3/his3D1 LEU2/leu2D0 
LYS2/lys2D0 ura3D0/ura3D0 FLO8/flo8-1 
hoD::barcode::KanMX4/ho 
GPD1/gpd1D::GFP::URA3 

This study. 49 wild/lab plus 1 lab/lab diploids for 
GPD1 quantification. See Table S1 for details. 

549 
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Table 2. Negative feedback between rates of change in GPD1::GFP accumulation and 550 

viability.  To control for potential deviations from normality, non-parametric pairwise 551 

correlations between rates of change in GPD1::GFP accumulation and viability within (upper 3 552 

rows) and between 2 hours time intervals (below).  Changes occurring in earlier intervals, which 553 

were potentially causal for later changes, are listed first. Results were qualitatively similar for 554 

Pearson’s correlations with all significant P-values remaining <0.0001.  Significant comparisons 555 

are indicated in bold. 556 

 557 
Interval Variable Interval Variable Spearman's r   Prob>|r| 

0 – 2 hours ∆GPD1::GFP 0 - 2 hours ∆viability 0.7725 <.0001 
2 – 4 hours ∆GPD1::GFP 2 - 4 hours ∆viability 0.7217 <.0001 
4 - 6 hours ∆GPD1::GFP 4 - 6 hours ∆viability -0.1992 0.4282 
0 – 2 hours ∆viability 2 - 4 hours ∆GPD1::GFP -0.7411 <.0001 
0 – 2 hours ∆viability 2 - 4 hours ∆viability -0.9503 <.0001 
0 – 2 hours ∆GPD1::GFP 2 - 4 hours ∆GPD1::GFP -0.7697 <.0001 
0 – 2 hours ∆GPD1::GFP 2 - 4 hours ∆viability -0.7696 <.0001 
1 - 2 hours ∆viability 4 - 6 hours ∆viability -0.2178 0.3854 
1 - 2 hours ∆viability 4 - 6 hours ∆GPD1::GFP -0.2549 0.3073 
1 - 2 hours ∆GPD1::GFP 4 - 6 hours ∆viability -0.0464 0.8548 
1 - 2 hours ∆GPD1::GFP 4 - 6 hours ∆GPD1::GFP -0.4572 0.0565 
2 - 4 hours ∆viability 4 - 6 hours ∆viability 0.0733 0.7726 
2 - 4 hours ∆viability 4 - 6 hours ∆GPD1::GFP 0.3333 0.1765 
2 - 4 hours ∆GPD1::GFP 4 - 6 hours ∆viability 0.1207 0.6332 
2 - 4 hours ∆GPD1::GFP 4 - 6 hours ∆GPD1::GFP 0.3602 0.1421 

 558 

  559 
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Table 3. Growth of post diauxic cells at unprecedented limits of adaptation.  Shown are 560 

concentrations of agar media on which post diauxic strains could grow and form colonies.  561 

 562 
[KCl] M Wild/lab (GPD1) diploids* 

2.0 W455 

2.6 W027, W035, W167, W202, W203, W242, W285, W454 

2.7 
W033, W041, W042, W134, W136, W150, W166, W178, W195, W215, W217, W219, W235, W248, 
W282, W291, W292, W294, BC41 

2.8 
W037, W044, W050, W153, W157, W163, W164, W179, W189, W206, W238, W244, W245, W249, 
W255, W276, W301, W340 

2.9 W173, W211, W343 

 563 

  564 
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Table 4.  Osmotic stress signaling behavior (rank) predicted early and late viability of 565 

post diauxic cultures in osmotic stress. Least squares predictions of early and late viability by 566 

linear and 2nd order quadratic fits of fluorescence pre-accumulated into the G3 Gaussian at time 567 

0 (G3_0) and ranked signaling behavior.  The Bonferroni cutoff at the 0.05 level, based on 4 568 

tests per data set, was 0.0125.  Significant fits with lowest root mean squared errors and 569 

highest fraction of variation explained (R2) shown in bold, predicted values for optimum (x) and 570 

