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Abstract 39	
  

Metapopulation theory developed in terrestrial ecology provides applicable frameworks for 40	
  

interpreting the role of local and regional processes in shaping species distribution patterns. 41	
  

Yet, empirical testing of metapopulation models on microbial communities is essentially 42	
  

lacking. Here we determined regional bacterioplankton dynamics from monthly transect 43	
  

sampling in the Baltic Sea Proper (16 sites, 11 occasions, 2010-2011) using 16S rRNA gene 44	
  

pyrosequencing. A strong positive correlation was found between local relative abundance 45	
  

and occupancy of populations. Notably, the occupancy-frequency distributions (the number 46	
  

of populations occupying different number of sites) were significantly bimodal with a 47	
  

satellite mode of mostly rare endemic populations and a core mode of abundant cosmopolitan 48	
  

populations (e.g. Synechococcus, SAR11 and SAR86 clade members). Observed temporal 49	
  

changes in population distributions supported theoretical predictions that stochastic variation 50	
  

in local extinction and colonization rates accounted for observed bimodality. Moreover, 51	
  

bimodality was found for bacterioplankton across the entire Baltic Sea, and was also frequent 52	
  

in globally distributed datasets where average Bray-Curtis distances were significantly 53	
  

different between bimodal and non-bimodal datasets. Still, datasets spanning waters with 54	
  

distinct physicochemical characteristics or environmental gradients, e.g. brackish and marine 55	
  

or surface to deep waters, typically lacked significant bimodal patterns. When such datasets 56	
  

were divided into subsets with coherent environmental conditions, bimodal patterns emerged, 57	
  

highlighting the importance of positive feedbacks between local abundance and occupancy 58	
  

within specific biomes. Thus, metapopulation theory applied to microbial biogeography can 59	
  

provide novel insights into the mechanisms governing shifts in biodiversity resulting from 60	
  

natural or anthropogenically induced changes in the environment. 61	
  

 62	
  

  63	
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Significance statement 64	
  

Marine bacteria regulate global cycles of elements essential to life and respond rapidly to 65	
  

environmental change. Yet, the ecological factors that determine distribution and activity 66	
  

patterns of microbial populations across different spatial scales and environmental gradients 67	
  

remain basically unconstrained. Our metapopulation model-based analyses show that 68	
  

dispersal-driven processes contribute to structuring the biogeography of marine 69	
  

microorganisms from small to large geographical areas. Discovery of bimodal distribution 70	
  

patterns pinpointed satellite microbial populations with highly restricted ranges and defined 71	
  

abundant core populations widely distributed in coherence with environmental conditions. 72	
  

Thus, application of metapopulation models on microbial community structure may allow the 73	
  

definition of biogeographic regions critical for interpreting the outcome of future ocean 74	
  

changes. 75	
  

 76	
  

Introduction 77	
  

Marine microorganisms regulate ecosystem services essential to life through their influence 78	
  

on fluxes of matter and energy in the ocean (1). Conspicuously, these fluxes are ever dynamic 79	
  

due to the pronounced potential of microbial communities to rapidly respond to 80	
  

environmental change, both through adjustments in species composition and metabolic 81	
  

activity (2-4). Although microbial species or populations have been inferred to be active in a 82	
  

variety of distinct biogeochemical processes (see e.g. 5-8), very little is known about the 83	
  

ecological factors that contribute to determining biogeographical distribution patterns of 84	
  

these key organisms. Recent developments in molecular genetics methodologies, i.e. high-85	
  

throughput DNA sequencing technologies, now allow for detailed spatial and temporal 86	
  

investigations of complex assemblages of microorganisms (9, 10). Thus, it is now not only 87	
  

possible to address questions regarding existing taxonomic diversity but also what ecological 88	
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processes that potentially influence the structure of natural marine microbial communities. 89	
  

 Historically, local communities have been regarded as independent ecological units 90	
  

with individual integrity, determined by local interactions among coexisting species and 91	
  

environmental factors (11). However, over the past decades, the profound influence of 92	
  

regional factors, e.g. dispersal, in structuring local species assemblages has been established 93	
  

(12-15). A positive relationship between local abundance and regional distribution of species 94	
  

is a pattern characteristic for a wide range of organisms and ecosystems, including both 95	
  

macroorganisms and highly diverse phytoplankton and bacterioplankton assemblages (16-96	
  

18). Although this relationship is considered to be one of the most robust patterns in 97	
  

community ecology, significant variation in the level of correlation between local abundance 98	
  

and regional distribution occurs among observed assemblages, suggesting that different 99	
  

ecological processes contribute to the shape of the relationship (19-21). There is now an 100	
  

increased awareness of the importance of regional dynamics also for the structuring of 101	
  

aquatic bacterioplankton communities (14, 15, 21). Regional dynamics are linked to a second 102	
  

pattern - the species rank-abundance distribution that describes the abundance of a species in 103	
  

an area or sample as a function of its abundance rank. Especially at larger spatial scales, 104	
  

species abundances exhibit a log-normal distribution, where a few species make up a high 105	
  

proportion of all extant individuals while a majority of species are rare (11, 18, 22, 23, 24). 106	
  

High throughput analyses of linkages between spatial and temporal patterns of 107	
  

bacterioplankton populations across biomes, through assessment of relative sequence 108	
  

abundances, have provided thorough knowledge of the vast genetic diversity dwelling 109	
  

beyond the ocean surface (25, 26). These studies establish that prokaryotic assemblages share 110	
  

much of the same characteristics of biogeographic distribution patterns as macroorganisms. 111	
  

Such high-throughput data from biogeographical studies may disentangle whether 112	
  

mechanistic concepts of distribution patterns in terrestrial systems are applicable also to 113	
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2016. ; https://doi.org/10.1101/039883doi: bioRxiv preprint 

https://doi.org/10.1101/039883
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

	
   5 

	
  

assemblages of marine pelagic prokaryotes.  114	
  

Two major hypotheses for explaining ecological mechanisms shaping species 115	
  

distribution patterns have attracted important attention; Levin’s model and the core-satellite 116	
  

(CSH) hypothesis (11, 16, 27). When applied in terrestrial ecology, these models and their 117	
  

modified versions have provided explanatory power to identify the drivers of distribution 118	
  

patterns among insects, plants and animals; this has had particular significance for developing 119	
  

strategies in conservation biology (28). In essence, metapopulation theory describes the 120	
  

dynamics of populations in a patchy environment, i.e. how local colonization and extinction 121	
  

rates interact with species distribution at a regional scale. The two original models differ in 122	
  

how colonization and extinction rates are calculated to predict occupancy-frequency 123	
  

distributions (the number of sites occupied by different number of species), and have been 124	
  

elaborated over time (29, 30).  125	
  

Levin’s model predicts a unimodal occupancy-frequency distribution characterized by 126	
  

a skewed pattern where most species in a region occupy a single site and the number of 127	
  

species decreases with increasing number of sites (27). Hanski’s metapopulation model or the 128	
  

CSH hypothesis (16-18) predicts a quadratic function of both colonization and extinction 129	
  

rates and takes into account positive feedback mechanisms between local abundance and 130	
  

occupancy. Extinction rates are therefore predicted to be low for populations with high and 131	
  

low occupancy but high for populations with intermediate occupancy. In contrast to Levin’s 132	
  

model, the CSH predicts bimodal distributions where the decrease in number of species with 133	
  

increasing number of study sites is followed by an increase in species occupying all or most 134	
  

sites (16). Thus, the predicted occupancy-frequency pattern in CSH is characterized by a 135	
  

mode of many endemic satellite populations present at only a few sites, and a second mode of 136	
  

cosmopolitan core populations present at all sites. It has been suggested that such bimodal 137	
  

occupancy-frequency patterns should be the norm in aquatic habitats, not least for free-living 138	
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easily dispersible prokaryotes (31). However, there has been little empirical testing of these 139	
  

models in aquatic habitats in general and for aquatic microorganisms in particular (but see 140	
  

(32)). 141	
  

In the present study, we used metapopulation models to analyze local and regional 142	
  

dynamics of bacterioplankton populations (operational taxonomic units [OTUs], defined at 143	
  

97% 16S rRNA gene sequence identity). We investigated regional effects on monthly 144	
  

sampled local communities in the Baltic Sea Proper by determining: (i) the relationship 145	
  

between local OTU abundance and OTU distribution, i.e. occupancy, (ii) the type of 146	
  

occupancy-frequency distribution pattern, i.e. the number of OTUs occupying different 147	
  

number of sites, and (iii) the relationship between OTU occupancy and colonization and 148	
  

extinction rates. We further identified OTUs showing distinct distributional and 149	
  

colonization/extinction patterns. To validate observed distribution patterns we extended the 150	
  

analyses of occupancy-frequency distributions to complementary datasets spanning the entire 151	
  

Baltic Sea as well as global International Census of Marine Microbes (ICoMM) datasets. We 152	
  

also evaluated observed OTU distributions with beta-diversity patterns and variability in 153	
  

environmental conditions available as metadata in the ICoMM database.  154	
  

 155	
  

Results and Discussion 156	
  

Bacterioplankton community composition in the Baltic Sea Proper. We investigated 157	
  

bacterioplankton population dynamics in a grid of 16 stations in the Baltic Sea Proper over 158	
  

two years (2010-2011) to elucidate the role of regional dynamics in shaping biogeographical 159	
  

patterns (Fig. S1). Bacterioplankton community composition showed pronounced clustering 160	
  

of samples from the two years according to season (Fig. S2). This recurrent seasonal 161	
  

succession in bacterioplankton agrees with the recognized importance of seasonal shifts in 162	
  

environmental conditions in shaping community composition of marine bacteria (23, 24, 25). 163	
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There was also a tendency towards differentiation of community composition between 164	
  

coastal and offshore sites (Fig. S2).  165	
  

 Between 122 and 279 OTUs were detected per sampling point, out of which between 166	
  

10 and 22 OTUs were abundant while a grand majority (typically 100-257 OTUs) were rare, 167	
  

when defining abundant and rare OTUs as having relative abundances >1% and <0.1%, 168	
  

respectively (33). All sampled communities displayed rank-abundance curves following a 169	
  

log-normal distribution (Fig. S3), typical of aquatic microbial communities, and widespread 170	
  

also among macroorganism communities in terrestrial environments (24, 33-36). 171	
  

  The pattern of many rare compared to a few abundant populations for organisms in a 172	
  

variety of habitats may be inherently linked with strong regional dynamics, i.e. a positive 173	
  

relationship between local abundance and regional occupancy. Such regional dynamics have 174	
  

been established for a wide range of organisms in different ecosystems, including 175	
  

bacterioplankton in aquatic environments (19-21). We therefore plotted the number of sites 176	
  

occupied by specific OTUs versus their average local relative abundance (Fig. 1). We used 177	
  

locally weighted regression spline smoothing (LOESS) to indicate the positive relationship 178	
  

between average local relative abundance of OTUs with average occupancy. This plot also 179	
  

showed that a majority of OTUs had low abundance and low occupancy compared to 180	
  

relatively few OTUs with high abundance and high occupancy. This suggests that the 181	
  

mechanisms and regional dynamics typically observed among macroorganisms outside the 182	
  

marine realm also shape bacterioplankton assemblages in surface waters. 183	
  

 184	
  

Evaluation of metapopulation models in the Baltic Sea Proper. The relationship between 185	
  

local relative abundance and regional occupancy may be derived from and be directly linked 186	
  

to OTU abundance patterns. Analysis of distribution patterns among OTUs showed a 187	
  

recurring occupancy-frequency distribution that was significantly bimodal in nine out of 188	
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eleven sampled months (Mitchell-Olds & Shaw’s test, p<0.01, n=6-12; Fig. 2).	
   In these 189	
  

months, the bimodal pattern had one mode with most species found at a single site. This 190	
  

mode was followed by an initial monotonic decrease in the number of populations detected 191	
  

with increasing number of sites surveyed. We then noted a second mode with an increase in 192	
  

the number of populations that occurred at all sites. Thus, at a majority of sampling occasions, 193	
  

bimodal patterns were observed matching predictions of bimodality in the CSH model 194	
  

proposed by Hanski (16) rather than predictions of unimodality in Levin’s model (27). To our 195	
  

knowledge, our observed bimodal pattern represents the first finding of bimodality for 196	
  

prokaryotic communities as well as for organisms in marine environments in general. 197	
  

 Metapopulation models that include positive feedback mechanisms provide testable 198	
  

predictions of colonization and extinction rates (28). To elucidate how our observed data fit 199	
  

with current models, we calculated rates of colonization and extinction by comparing 200	
  

occupancies of OTUs between succeeding months, i.e. how many new sites an OTU had 201	
  

colonized compared to from how many previously occupied sites it had disappeared (Fig. 3; 202	
  

Table S1; Table S2). As in previous work (37), we considered the terms colonization and 203	
  

extinction in a broad sense as analogous to gain and loss of OTUs, i.e. local extinction is 204	
  

going from presence to absence. Accordingly, absence is indicated by local relative 205	
  

abundance <0.006%, given the detection limit of our sequencing methodology. In an 206	
  

analogous manner, colonization represents the shift from absence (i.e. below detection limit) 207	
  

to presence, irrespectively of whether this presence resulted from on-site growth of microbes 208	
  

from initially very low abundance or from immigration of populations from neighboring 209	
  

waters. Observed patterns in regional colonization rates followed a quadratic curve, where 210	
  

colonization (C) at first increased with fraction of sites occupied (P) until about 50-65% 211	
  

occupancy, followed by a decrease in C until maximum P (Fig. 3). Extinction rates followed 212	
  

a similar quadratic pattern, where extinction (E) first increased with P, but until a higher 213	
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occupancy compared to C (between 65-75%), followed by a decrease of E until maximum P 214	
  

(Fig. 3). We examined how metapopulation models could explain variations in colonization 215	
  

and extinction rates by using non-linear least squares analysis. Predictions based on the CSH 216	
  

model proposed by Hanski (16) agreed well with the field results for extinction rates (See 217	
  

blue dashed lines in Fig. 3), with on average low residual standard error, whereas 218	
  

colonization rates had higher residual standard error (Table S1). The CSH model significantly 219	
  

explained both colonization and extinction rates. Predictions based on Levin’s model (27) 220	
  

showed overall higher residual standard error for extinction rates compared to the CSH model 221	
  