value at optimum (y) for non-significant fits are marked NS.   571 

 572 
  G3_0 fluorescence (AU) Signaling (rank) 
  quadratic linear quadratic linear 
0 hours, 0M KCl         
  probability > F 0.0006 0.0016 0.9629 0.8454 
  R_square 0.2715 0.1891 0.0016 0.0008 
  root_mean_square_error 1.3935 1.4548 1.6313 1.6149 
  max_viability at optimum (%) 98.8   NS 98.2   
  optimum 2626.6   NS 31.9   
20 hours, 2.5M KCl     
 probability > F < 0.0001 < 0.0001 0.0055 0.6023 
 R_square 0.4286 0.3138 0.1987 0.0057 
 root_mean_square_error 7.0949 7.6940 8.4022 9.2615 
 max_viability at optimum (%) 86.7  86.3  
 optimum 2662.5  24.4  
48 hours, 2.5M KCl         
  probability > F < 0.0001 0.0003 0.0013 0.9159 
  R_square 0.3148 0.2371 0.2464 0.0002 
  root_mean_square_error 7.6281 8.1323 8.1679 9.3096 
  max_viability at optimum (%) 82.2   82.9   
  optimum 2622.3   25.7   
72 hours, 2.5M KCl     
 probability > F 0.0010 0.0033 0.0062 0.8464 
 R_square 0.2556 0.1660 0.1943 0.0008 
 root_mean_square_error 9.9877 10.4608 10.3903 11.4501 
 max_viability at optimum (%) 73.5  74.3  
 optimum 2586.8  25.1  
96 hours, 2.5M KCl         
  probability > F 0.0060 0.0018 0.0065 0.0954 
  R_square 0.1956 0.1862 0.1927 0.0569 
  root_mean_square_error 8.4186 8.3789 8.4338 9.0201 
  max_viability at optimum (%) 71.7   71.0   
  optimum 3389.8   21.3   
120 hours, 2.5M KCl     
 probability > F 0.0791 0.0413 0.0004 0.0037 
 R_square 0.1023 0.0839 0.2859 0.1625 
 root_mean_square_error 8.5666 8.5636 7.6405 8.1881 
 max_viability at optimum (%) NS 67.7  74.7  
 optimum NS 1679  18.1  
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144 hours, 2.5M KCl         
  probability > F 0.3473 0.1675 0.0047 0.0501 
  R_square 0.0440 0.0393 0.2038 0.0776 
  root_mean_square_error 9.6837 9.6059 8.8377 9.4123 
  max_viability at optimum (%) NS 61.9   68.3   
  optimum NS 1481.3   20.4   
168 hours, 2.5M KCl     
 probability > F 0.1785 0.3433 <0.0001 < 0.0001 
 R_square 0.0707 0.0187 0.5733 0.4911 
 root_mean_square_error 12.3795 12.5879 8.3885 9.0652 
 max_viability at optimum (%) NS 56.2  68.4  
 optimum NS 2077  9.7  
24 hours, 3M KCl         
  probability > F 0.0107 0.0292 < 0.0001 < 0.0001 
  R_square 0.1757 0.0952 0.5254 0.2980 
  root_mean_square_error 11.8963 12.3332 9.0267 10.8635 
  max_viability at optimum (%) 71.7   65.0   
  optimum rank 2029.2   18.1   
48 hours, 3M KCl     
 probability > F 0.0294 0.0140 < 0.0001 0.0003 
 R_square 0.1394 0.1193 0.5382 0.2402 
 root_mean_square_error 12.8903 12.9029 9.4420 11.9849 
 max_viability at optimum (%) NS 57.1  62.3  
 optimum NS 2867.3  19.7  
72 hours, 3M KCl         
  probability > F 0.0519 0.0395 < 0.0001 0.0002 
  R_square 0.1183 0.0853 0.5459 0.2460 
  root_mean_square_error 12.4241 12.5218 8.9158 11.3687 
  max_viability at optimum (%) NS 51.4   56.9   
  optimum NS 2651   19.7   
Adaptation limit      
 probability > F 0.5435 0.2699 0.0002 0.0086 
 R_square 0.0262 0.0258 0.3099 0.1379 
 root_mean_square_error 0.1344 0.1330 0.1132 0.1251 
 max_concentration optimum (M) NS 2.8  2.8  
 optimum NS -95.6  31.2  

 573 
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Table S1.  Haploid derivatives of wild strains.  The source for all wild strains in this study 575 

was the strain collection of the Royal Netherlands Academy of Arts and Sciences over the past 576 

100 years (Table 1 and Table S1).  This resource has been deposited at the Yeast Genetic 577 

Resources Lab of the National BioResource Project in Osaka, Japan.  578 

 579 
Alias MAT Genotype Comments 

WH027 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 459; isolated in 1938 in Castellina, Italy from 
grape must; barcode #29(Uptag sequence:  
GGCCCGCACACAATTAGGAA, Downtag sequence:  
GCGCCGCATTAACTAAACTA) 

WH030 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1508; isolated in 1927 from starter for 
sorghum brandy; YH note: mating defective, hard to make wild/lab 
diploids; barcode #16(Uptag sequence: 
GTCCGAACTATCAACACGTA, Downtag sequence: 
GCGCACGAGAAACCTCTTAA) 

WH033 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 405 ; isolated in 1925 in West Africa from 
catabo for billi wine, from Osbeckia grandiflora; barcode 
#187(Uptag sequence: CCGTGTACTGAATTACGATC, Downtag 
sequence: CCATCTTTGGTAATGTGAGG) 

WH035 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 5822; isolated in 1967 from malt wine; 
barcode #30(Uptag sequence: GGTCTATGCAAACACCCGAA, 
Downtag sequence: GCCGTCTTGACAACCTTATA) 

WH037 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1395; isolated in 1922 from an unknown 
source ; barcode #235(Uptag sequence: 
GGCTAAGGGACAACACCTCA, Downtag sequence: 
GCCCGGCACATAGAAGTAAC) 

WH041 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 5635; isolated in 1958 in South Africa from 
grape must; barcode #2(Uptag sequence: 
CCATGATGTAAACGATCCGA, Downtag sequence: 
TATATGGCAGCAGATCGCCG) 

WH042 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 3081; isolated in 1958 in Spain from alpechin; 
barcode #12(Uptag sequence: GTGCGAACCAACGTACTACA, 
Downtag sequence: GCAGGAACACCACAGGGTTA) 

WH044 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 422; isolated in 1926 in Odessa, Ukraine from 
beer; barcode #135(Uptag sequence: 
CCCGCGATTGTAATGAATAG, Downtag sequence: 
CATACTACGTGGGACAGTTG) 

WH050 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 5112; isolated in 1962 in Spain from grape 
must; barcode #49(Uptag sequence: 
CTTACTGATAGCGTAGAGGT, Downtag sequence: 
GTGGTCTGCAAACCCAACAA) 

WH134 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 2964; isolated in 1947 in Copenhagen, 
Denmark from distiller’s rum yeast; barcode #18(Uptag sequence: 
GCCCTGATAACAAGGTGTAA, Downtag sequence: 
GCGCCTATTACACAAACGTA) 
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WH136 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 2811; isolated in 1957 from wine; wine yeast; 
barcode #20(Uptag sequence: GTGAGCGAAACACCGCGTAA, 
Downtag sequence: GGTAATACGCAACTCCTCTA) 

WH150 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 2962; isolated in 1947 in Copenhagen, 
Denmark from ; distiller’s rum yeast; barcode #15(Uptag sequence: 
GCCGTAGCCACAAGAGTTAA, Downtag sequence: 
GCGGCCACTTACACAAATTA) 

WH153 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 6458; isolated in 1972 location not reported; 
barcode #37(Uptag sequence: GGGACCGCCAAAGCTATCAA, 
Downtag sequence: GTGAACAATAACGGCCTTGA) 

WH157 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 6506; isolated in 1973 in UK brewery; killer 
yeast; barcode #53(Uptag sequence: 
CTGAGCGTAGGATATTCCGT, Downtag sequence: 
GCCGGTCGCAAACTCATAAA) 

WH163 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 6914; isolated in 1977 in Spain from white 
wine; barcode #51(Uptag sequence: 
CTACGTCGGCTCATAGTCGT, Downtag sequence: 
GCTCTCGGCCAAGGAAACAA) 

WH164 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 6978; isolated in 1984 from wine; wine yeast; 
barcode #59(Uptag sequence: CACTCGGATTCAGTTCTAGT, 
Downtag sequence: GGCCTTGCCAAACAGTCAAA) 

WH166 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 7072; isolated in 1980 from distillate; barcode 
#62(Uptag sequence: CCTAGTTCGAGATTGCGAGT, Downtag 
sequence: GTGGTCGCCCAAGCAACAAA) 

WH167 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 7173; isolated in 1985 from catabo for billi 
wine; wine yeast; barcode #43(Uptag sequence: 
CAGTATGCTAGATTCCGGGT, Downtag sequence: 
GTCCTCGCAAGAAAGGCCAA) 

WH173 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 8615; isolated in 1998 in Italy from grape 
must; dry yeast for wine making; barcode #61(Uptag sequence: 
CCTGTAGTACGAGTATGAGT, Downtag sequence: 
GGTCTGCCCAAAGTCACAAA) 