(Table S1; S2). Notably, both models significantly explained observed extinction rates, 222	
  

although extinction rates predicted by Levin’s model had lower parameter estimates 223	
  

compared to the CSH predictions (Table S1 and S2). Thus, both models produced significant 224	
  

fits for quadratic and linear colonization and extinction rates. However, since the CSH 225	
  

prediction of bimodal occupancy-frequency patterns matched our data on OTU distributions, 226	
  

whereas Levin’s predictions of unimodality did not, the CSH yielded an overall better 227	
  

agreement with the observed data. This agreement of theoretical predictions and measured 228	
  

bacterioplankton population dynamics favored the CSH model for interpreting regional 229	
  

effects of OTU distributions in the Baltic Sea Proper.  230	
  

 231	
  

Linking metapopulation dynamics and specific populations in the Baltic Sea Proper. 232	
  

Beyond the recognition of metapopulation models for estimating colonization and extinction 233	
  

rates of populations at a regional scale, the models function to identify ecological processes 234	
  

that are likely to be involved in determining the distribution of individual populations. In the 235	
  

Baltic Sea Proper dataset, the number of endemic satellite bacterioplankton populations (i.e. 236	
  

only found in one site each month) varied between 940 and 2820 OTUs. In contrast, the 237	
  

much fewer cosmopolitan core populations (i.e. found in all sites each month) ranged 238	
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between 26 and 69 OTUs. A striking consequence of the steep rank abundance distribution 239	
  

patterns was that the OTUs found at all sites during one sampling month contributed to 240	
  

between 62 and 78% of the sequence abundance that month (see yellow filled circles in Fig. 241	
  

4). Thus, although a grand majority of OTUs occupied a single sampling site each, these 242	
  

OTUs contributed only a very limited proportion of the total sequence abundance compared 243	
  

to the fairly few OTUs occupying all sites. It is therefore reasonable to assume that a 244	
  

community consists of a set of cosmopolitan core populations with high local and regional 245	
  

abundance compared to endemic satellite populations with low local and regional abundance. 246	
  

These findings reveal the importance of assessing core and satellite metapopulation dynamics 247	
  

to understand the genomic potential among bacterioplankton in biogeochemical processes 248	
  

such as carbon cycling. For example, in environmental metagenomic, transcriptomic or 249	
  

single-cell genomic approaches it is not possible to determine satellite or core characteristics 250	
  

per se within the data if samples were collected at a single local site. We infer that 251	
  

interpretations of such –omics approaches could be much aided by complementary analyses 252	
  

of 16S rRNA gene amplicon data at relevant spatio-temporal scales to couple regional 253	
  

dynamics of OTUs for assessment of satellite and core properties. Alternatively, conducting –254	
  

omics approaches on many samples distributed over relevant spatiotemporal scales may be 255	
  

necessary to distinguish regional dynamics in microbial communities and interpretations 256	
  

thereof. 257	
  

 In the present study we aimed to couple the identity of particular OTUs found in the 258	
  

analysis of local abundance and regional occupancy with observed metapopulation dynamics. 259	
  

Thus, populations were defined according to their local relative abundance (i.e. 260	
  

populations/OTUs >1% as abundant, <0.1% as rare (33), and 0.1-1% as common (38-40)). 261	
  

First, abundant populations with little variance in occupancy and relative abundance (SE 262	
  

<0.025 and <0.2%, respectively) were classified as “core”; corresponding to Hanski’s core 263	
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populations, (n=6) (Fig. 1; Table S3). “Core” populations such as those belonging to the 264	
  

Synechococcus (PF_000001), CL500-29 (PF_000000), SAR11 (PF_000002), SAR86 265	
  

(PF_000007), hgcI (PF_000008) and NS3a clades (PF_000009) were almost never found in 266	
  

the rare fraction in our study, and were at nearly all times part of the rightmost column in 267	
  

each of the panels in Figure 2. The presence of such cosmopolitan core populations is in 268	
  

agreement with the dominance of abundant lineages such as SAR11 and SAR86 clades 269	
  

typically found in marine environments (40-43). We have no immediate knowledge as to the 270	
  

factors that make such particular “core” populations successful. However, it is possible that 271	
  

“core” OTUs have advantages in utilization of widespread resources compared to other 272	
  

OTUs (17, 30). Hence, “core” OTUs may be linked to the concept of generalist dynamics (4, 273	
  

7). Interestingly, for soil bacteria there is a significant coupling between habitat breadth and 274	
  

larger genome size, metabolic adaptability and occupancy, indicating advantages for versatile 275	
  

generalist populations (44). In the marine environment bacterial populations can also be 276	
  

widespread despite significant genome streamlining, e.g. the SAR11 and SAR86 lineages, 277	
  

suggesting that other mechanisms than genome size can shape microbial biogeography (45). 278	
  

In fact, many core populations found in the present study are predicted by phylogenetic 279	
  

affiliation to have streamlined genomes. We propose that positive feedback mechanisms 280	
  

between local abundance and regional occupancy can contribute to explain the widespread 281	
  

distribution of core OTUs, such as populations in the SAR11 and SAR86 clades and 282	
  

Synechococcus. This relative stability may be maintained despite potential local selection 283	
  

pressures by habitat filtering and predation/grazing. In contrast, stochastic variation in 284	
  

colonization and extinction rates has a large effect on populations with intermediate 285	
  

occupancy. Taken together, our data suggest that core OTUs depend largely on maintaining 286	
  

high levels of occupancy, implying an increased probability of colonizing new sites and 287	
  

sustaining large population sizes through positive feedback mechanisms.  288	
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Second, populations fluctuating between being abundant, rare and common with large 289	
  

variation in occupancy (SE >0.100) were classified as “transient” (n=38) (Fig. 1; Table S3). 290	
  

Interestingly, members of the Cyclobacteriaceae (PF_000047) and Sporichthyaceae 291	
  

(PF_000021) and the NS11-12 clade (PF_000030) mostly entered and exited between the 292	
  

abundant and common fractions of the bacterioplankton, and did not become rare. In contrast, 293	
  

the SAR92 (PF_000017) and Spartobacteria (PF_000011) OTUs fluctuated between the 294	
  

abundant and rare fractions.  295	
  

Third, rare populations (<0.1% of bacteria) with little variance in relative abundance 296	
  

(SE < 0.2%), and high occupancy, were classified as “continuously rare” (n=9) (Fig. 1; Table 297	
  

S3). It is noteworthy that these continuously rare populations, e.g. CL500-29 (PF_000176), 298	
  

GOBB3-C201 (PF_000254), Reichenbachiella (PF_000068), Thiobacillus (PF_000187) and 299	
  

Owenweeksia (PF_000073), had a high occupancy. This potentially suggests that some 300	
  

populations had a permanent and widespread ecological strategy of being rare. In agreement, 301	
  

Galand and colleagues (46) observed how rare phylotypes remained rare when surface 302	
  

seawater samples were compared with deep waters from the Arctic, highlighting that most 303	
  

rare phylotypes were continuously rare within that ecosystem.  304	
  

Fourth, rare populations with low occupancy were classified as “satellite”; equivalent 305	
  

to Hanski’s satellite populations, (n=4369) (Fig. 1; Table S3). Most “satellite” populations 306	
  

were only found in a single site, e.g. Sulfurimonas, Thermoplasmatales (PF_012272), SAR11 307	
  