WH178 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1192; isolated in 1928 from wine; wine yeast; 
barcode #155(Uptag sequence: CGCACACGATTAAGGTCCAG, 
Downtag sequence: CACTGTTGGTAAGGTCTATG) 

WH179 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1193; isolated in 1928 from wine; wine yeast; 
barcode #70(Uptag sequence: CAATAGGGTGTGACAGTTCT, 
Downtag sequence: CTACTTCGCGTGAGCTGGTT) 

WH189 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1241; isolated in 1930 from an unknown 
source ; barcode #212(Uptag sequence: 
CCACTTAGTTCAATAGGCGC, Downtag sequence: 
CCGAGTATTACATTCTCACG) 
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WH195 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1256; isolated in 1937 from port wine; barcode 
#123(Uptag sequence: CGTGGAGCAGTTCGTATAAT, Downtag 
sequence: CTCGACGCTGGACGTTATGT) 

WH202 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 7372; isolated in 1988; killer yeast, K2Rd 
(Young & Yagiu), K2R2 (Wickner); barcode #119(Uptag sequence: 
CAACGTAGAGTGAGGTACAT, Downtag sequence: 
CACTTAGCTTAGACTCGTGT) 

WH203 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 7438; isolated in 1989 from wine; wine yeast; 
barcode #65(Uptag sequence: CTTTCGGACGTATGTGCAGT, 
Downtag sequence: CCTTGATGATAGAGGGCTTT) 

WH206 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 7833; isolated  in 1994 in Missouri, USA from 
lung of a man with immune deficiency syndrome; virulent strain; 
barcode #82(Uptag sequence: CATACAAAGAGAGGTGTCCT, 
Downtag sequence: CCCTTGCGATTGGTGCAGTT) 

WH211 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 7838; isolated in 1994 in USA from patient; 
barcode #144(Uptag sequence: CGATACAAGTAAGTTGCGAG, 
Downtag sequence: CCTCTTACGAGATAGCGGTG) 

WH215 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 7962; isolated in 1984 in Sao Paulo, Brazil 
from fermenting concentrated syrup from sugar cane; barcode 
#94(Uptag sequence: CCCGATTGAGGCATGGTTAT, Downtag 
sequence: CGCTTCGAGTATGGGATATT) 

WH217 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 7964; isolated in 1995 in Sao Paulo, Brazil 
from fermenting concentrated syrup from sugar cane; barcode 
#92(Uptag sequence: CGCGGAGTATAGAGCTTTAT, Downtag 
sequence: CAATCGCTCGGAGGCGTATT) 

WH219 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 439 ; isolated in 1933 in Lager Schartel, 
Germany from Silvaner grapes; barcode #93(Uptag sequence: 
CGACCCTGATGATCCTTTAT, Downtag sequence: 
CTACGGGCTCGATGCCTATT) 

WH235 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 5952; isolated in 1968; barcode #102(Uptag 
sequence: GGCTACGATACATCTTCATC, Downtag sequence: 
CATTTGTAACCAGTTCGCTC) 

WH238 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 6223; isolated in 1969 in Chile from grape 
juice; radiation resistant; barcode #104(Uptag sequence: 
CTATGTGCGGTAAGACGTAT, Downtag sequence: 
CGGCGTAGATTGTTAGCATT) 

WH242 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 6333; isolated in 1942 in Costa Rica from 
rotting banana; Strain name NRRL Y-1350 (synonymous 
designation; NRRL YB-210, NRRL-210, NRRL-B210; Mortimer and 
Johnston (1986), Genetics 113: 35); barcode #56(Uptag sequence: 
CCTGTAGATTGACGTGTAGT, Downtag sequence: 
GCCCTCGTGACAAATCGAAA) 
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WH244 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 8266; isolated in 1996 in  from rotting fig; 
Strain name X2180, derived from S288C by self-diploidization 
(Mortimer and Johnston (1986), Genetics 113: 35). Did not survive 
freeze-drying.; barcode #122(Uptag sequence: 
CAGAGGGCACTGTTCTTAAT, Downtag sequence: 
CCCTGCTGTAGAGGTTATGT) 

WH245 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 3000; isolated in 1956 in Pakistan  from palm 
wine; wine yeast; barcode #138(Uptag sequence: 
CACATCGTTTAACACTGGAG, Downtag sequence: 
CTAGGAGGTTACAGTCATTG) 

WH248 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 8049; isolated in 1981 from fish food; feed for 
fish and crustaceans; barcode #108(Uptag sequence: 
CGACCCGATGTAGTAGATAT, Downtag sequence: 
CCGCCGGATGTGATATAATT) 

WH249 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 6069; isolated in 1981; hybrid strain (Y55-2 x 
JJ101); barcode #87(Uptag sequence: 
CACTGTGACCGAGGGATACT, Downtag sequence: 
CGCGCTATTATACTCGACTT) 

WH255 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 3090; isolated in 1958 from white grape must; 
barcode #72(Uptag sequence: CACTGTGGACGATACGGTCT, 
Downtag sequence: CTGTACGTGCGATACTCGTT) 

WH276 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1394; isolated in 1924 from pressed yeast; 
distillery yeast; barcode #176(Uptag sequence: 
CCACCGATGTAATTTGAGTC, Downtag sequence: 
CACTCTGCGTTAATGTTGGG) 

WH282 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1460; isolated in 1927 in Indonesia from 
fermenting fruit; barcode #115(Uptag sequence: 
CATACTTAGGGATCAGGGAT, Downtag sequence: 
CCTTGTCTGAGAGCCGTTGT) 

WH285 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1479; isolated in 1928 from wine; wine yeast; 
barcode #240(Uptag sequence: GCGGCCAATAGTAAACTTCA, 
Downtag sequence: GCCGCCGTGATAAGAAACAC) 

WH291 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1576; isolated in 1931 in Sulawesi, Indonesia 
from sap of Arenga palm; barcode #117(Uptag sequence: 
CCTGAGGACTTATTCACGAT, Downtag sequence: 
CATTGGATTAGACCGTGTGT) 

WH292 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1582; isolated in 1948 in Portugal from wine; 
barcode #118(Uptag sequence: CCGATTAGAGGTTGACAGAT, 
Downtag sequence: CACTGACTTCGAGGTCGTGT) 

WH294 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1585; isolated in 1934 from sake-moto; sake 
yeast; barcode #180(Uptag sequence: 
CATTAAGGCGCACGTTTATC, Downtag sequence: 
CTATCCTAGAGATTTGAGGG) 

WH301 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 1594; isolated in 1936 from juice of aren palm; 
barcode #182(Uptag sequence: CACGTTTGCGAATAGGTATC, 
Downtag sequence: CAGATACTATTAAGTGCCGG) 
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WH340 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 2805; isolated in 1954 from wine; wine yeast, 
particularly suitable for fruit wines; barcode #233(Uptag sequence: 
GCCGGGCTTAAATTGAATCA, Downtag sequence: 
GCTCCGACTGAAGAACTAAC) 

WH343 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 2808; isolated in 1954 from grapes (Blauer 
Portugieser); wine yeast, suitable for fruit wines, yields more than 
18% of alcohol; barcode #224(Uptag sequence: 
CCCGTGAATATAAGTGAAGC, Downtag sequence: 
CCTGGATTTGAAGCGTATAG) 

WH454 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 6412; isolated in 1952 from sake; sake yeast; 
barcode #192(Uptag sequence: CCTTAGGGATAATGAGTTGC, 
Downtag sequence: CCAGTGTTCTAACGTGCAGG) 

WH455 a 
MATa ura3D0 
hoD::barcode::KanMX4 

Original CBS #: CBS 440 ; isolated in 1934 in Taiwan from 
molasses; barcode #249(Uptag sequence: 
GCCCAGGCTAAATGTTAAGA, Downtag sequence: 
GAAGTACGCTCAAGACCGAC) 

BC4741 
(BY41) 

a 
MATa his3D1 leu2D0 
met15D0 ura3D0 flo8-1 
hoD::barcode::KanMX4 

Original CBS #: Lab strain, BY4741; isolated in 1938 in Merced, 
CA, USA from rotting fig; derived from S288C, of which strain 88% 
of the gene pool is contributed by strain EM93 (Mortimer and 
Johnston (1986), Genetics 113: 35). Barcode #266(Uptag 
sequence: GGCCTAACTCAACAGACGGA, Downtag sequence: 
GCGCTCGACTAAGAGAAACC) 

 580 

  581 
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Table S2. Clustering statistics used to rank signaling behavior. Statistics showing the 582 

fraction of 17,000 permutations in which strains ranked with 50% of other strains in each mean 583 

cluster.  These data were used to rank total signaling behaviors from most cautious (1) to most 584 

reckless (50) based on the fraction of time each strain was associated with its mean cluster 585 