(PF_002803), SAR86 (PF_003406), Brevundimonas (PF_001083) and Pedobacter 308	
  

(PF_008706). The satellite characteristics of rare populations indicate a clear endemic 309	
  

biogeography of the rare biosphere, likely caused by the high extinction rates observed. In 310	
  

accordance, the rare biosphere has a distinct biogeography despite the potential for high 311	
  

dispersal and low loss rates (46). Thus, in contrast to core populations, rare and 312	
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geographically more restricted satellite populations will be less likely to colonize new sites 313	
  

and more likely to become locally extinct. 314	
  

We note that the observed extinction rates were always higher than colonization rates 315	
  

(>12.5 and <12.5, respectively) and that the parameter estimates of extinction and 316	
  

colonization rates predicated by the core-satellite model were significantly different (Fig. 3; 317	
  

Table S1; two-sample t-test, p=4.02x10-11, n=21). Higher rates of extinction compared to 318	
  

colonization imply that a few populations with higher colonization compared to extinction 319	
  

rates cause bimodal occupancy-frequency patterns. However, most populations are headed 320	
  

towards local extinction and regional rarity. If a few core populations did not exhibit higher 321	
  

colonization rates than extinction rates through positive feedback mechanism, most 322	
  

populations would eventually disappear. The quadratic relationships for colonization and 323	
  

extinction rates at different occupancies highlight the importance of regional dynamics for 324	
  

local populations with a decreasing probability for extinction with increasing occupancy. 325	
  

Overall, these results substantiate the hypothesis that the effect of stochastic variation is 326	
  

highest for populations with intermediate occupancy. A corollary of this scenario is that it is 327	
  

far more likely for common populations than for rare ones to become more common, and 328	
  

more likely for rare populations to become even more rare. Hence, we validated the core-329	
  

satellite hypothesis, showing that positive feedback mechanisms regulate bacterioplankton 330	
  

population dynamics in the Baltic Sea Proper. 331	
  

In our Baltic Sea Proper dataset we also observed special cases of population 332	
  

dynamics characterized by high colonization or extinction events. Firstly, several OTUs 333	
  

showed a pattern of being absent one month, and present at nearly all sites the following 334	
  

month, thus having a large colonization rate (Fig. 3). We denote this special case of 335	
  

colonization dynamics as “microbial rain” pattern, as a reformulation of the concept 336	
  

"propagule rain" coined by Gotelli et al. (29) for dispersal patterns of seed propagules from 337	
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trees. The detected “microbial rain” populations, i.e. with very large variation in occupancy, 338	
  

included Roseobacter (PF_000153), Fluviicola (PF_000171) and Brevundimonas 339	
  

(PF_000126). A reciprocal pattern was observed for extinction rates, where some OTUs were 340	
  

present at all sites one month, next to be absent from all sites the following month - we term 341	
  

this “microbial evanescence”, indicating large extinction rates. “Microbial evanescence” 342	
  

populations were exemplified by Owenweeksia (PF_000313) and two Synechococcus OTUs 343	
  

(PF_000143, PF_000060). We suggest that “microbial rain” and “microbial evanescence” 344	
  

types of OTU distributions could result from linkages between strong seasonal shifts in 345	
  

environmental conditions and niche differentiation (7). Alternatively, wind-driven upwellings 346	
  

or other hydrological events may also cause rapid shifts in bacterial community composition 347	
  

(47, 48). Still, such hydrological events could not have been common in our study system, 348	
  

considering the relatively stable seasonal succession and smaller impact of spatial differences 349	
  

over the two studied years (Fig. S2). Similarly, analysis bacterioplankton population 350	
  

dynamics in an adjacent Baltic Sea Proper sampling site showed distinct seasonal succession 351	
  

related to environmental conditions such as temperature, but only occasionally influenced 352	
  

directly by hydrological disturbances (38).  353	
  

Altogether, we show that the core-satellite hypothesis can be applied to prokaryotic 354	
  

assemblages and be used to characterize biogeographical patterns providing insight into the 355	
  

importance of regional dynamics. It is noteworthy that the core-satellite hypothesis also 356	
  

provides a mechanistic understanding of the division between rare and abundant 357	
  

bacterioplankton populations in the local environment. Thus, the core-satellite hypothesis can 358	
  

be used to interpret the common observation of log-normal OTU distribution patterns 359	
  

potentially caused by stochastic variation in colonization and extinction rates. 360	
  

 361	
  

  362	
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OTU abundance distribution in a Baltic Sea - Kattegatt transect. To extend the 363	
  

exploration of the applicability of the CSH and its consequences for interpreting 364	
  

bacterioplankton distribution patterns, we investigated complementary datasets that covered a 365	
  

range of marine environments and geographic distances. By applying our analysis to a 366	
  

separate dataset of 16S rRNA genes from the Baltic Sea we could assess bacterioplankton 367	
  

distribution patterns over the entire 2000 km salinity gradient of this semi-enclosed brackish 368	
  

water system (Fig. S4A; 19 sites). We did not find a significant bimodal occupancy-369	
  

frequency pattern among surface samples when including marine sites from the Kattegat Sea 370	
  

(Fig. S4B; Mitchell-Olds & Shaw’s test, p>0.01, n=19). However, when excluding the 371	
  

marine sites from the brackish water sites we found a significant bimodal pattern (Fig. S4C; 372	
  

Mitchell-Olds & Shaw’s test, p<0.01, n=17). The differentiation between marine and 373	
  

brackish water sites indicated that changes in environmental conditions, in this case likely a 374	
  

salinity shift (from 5.62 ± 2.06 to 22.00 ± 3.10, Baltic Sea and Kattegat Sea respectively), 375	
  

potentially influenced the metapopulation dynamics and separated bacterioplankton 376	
  

assemblages into distinct biomes in the Baltic Sea compared to the Kattegat Sea. In fact, 377	
  

salinity regulates the distribution of bacterial populations and their functional potential in the 378	
  

Baltic Sea (49, 50), and was recently suggested to constitute part of a global brackish 379	
  

microbiome (10). We also note that strong shifts in other marine biota occur at the border 380	
  

between brackish–marine conditions, also known as the Darss Sill, as shown in e.g. 381	
  

palaeoecological analyses of diatoms (51). We conclude that Baltic Sea bacterioplankton 382	
  

communities exhibit core and satellite population dynamics as observed in the Baltic Sea 383	
  

Proper data. Thus, species-abundance patterns among Baltic Sea bacterioplankton may 384	
  

provide clues to how bimodality is linked with specific biomes.  385	
  

  386	
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OTU abundance distribution in global ICoMM datasets. To further extend the analyses of 387	
  

bimodal occupancy-frequency distributions, we carried out analyses of distribution patterns 388	
  

on broad global biogeographic datasets provided in the frame of ICoMM (52). This showed 389	
  

that bacterial communities in 17 of 31 oceanic regions displayed a significant bimodal pattern 390	
  

(Table 1). In Fig. 4A we exemplify some of the statistically significant bimodal patterns by 391	
  

the samples from the Arctic Chukchi and Beaufort Seas (ACB), Deep Arctic Ocean (DAO), 392	
  

New Zealand sediments (NZS) and open ocean off Cape Cod (SSD) (Mitchell-Olds & 393	
  

Shaw’s test, p<0.01, n=8-16; Fig. 4A; Table 1). It is noteworthy that bacterial community 394	
  

composition in several vast oceanic regions (e.g. ACB and NZS) displayed bimodality. Still, 395	
  

in datasets from several regions, OTU occupancy-frequency distribution patterns were not 396	
  

significantly bimodal (Table 1), which can be exemplified by the data sets from the northwest 397	
  

Mediterranean (BMO) and Sponge communities from the Great Barrier Reef (SPO) 398	
  

(Mitchell-Olds & Shaw’s test, p>0.01, n=11-16; Fig. 4B; Table 1). However, some of these 399	
  

datasets stand out by the heterogeneity of the samples they encompass. For example, it is well 400	
  

established that bacterioplankton community composition differs significantly between 401	
  

depths in a range of ecosystems, including the northwest Mediterranean Sea (see e.g. (53). 402	
  

Still, the BMO transect comprised samples from different depths. We therefore separated 403	
  

samples according to depth and analyzed surface waters separately; we thus found a 404	
  

significant bimodal occupancy-frequency pattern for these surface samples (too few samples 405	
  

were available to test bimodality at other depths). In a similar manner, it is established that 406	
  

bacterial community composition differs considerably between different sponge species (54). 407	
  

Thus, when accounting for sponge species, we found a significant bimodal occupancy-408	
  

frequency pattern for OTUs associated with the sponge Rhopaloeides odorabile in the SPO 409	
  

dataset. Taken together, analyses of datasets from several oceanic regions provided support 410	
  

for the widespread prevalence of bimodality among marine prokaryotic assemblages.  411	
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From the above we deduce that colonization of bacterioplankton populations could be 412	
  

regulated by physicochemical factors, thus structuring community composition into specific 413	
  

biomes. In such a scenario, large differences in environmental conditions resulting from e.g. 414	
  

differences in depth, salinity or nutrient concentrations and/or physical oceanography within 415	
  

or between oceanic regions should lead to distinct patterns of bacterioplankton community 416	
  

structure, i.e. no bimodality. In contrast, regions within which dispersal is high compared to 417	
  

local environmental conditions bimodality should be detected. We therefore evaluated the 418	
  

relationship between bimodal occupancy-frequency patterns and beta-diversity and 419	
  

environmental conditions. To analyze such potential dependencies, we calculated average 420	
  

Bray-Curtis distances for all ICoMM datasets and separated these distances into two groups 421	
  

for datasets with significant or non-significant bimodal patterns, respectively. This revealed a 422	
  

significant difference between groups with and without significant bimodal patterns (two-423	
  

sample t-test, p=8.09x10-7, n=31); datasets with significant bimodal patterns on average had 424	
  

lower Bray-Curtis dissimilarity (Fig. 5A). In contrast, datasets with higher average Bray-425	
  

Curtis dissimilarity were linked to non-significant bimodal patterns. Moreover, when 426	
  

comparing the ratio between core and satellite populations (percentage of OTUs occupying 427	
  

all sites compared to a single site) and Bray-Curtis dissimilarities, the ratio was significantly 428	
  

negatively correlated with average Bray-Curtis distance (linear regression, p=6.42x10-4, 429	
  

R2=0.42, n=31; Fig. 5B). A second-degree polynomial curve fit indicated a saturation where 430	
  

the ratio leveled off at around 0.04 (p=1.4x10-5, n=31; Fig. 5B). Similarly, the ratio between 431	
  

core and satellite populations was on average 0.05±0.03 in the Baltic Sea Proper dataset and 432	
  

monthly data coupled with average Bray-Curtis distances followed the negative slope (see 433	
  

open circles Fig. 5B). In terms of absolute changes in environmental conditions - i.e. analyses 434	
  

made on average Euclidean distances - temperature, salinity and depth had an overall 435	
  

tendency toward lower absolute differences for datasets with significant bimodal patterns 436	
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(Fig. 5C-E). However, only depth (two-sample t-test, p=0.045, n=24) and temperature (two-437	
  

sample t-test, p=0.036, n=20) were significantly different between datasets with and without 438	
  

significant bimodal patterns. Notably, absolute shifts in geographic distance were not 439	
  

significantly different between datasets with or without significantly bimodal patterns (Fig. 440	
  

5F; two-sample t-test, p=0.292, n=26). This suggests that shifts in environmental conditions, 441	
  

and not spatial distance per se, are critical for regulating positive feedback mechanisms 442	
  

between local abundance and regional occupancy, thus affecting the occupancy-frequency 443	
  

pattern. Collectively, these data and changes in occupancy-frequency patterns may be highly 444	
  

valuable for distinguishing where shifts in biomes occur across environmental gradients.  445	
  

We are aware of only one study that has found bimodality in aquatic systems, and that 446	
  

study concerned fish in Amazonian lakes (55). The CSH has also been tested in a set of 447	
  

boreal stream systems, where it was found that diatoms did not exhibit bimodality (32). The 448	
  

discovery in the present study of bimodal distribution patterns, linking local abundance and 449	
  

regional occupancy of marine planktonic bacteria, may seem surprising, especially given the 450	
  

common perception that pelagic marine habitats are relatively homogeneous and allow 451	
  

efficient dispersal of prokaryotic assemblages. Nevertheless, differential distribution of 452	
  

marine bacterioplankton populations is frequently found to be linked with shifts in 453	
  

environmental conditions, such as salinity, temperature, phytoplankton biomass and DOC (25, 454	
  

49, 56, 57). Interestingly, it has been suggested that due to the nature of free-living and easily 455	
  

dispersible prokaryotes, bimodal occupancy-frequency patterns should be relatively common 456	
  

(31). It is also noteworthy that explorations of occupancy-frequency patterns in highly 457	
  

diverse communities is lacking; typically <100 species are considered, whereas only a few 458	
  

have investigated communities with >400 species (28, 32). Thus, in the present paper we 459	
  

show for the first time linkages between highly diverse prokaryotic communities in marine 460	
  

environments and metapopulation dynamics. 461	
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 Although the bimodality patterns observed in the current study conforms with 462	
  

Hanski’s metapopulation model, alternative hypotheses have been suggested to explain the 463	
  

shape of different occupancy-frequency distributions, including for example sampling effects 464	
  

(28, 29, 58). Still, in the datasets studied here, bimodality was found over a variety of 465	
  

temporal scales and over a diversity of geographical distances, indicating a pronounced 466	
  

robustness in this occupancy-frequency pattern. Alternatively, neutral mechanisms in 467	
  

combination with dispersal could shape a distribution pattern with locally abundant taxa also 468	
  

being frequently occurring (35, 36, 59). However, colonization and extinction rates predicted 469	
  

by the CSH agreed well with our field data and point toward that stochastic variation in rates 470	
  

of local extinction and/or colonization can account for observed bimodality. Taken together, 471	
  

our findings on the biogeography of microbial populations at distances ranging from <10 km 472	
  

to >10,000 km indicate that bimodal OTU distributions are an important recurring pattern in 473	
  

several marine ecosystems across the world’s oceans, stressing the importance of regional 474	
  

dynamics. 475	
  

 476	
  

Conclusions. It is becoming increasingly clear that community-structuring processes acting 477	
  

on macroorganisms also determine distribution patterns of marine bacterioplankton 478	
  

populations (60-62). Our extensive analyses suggest that, as generally recognized in 479	
  

terrestrial ecology, positive feedback mechanisms between local abundance and regional 480	
  

occupancy are important drivers of bacterioplankton community composition. As such, our 481	
  

findings demonstrate that metapopulation theory, developed for terrestrial ecology, also 482	
  

provides a tool for interpreting patterns of microbial biogeography. The application of the 483	
  

core-satellite hypothesis on prokaryotic assemblages in the sea forms a framework for 484	
  

interpreting biogeographical patterns and defining the division between rare and abundant 485	
  

bacterioplankton populations in the local environment. Characterization of metapopulation 486	
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dynamics in marine bacterioplankton communities would not only allow for comprehensive 487	
  

biogeographical analyses of marine microbes, but also contribute to improve the definition of 488	
  

cosmopolitan and endemic populations and the mechanisms by which they are influenced. 489	
  