(characteristic of that cluster).  See Figure 2. 586 

 587 

Rank Cluster Strain MC0 MC1 MC3 MC2 MC5 MC4 

1 MC0 W455 0.8484 0.1516 0 0 0 0 

2 MC0 W167 0.8365 0.1635 0 0 0 0 

3 MC1 W219 0.6375 0.3625 0 0 0 0 

4 MC1 W217 0.5536 0.4460 0.0004 0 0 0 

5 MC1 W027 0.5214 0.4755 0.0028 0.0002 0 0 

6 MC1 W042 0.4850 0.4892 0.0191 0.0044 0.0023 0.0001 

7 MC1 W235 0.1976 0.5532 0.2266 0.0226 0 0.0002 

8 MC1 W340 0.1700 0.5803 0.2354 0.0142 0 0 

9 MC1 W454 0.3355 0.6610 0.0034 0 0 0 

10 MC1 W134 0.1686 0.7376 0.0821 0.0117 0 0 

11 MC1 W276 0.1617 0.7643 0.0658 0.0083 0 0 

12 MC1 W294 0.1692 0.7834 0.0440 0.0034 0 0 

13 MC1 W157 0.1195 0.7851 0.0866 0.0088 0 0 

14 MC1 W202 0.1671 0.7855 0.0446 0.0027 0 0 

15 MC1 W238 0.1337 0.8048 0.0580 0.0036 0 0 

16 MC1 W035 0.1293 0.8086 0.0572 0.0050 0 0 

17 MC1 W248 0.1494 0.8331 0.0172 0.0003 0 0 

18 MC3 W130 0.0003 0.0671 0.7020 0.2307 0 0 

19 MC3 W136 0 0.0092 0.6572 0.3334 0.0002 0 

20 MC3 W203 0.0025 0.1348 0.6410 0.2214 0.0002 0 

21 MC3 W285 0.0003 0.0806 0.6245 0.2924 0.0022 0 

22 MC3 W163 0.0011 0.1474 0.6228 0.2285 0.0002 0 

23 MC3 W206 0 0.0036 0.6203 0.3747 0.0014 0 

24 MC3 BY41 0 0.0123 0.6102 0.3768 0.0008 0 

25 MC3 W041 0.0002 0.0233 0.5625 0.4090 0.0050 0 

26 MC3 W343 0.0012 0.0432 0.5522 0.3910 0.0123 0.0002 

27 MC3 W292 0.0201 0.1962 0.4883 0.2893 0.0062 0 

28 MC3 W189 0.0001 0.0205 0.4757 0.4715 0.0319 0.0003 

29 MC3 W211 0 0 0.3698 0.5572 0.0696 0.0033 

30 MC2 W245 0 0 0.2579 0.6898 0.0523 0 

31 MC2 W291 0 0 0.2211 0.6786 0.0994 0.0009 

32 MC2 W164 0 0 0.1517 0.6601 0.1852 0.0031 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/039982doi: bioRxiv preprint 

https://doi.org/10.1101/039982


 

 

28	

33 MC2 W249 0 0 0.3349 0.6417 0.0233 0.0001 

34 MC2 W166 0 0 0.3372 0.6407 0.0220 0.0001 

35 MC2 W179 0 0.0002 0.3569 0.6212 0.0217 0 

36 MC2 W244 0 0 0.1478 0.6160 0.2225 0.0137 

37 MC2 W173 0 0.0003 0.3801 0.6005 0.0188 0.0002 

38 MC2 W215 0 0.0012 0.3162 0.6000 0.0815 0.0011 

39 MC2 W037 0 0 0.0714 0.5308 0.3863 0.0115 

40 MC2 W255 0 0.0011 0.4771 0.5141 0.0077 0 

41 MC2 W050 0 0 0.0567 0.4672 0.4417 0.0343 

42 MC5 W044 0 0 0.0021 0.0728 0.8501 0.0750 

43 MC5 W195 0 0 0.0019 0.0744 0.8501 0.0736 

44 MC5 W301 0 0 0.0029 0.0882 0.8203 0.0887 

45 MC5 W150 0.0001 0.0004 0.0006 0.0414 0.7978 0.1598 

46 MC5 W033 0 0 0 0.0279 0.7196 0.2525 
47 MC5 W153 0 0 0 0.0181 0.6545 0.3274 
48 MC4 W282 0 0 0 0 0.0596 0.9404 
49 MC4 W242 0 0 0 0.0002 0.1477 0.8521 
50 MC4 W178 0 0 0 0.0017 0.1697 0.8286 