Our findings suggest that shifts in microbial biogeography, in particular microbial biomes as 490	
  

defined by bimodal occupancy-frequency patterns compared to unimodal patterns, may be 491	
  

used to describe and pinpoint changes in the environment likely caused by dispersal 492	
  

limitation for use in molecular biomonitoring.  493	
  

 494	
  

Material and Methods 495	
  

Field sampling. In 2010-2011 (April-October), spatio-temporal dynamics of 496	
  

bacterioplankton communities were investigated at 16 stations off the east coast of Sweden in 497	
  

the Baltic Sea Proper. The distance between stations was typically less than 10 km (Fig. S1). 498	
  

The study area was chosen as a part of collaboration between the projects PLANFISH and 499	
  

EcoChange to study food-web dynamics in a coastal to open ocean gradient. For details on 500	
  

hydrological conditions in the study area please see (63, 64). Seawater from each station was 501	
  

collected in acid washed Milli-Q rinsed polycarbonate bottles, at discrete depths (2, 4, 6, 8 502	
  

and 10 m) that were pooled and filtered shipboard. All 16 stations were represented in 2010 503	
  

and classified according to their spatial distribution (coastal-offshore) as coastal, middle and 504	
  

open sea stations. During 2011, only coastal and open stations were represented. Not all 505	
  

stations could be included every month, and we used instead a subset of 5-12 stations (in total 506	
  

117 stations).  507	
  

 508	
  

DNA extraction, 454 PCR, sequence processing and analysis. Collection of DNA from the 509	
  

117 samples was carried out by filtering 1-2 liter of seawater onto 0.2 µm pore size, 47-mm 510	
  

diameter Supor filters (PALL Life Sciences). The filters were immediately frozen at - 80 °C 511	
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in 1.8ml TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) until further processing. DNA 512	
  

extraction was performed according to the phenol-chloroform protocol in Riemann et al. (65). 513	
  

Bacterial 16S rRNA gene fragments was amplified with bacterial primers 341F and 805R 514	
  

(V3-V4 hypervariable region) containing adapters and barcodes following the protocol of 515	
  

Herlemann et al. (49). The resulting purified barcoded amplicons were normalized in 516	
  

equimolar amounts and sequenced on a Roche GS-FLX 454 automated pyrosequencer 517	
  

(Roche Applied Science, Branford, CT, USA) at SciLifeLab, Stockholm, Sweden. Raw 518	
  

sequence data were processed following the bioinformatical pipeline in Lindh et al. (66). 519	
  

Briefly, sequences from all samples were clustered together into operational taxonomic units 520	
  

(OTU) at the 97% identity level (sequence similarity) using USEARCH (67) and 521	
  

taxonomically identified using the SINA/SILVA database. The 454 runs resulted in 300,000 522	
  

reads (2010) and 396,000 reads (2011). After denoising and chimera removal, samples 523	
  

contained on average 4176 (±1716 SD) sequence reads (2010) and 4432 (±1445 SD) 524	
  

sequence reads (2011) for each sample. The final OTU table consisted of 4437 different 525	
  

OTUs (excluding singletons). For alpha-diversity measures we subsampled the sequences to 526	
  

2500 reads per sample. Rarefaction curves are provided in Figure S5. DNA sequences have 527	
  

been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read 528	
  

Archive under accession number SRP023607. 529	
  

As for the Baltic Sea Proper dataset surface water during the full Baltic Sea transect 530	
  

was collected on 0.2 µm pore size, 47-mm diameter Supor filters (PALL Life Sciences) and 531	
  

16S rRNA genes were amplified with 341F-805R. Sequencing of the Baltic Sea transect were 532	
  

performed on Illumina MiSeq. Sequences were clustered into OTUs at 99% identity level 533	
  

using USEARCH (67). For the Baltic Sea dataset we subsampled the sequences to 10,000 534	
  

reads per sample. 535	
  

 OTU tables (97% 16S rRNA gene fragment sequence identity) of bacterial sequences 536	
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(V6 hypervariable region) from ICoMM projects were downloaded from the Visualization 537	
  

and Analysis of Microbial Population Structures (VAMPS) database 538	
  

(http://vamps.mbl.edu/index.php). ICoMM datasets were subsampled at 10,000 reads per 539	
  

sample. A map of the ICoMM stations is available at 540	
  

http://vamps.mbl.edu/google_earth/ge_icomm.php showing the location and spatial scale of 541	
  

the oceanic regions included in the analyses performed in the present paper. 542	
  

 543	
  

Statistical analyses and graphical outputs. All statistical tests were performed in R 3.2.2 544	
  

(68), using the package Vegan (69). An equivalent for Tokeshi’s test of bimodality was 545	
  

performed using Mitchell-Olds & Shaw’s test for the location of quadratic extremes. Non-546	
  

linear least squares analysis was performed using the equations of Levin’s model and the 547	
  

CSH hypothesis. Levin’s original model (27) is calculated as follows: 548	
  

dP/dt = CP(1 – P) – EP       (1) 549	
  

where P is the fraction of occupied sites, C is colonization rate and E is extinction rate. When 550	
  

P = 1, occupancy is 100% and all sites are occupied and when P = 0, occupancy is 0%, 551	
  

meaning regional extinction. Colonization rate is the number of colonized empty sites over 552	
  

time. If C is greater than E plus the variance in E (C > E+ s2
E), then Levin’s model predicts a 553	
  

unimodal distribution. Hanski’s model (16) is calculated as follows: 554	
  

dP/dt = CP(1 – P) – EP(1 – P)       (2) 555	
  

Thus, if the variance in S (C – E) is greater than S (i.e. σ2
S > S) the model predicts a bimodal 556	
  

species distribution. 557	
  

Graphical outputs was made in R 3.1.2 using the package ggplot2 (70). Figures S1 558	
  

and S4A were made using ODV (Version 4.5.0). 559	
  

 560	
  

  561	
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Figures and Tables 729	
  

Figure 1. Average relative abundance (normalized sequence abundance) against average 730	
  

occupancy. Color denotes standard error in occupancy where red is high and blue is low 731	
  

variation. Size denotes standard error in relative abundance where large size is high and small 732	
  

size is low variation. By moving towards left on the x-axis OTUs display satellite 733	
  

characteristics and towards right OTUs display core characteristics. Examples of OTUs 734	
  

characterized as core, satellite, transient, continuously rare and microbial rain populations are 735	
  

provided in the graph. Red line is smoothing curve (LOESS). Grey line indicates relative 736	
  

abundance above 1 (log -4.6). OTU numbers are given in parenthesis and results from this 737	
  

analysis is further detailed in Table S2. 738	
  

 739	
  

Figure 2. Occupancy-frequency distribution of OTUs in our spatiotemporal study of the 740	
  