 588 

 589 

Table S3 590 

Plate key 591 

Left 592 

 

1 2 3 4 5 6 

A W027.BY01 W044.BY01 W153.BY01 W173.BY01 W203.BY01 W235.BY01 

B W033.BY01 W050.BY01 W157.BY01 W178.BY01 W206.BY01 W238.BY01 

C W035.BY01 W130.BY01 W163.BY01 W179.BY01 W211.BY01 W242.BY01 

D W037.BY01 W134.BY01 W164.BY01 W189.BY01 W215.BY01 W244.BY01 

E W041.BY01 W136.BY01 W166.BY01 W195.BY01 W217.BY01 W245.BY01 

F W042.BY01 W150.BY01 W167.BY01 W202.BY01 W219.BY01 W248.BY01 

 593 
Right 594 

 

1 2 3 

A W249.BY01 W292.BY01 W455.BY01 

B W255.BY01 W294.BY01  
C W276.BY01 W301.BY01 

 
D W282.BY01 W340.BY01 

 
E W285.BY01 W343.BY01 

 
F W291.BY01 W454.BY01 

 
 595 
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Figure legends 597 

Figure 1. Rate of osmotic stress signaling in exponential cultures with negative feedback 598 

predicts early survival and robust recovery in moderate osmotic stress.  599 

A. Time course of mean accumulated GPD1::GFP fluorescence in exponential cultures 600 

exposed to 0.75 and 1.5 M KCl.  Each point represents an independent replicate 601 

measurement; curves connect strain means at each time. In the absence of stress, all 602 

strains had high steady-state viability (propidium iodide dye exclusion; range 96.3 – 603 

98.7%; mean 97.6%) and relatively low mean GFP fluorescence indicating low 604 

background activity of HOG pathway signaling through the GPD1 promoter and low 605 

GPD1::GFP accumulation (range 12.7 – 34.8 AU; mean 18.8 AU).   606 

B. Pie charts show relative changes after 2 hours in 0.75M KCl of mean viability (shaded 607 

area), mortality (white area) and GPD1::GFP accumulation (percent opacity).  Strains 608 

ordered by viability at 2 hours, which was proportional to viability of non-disrupted 609 

controls having two intact copies of the GPD1 gene (R2 = 0.7085; P<0.0001;).   610 

C. Relationship between mean GPD1::GFP accumulation and viability in mid-exponential 611 

cultures exposed to 0.75 M KCl for 0, 2, 4, and 6 hours (h).  Each data point represents 612 

the average of at least three replicates per strain (~10,000 cells/ sample). The ellipses 613 

indicate correlations between viability and fluorescence at alpha = 0.95. The inserts show 614 

relationships between changes in GPD1::GFP and viability over each time interval.	615 

D. Robust recovery of steady-state viability after 4 hours in 0.75 M KCl driven by negative 616 

feedback  (see text;  recovery  = (0.7670) early mortality  + 3.4936;  R2 = 0.9351; P< 617 

0.0001).	618 

E. Plausible integrating negative control via multiple feedback mechanisms resulting in 619 

accumulation of intracellular glycerol.  Integrating feedback control would assure perfect 620 

adaptation of stress responses, water balance and steady state viability.  Note that the 621 

persistence of dead cells over the course of the experiment precludes 100% recovery.	622 

	623 

Figure 2. Signaling behaviors predict the survival and fitness of older cultures in severe 624 

osmotic stress.  625 

A. Strains classified by mean cluster (MC0 – MC5) and ranked top (1) to bottom (50) 626 

according to changes in GPD1::GFP accumulation over time (see Table S2 and methods). 627 

Each time point shows representative distributions of GPD1::GFP accumulation (green) 628 

and relative survival red (99.7% viability) to blue (11.7% viability). Cells above the 89th 629 

percentile (top 11%) are shown in black. Prior to osmotic challenge steady-state viabilities 630 

were uniformly high (range 93.0 – 99.6%; mean 98.2%). Rank-ordered mean clusters are 631 

topographically equivalent to a sequential ordering.	632 

B. B. Relative viability of post-diauxic cultures (WXXX.BY01 controls) incubated in 3 M KCl 633 

before plating on iso-osmolar media.  Cultures were re-ordered according to the ranked 634 

signaling behavior given in Figure 2A. The same experiment as originally plated is shown 635 
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in Figure S1. Strains color coded as in Figure 1C for comparison of exponential and post 636 

diauxic cultures.	637 

	638 

Figure 3. Extreme cautious and reckless cell types observed in post diauxic cultures 639 

produce observed variation in cautious to reckless signaling strategies in a simple bet 640 

hedging model.  641 

a. Cells with the most aggressive signaling began to die after long periods in severe stress 642 

leaving increasing fraction of cells with lower GPD1::GPF accumulations.  Shown are 643 

distributions of accumulated GPD1::GFP and viability in replicate cultures of W242 (rank 644 

49) after 168 hours in 2.5 M KCl.  Mean (x), standard deviation (std), and weight (w; the 645 

fraction of cells in each distribution) are given.  Sum (red) shows the cumulative fit of the 646 

4 learned Gaussians.  647 

b. Static viability of post diauxic cells of strain W027 exposed to 3 M in microfluidic 648 

chambers.  Individual cell behaviors mirror population behaviors measured by flow 649 

cytometry – e.g longer lag periods and increased accumulations of GPD1::GFP with 650 

increasing osmotic stress. Colored traces indicate accumulated fluorescence in 651 

representative cells in 1.5 (green), 2.0 (blue), 2.5 (red) and 3.0 M KCl (yellow).  Arrows 652 

indicate average time to the first cell division +/- standard deviations. 653 

c. Generation of intermediate optima in simple 2-state bet hedging model with heritable 654 

production of cautious (static) and reckless cell types.  Bet hedging strategy P was 655 

defined as the probability of cautious cells for 0 ≤ P ≤ 1. Relative fitness was measured 656 

for all strategies after 10 generations in each environment. All nine possible 657 

environmental shifts are shown. Nine possible 2-state environmental shifts between three 658 

general osmotic stress environments were considered: permissive (E0; all cells grow 659 

equally well), restrictive (E1; reckless cells divide, cautious cells survive without dividing), 660 

and killing (E2; reckless cells die, cautious cells survive without cell division). Only in 661 

shifts from moderate to more severe (E1 -> E2) do bet hedging, intermediate strategies (0 662 

< P < 1) prevail.  The optimum strategy P depends on the number of generations in the 663 

first moderate stress environment. Results were independent of the number of 664 

generations in the first environment except as shown when E1 was the first environment.  665 

 666 

 667 

Figure S1. Monophasic signaling behavior of exponential cultures described well by 668 

mean GPD1::GFP accumulations at each time point.  669 

Mean (x), standard deviation (std), and weight (w; the fraction of cells in each distribution) are 670 

given.  Sum (red) shows the cumulative fit of the 4 learned Gaussians.  The representative 671 

strains shown are color-coded as in Figure 1B. 672 

 673 

Figure S2. Static viability and survival of post diauxic cultures in extreme osmotic stress. 674 
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Strains were incubated for up to 5 weeks in 3 M KCl plated on iso-osmolar media.  A plate key 675 

is given in Table S3.  The same data are shown sorted by rank in Figure 2B. 676 

 677 

Figure S3a–c. Reproducibility of cell distributions in strains with cautious to reckless 678 

signaling.  Learned distributions of GPD1::GFP accumulation for post diauxic strains exposed 679 

to 2.5 M KCl for the times shown.  Mean (x), standard deviation (std), and weight (w; the 680 

fraction of cells in each distribution) are given.  Sum (red) shows the cumulative fit of the 4 681 

learned Gaussians.  The representative strains shown are color-coded as in Figure 1B. 682 

 683 

Figure S4. Rank predicts increasingly aggressive osmotic stress signaling.  Rank 684 

predicts the relative proportion of cells above a threshold set at the top 11% of accumulation of 685 

GPD1::GFP in post diauxic cultures exposed to 2.5 M KCl for the times shown.  Mean clusters 686 

are indicated with increasingly lighter grey scale in order of signaling (MC0, MC1, MC3, MC2, 687 

MC5, MC4). 688 

 689 

Figure S5. Mean clusters were differentiated for predicts viability of post diauxic cultures.  690 

Mean cluster predicted viability.  Shown are average viabilities each mean cluster were 691 

analyzed by ANOVA or where appropriate by Welch’s ANOVA at each time.  Asterisks indicate 692 

significance at the ≤0.05 level.  Decreasing mean viabilities at each time are indicated 693 

(horizontal lines).  694 

 695 
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