Baltic Sea Proper (Western Gotland basin and Kalmar sound). Filled yellow circles indicate 741	
  

relative sequence abundance (percentage of total sequences in each sample). Asterisks denote 742	
  

significance levels (*P<0.05, **P<0.01, ***P<0.001) for Mitchell-Olds & Shaw’s test. NS 743	
  

denote non-significant bimodal patterns. The maximum number of sites sampled each month 744	
  

and at each station (i.e. maximum occupancy) is given by the x-axes. 745	
  

 746	
  

Figure 3. Colonization (C) and extinction (E) rates against occupancy (P). Colonization rates 747	
  

(A), and extinction rates (B). Each point represents the change in fraction of sites occupied 748	
  

from one month to the next for individual OTUs, in total 4437 OTUs for all months. The red 749	
  

line indicates mean and the red shaded area around the mean is standard error. Blue dashed 750	
  

and brown lines indicate the curve of observed data fitted by non-linear least squares to the 751	
  

metapopulation model by Hanski (1982) and Levin (1974), respectively, (Table S1 and 752	
  

Supporting information). Examples are from April, June and September from both years. 753	
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OTU positions are jittered to reduce overplotting and colored in grey scale according to OTU 754	
  

density. 755	
  

 756	
  

Figure 4. Examples of occupancy-frequency distribution of OTUs from global ICoMM 757	
  

datasets displaying significant bimodal patterns (A), examples not showing significant 758	
  

bimodality unless applying the analysis on a subset of samples within datasets (B). Oceanic 759	
  

regions are abbreviated; ACB – Arctic Chukchi Beaufort, DAO – Deep Arctic Ocean and 760	
  

NZS – New Zeeland Sediment, SSD – Spatial Scaling Diversity (Cape Cod Atlantic Ocean), 761	
  

BMO – Blanes Bay Microbial Observatory (North West Mediterranean Sea), SPO – Sponge 762	
  

Bacteria (Great Barrier Reef). Please note break in axes for the leftmost bar in each graph. 763	
  

Asterisks denote significance levels (*P<0.05, **P<0.01, ***P<0.001) for Mitchell-Olds & 764	
  

Shaw’s test. NS denote non-significant bimodal patterns. 765	
  

 766	
  

Figure 5. Boxplot of average Bray-Curtis distances from each ICoMM dataset and non-767	
  

significant or significant bimodality (A), the relationship between average Bray-Curtis 768	
  

distance and the ratio between core and satellite populations (percentage of OTUs occupying 769	
  

all compared to one site) (B), and the relationship between average Euclidean distances of 770	
  

environmental variables, geographic distance and non-significant or significant bimodality 771	
  

(C-F). Open circles in (B) denote monthly Baltic Sea Proper samples collected in this study 772	
  

that were added independently of the regression and polynomial analyses. Asterisks denote 773	
  

significance levels (*P<0.05, **P<0.01, ***P<0.001) for two sample t-tests. 774	
  

 775	
  

  776	
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Table 1. Bimodality in global ICoMM data of marine microbes. Regions with >5 777	
  

spatially different sites (horizontal or vertical) were selected. For each ICoMM dataset, 778	
  

we have included the number of sites, total number of OTUs and the time frame 779	
  

within which the samples were collected, with p-values for Mitchell-Olds & Shaw’s 780	
  

test of quadratic extremes. We further provide percentages of OTUs occupying 1 site, 781	
  

intermediary sites (i.e. average percentage of OTUs occupying 2 or more sites but not 782	
  

all) and all sites. The ratio between core (i.e. OTUs occupying all sites) and satellite 783	
  

(i.e. OTUs occupying 1 site) populations is also displayed. For comparison, average 784	
  

Bray-Curtis distances for each dataset is also provided. 785	
  

ICoMM 
ID 

No. 
of 

Sites 

Total 
No. of 
OTUs 

Time 
frame 
(mo) 

Mitchell-Olds 
& Shaw’s test 

1 site 
% 

Intermediary 
% 

All 
sites 
% 

Ratio 
Core vs. 
Satellite 

Avg. 
Bray-
Curtis 

distance 
ABR 8 1817 < 3 

months  
0,56 68.52 5.10 0.88 0.01 0.66 

ACB 11 2098 > 3 0.001 63.68 3.69 3.15 0.05 0.38 
ALR 10 2885 < 3 

months  
0.11 66.55 4.17 0.10 0.00 0.68 

AOT 16 4223 < 3 
months  

0.001 58.11 2.91 1.16 0.02 0.38 
ASA 14 1621 < 3 

months  
0.00005 54.60 3.68 1.23 0.02 0.52 

ASV 16 10424 > 3 0.85 80.36 1.40 0.03 0.00 0.79 
AWP 13 4471 < 3 

months  
0.92 57.95 3.77 0.60 0.01 0.50 

BMO 16 3329 < 3 
months  

0.06 57.28 3.01 0.63 0.01 0.58 
BSP 8 1387 > 3 0.02 56.02 6.54 4.76 0.08 0.42 
CAM 16 2910 > 3 0.0002 64.57 2.41 1.68 0.03 0.40 
CAR 14 3449 > 3 0.04 52.91 3.76 1.91 0.04 0.33 
CCB 8 6956 < 3 

months  
0.15 65.45 5.63 0.78 0.01 0.58 

CFU 7 10211 > 3 0.18 86.06 2.79 0.01 0.00 0.62 
CMM 9 9837 > 3 0.03 62.75 5.24 0.58 0.01 0.49 
CRS 8 7896 < 3 

months  
0.01 72.91 4.42 0.56 0.01 0.46 

DAO 13 3364 < 3 
months  

0.001 42.93 4.74 4.96 0.12 0.19 
FIS 16 19505 < 3 

months  
0.74 58.64 2.94 0.23 0.00 0.47 

GMS 10 8974 > 3 0.10 77.72 2.78 0.01 0.00 0.60 
GOA 16 3918 > 3 0.009 62.66 2.59 1.07 0.02 0.38 
HCW 16 3807 > 3 

months 
0.04 62.10 2.63 1.10 0.02 0.45 

ICR 13 16315 > 3 0.20 73.61 2.40 0.01 0.00 0.72 
KNX 8 2688 < 3 

months  
0.01 54.06 6.76 5.39 0.10 0.21 

LCR 27 16710 > 3 0.93 74.64 1.01 0.00 0.00 0.74 
NADP 6 3883 < 3 

months  
0.03 74.56 5.49 3.50 0.05 0.23 

NADW 48 12317 > 3 0.31 65.49 0.73 0.00 0.00 0.45 
NZS 16 31129 < 3 

months  
0.0003 59.25 2.80 1.61 0.03 0.18 

ODP 8 3935 < 3 
months  

0.43 76.87 3.74 0.69 0.01 0.38 
SMS 16 12286 < 3 

months  
0.005 50.09 3.46 1.51 0.03 0.30 

SMT 40 13961 > 3 0.22 60.53 1.04 0.04 0.00 0.70 
SPO 16 5295 < 3 

months  
0.06 67.74 2.30 0.06 0.00 0.69 

SSD 8 4523 < 3 
months  

0.006 63.63 5.25 4.84 0.08 0.47 
VAG 16 19750 > 3 0.01 58.10 2.93 0.83 0.01 0.39 
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Supplementary Figures and Tables 786	
  

Figure S1. Map showing the 80-km transect in the Baltic Sea Proper, adapted from 787	
  

Legrand et al. (63, 64). This transect was performed in the PLANFISH and 788	
  

EcoChange frameworks, (see e.g. (63, 64)). 789	
  

 790	
  

Figure S2. Cluster analysis for comparing beta diversity calculated from Bray-Curtis 791	
  

distance estimation based on 454 pyrosequencing data using 97% 16S rRNA 792	
  

sequence similarity. Color of clusters indicates seasonal communities. Symbols 793	
  

indicate coastal, middle or open ocean sites. 794	
  

 795	
  

Figure S3. Baltic Sea Proper species rank–abundance curves for separate samples (A), 796	
  

and for all samples collectively (B). All were log-normal, with a few dominant OTUs 797	
  

and a tail of rare OTUs. 798	
  

 799	
  

Figure S4. A Baltic Sea transect covering the entire 2000 km salinity gradient (A), 800	
  

with the occupancy-frequency distribution of OTUs for all sites of the transect (B), 801	
  

and the occupancy-frequency distribution of OTUs for brackish water sites only (i.e. 802	
  

salinity <15). Asterisks denote significance levels (*P<0.05, **P<0.01, ***P<0.001) 803	
  

for Mitchell-Olds & Shaw’s test. NS denote non-significant bimodal patterns. 804	
  

 805	
  

Figure S5. Rarefaction curves for each sample collected in the Baltic Sea Proper.  806	
  

 807	
  

  808	
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Table S1. Non-linear least squares analysis and statistics of observed colonization (C) 809	
  

and extinction (E) rates fitted with Hanski’s model (16) of C=cP(1-P) and E=eP(1-P). 810	
  

Asterisks denote significance levels (*P<0.05, **P<0.01, ***P<0.001) for NLS tests. 811	
  

  
 

 
Colonization (C)   Extinction (E) 

Year Month 
 Parameter 

Estimate p 
Residual 
std. Error 

Parameter 
Estimate p 

Residual 
std. Error 

2010 April  0.23 *** 0.06 -0.77  *** 0.05  

 
Early May  0.39 *** 0.08 -0.75  *** 0.04  

 
Late May  0.31 *** 0.07 -0.76  *** 0.04  

 
June  0.44 *** 0.12 -0.85  *** 0.06  

 
September  0.28 *** 0.11 -0.93  *** 0.08  

2011 April  0.21 *** 0.06 -0.86  *** 0.06  

 
May  0.28 *** 0.11 -1.06  *** 0.07  

 
June  0.11 *** 0.07 -1.05  *** 0.06  

 
July  0.25 *** 0.09 -1.00  *** 0.06  

 
August  0.35 *** 0.09 -0.74  *** 0.05  

  September  0.32 *** 0.09 -0.82  ***  0.05  
 812	
  
 813	
  

Table S2. Non-linear least squares analysis and statistics of observed extinction (E) 814	
  

rates fitted with Levin’s model (27) of E=eP. Asterisks denote significance levels 815	
  

(*P<0.05, **P<0.01, ***P<0.001) for NLS tests. 816	
  

Year Month 
 Parameter 

Estimate p 
Residual 
std. Error 

2010 April  -0.27  *** 0.09  

 
Early May  -0.75  *** 0.09 

 
Late May  -0.24 *** 0.09 

 
June  -0.29 ** 0.10 

 
September  -0.33 ** 0.12 

2011 April  -0.34 ** 0.12 

 
May  -0.46 ** 0.12 

 
June  -0.44 ** 0.12 

 
July  -0.47 ** 0.12  

 
August  -0.31 ** 0.09  

  September  -0.31 **  0.10  
  817	
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Table S3. Classification of taxa into “core”, “transient”, “continuously rare”, “satellite”, “microbial rain” and “microbial evanescence” 818	
  

populations. Times detected of each individual OTU with times abundant (i.e. >1%), common (i.e. 0.1%-1%), rare (<0.1%), and average 819	
  

occupancy (P) in percentage. Populations with high average relative abundance > 1% and high occupancy with little variance in occupancy and 820	
  

relative abundance were classified as “core”. Populations with high average relative abundance and high variance in occupancy and relative 821	
  

abundance were classified as “transient”. Populations with low relative abundance but high occupancy and little variance in relative abundance 822	
  

and occupancy were classified as “continuously rare”. Populations with low average relative abundance and low occupancy were classified as 823	
  

“satellite”. “Microbial rain” and “Microbial evanescence” populations have large variance in occupancy, but have at one or more occasions gone 824	
  

from being undetected at all sites to being present at all sites, and vice versa, respectively. Asterisk (*) indicates if an OTU has been part of the 825	
  

rightmost bar in the bimodal analysis (Fig. 2) at least once.  826	
  

  827	
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Classsification OTU Taxa Phyla/Class Detected Abundant Common Rare Average 
P [%] 

 PF_000000 CL500-29*  Actino. 117 98 18 1 100 
 PF_000008 hgcI clade* Actino. 115 94 18 3 87 
 PF_000002 SAR11 clade* Alpha. 117 92 18 7 100 
Core PF_000009 NS3a*  Bact. 117 106 10 1 100 
 PF_000001 Synechococcus* Cyano. 117 93 17 7 100 
 PF_000007 SAR86*  Gamma. 117 96 19 2 100 
 PF_000021 Sporichthyaceae* Actino. 115 48 59 8 97 
 PF_000027 hgcI clade* Actino. 111 66 37 8 81 
 PF_000046 CL500-29*  Actino. 109 57 42 10 63 
Transient PF_000062 hgcI clade* Actino. 95 10 47 38 79 
 PF_000047 Cyclobacteriaceae Bact. 116 28 85 3 64 
 PF_000030 NS11-12*  Bact. 112 60 43 9 84 
 PF_000032 NS5* Bact. 100 38 34 28 74 
 PF_000035 Synechococcus* Cyano. 98 30 41 27 82 
 PF_000017 SAR92 clade* Gamma. 100 30 42 28 97 
 PF_000011 Candidatus Spartobacteria Baltica* Verruco. 96 32 34 30 77 
 PF_000051 CL500-29 Actino. 91 0 0 91 95 
 PF_000176 CL500-29 marine group Actino. 78 3 0 75 51 
 PF_000254 GOBB3-C201 Alpha. 89 0 3 86 67 
 PF_000145 SAR116 clade Alpha. 76 0 4 72 76 
Cont. Rare PF_000068 Reichenbachiella Bact. 88 0 8 80 75 
 PF_000073 Owenweeksia Bact. 84 0 6 78 53 
 PF_000084 Flavobacterium Bact. 82 1 5 76 55 
 PF_000187 Thiobacillus Beta. 84 0 5 79 54 
 PF_000053 Candidatus Methylacidiphilum Verruco. 82 0 5 77 52 
 PF_012272 Thermoplasmatales  Archaea 1 0 0 1 2 
 PF_001083 Brevundimonas Alpha. 1 0 0 1 1 
 PF_001540 Rheinheimera Gamma. 1 0 0 1 1 
 PF_001590 Comamonadaceae Beta. 1 0 0 1 4 
Satellite PF_000553 Sulfurimonas Epsilon. 1 0 0 1 3 
 PF_002803 SAR11 clade Alpha. 1 0 0 1 1 
 PF_003406 SAR86 clade Gamma. 1 0 0 1 1 
 PF_005381 Anabaena Cyano. 1 0 0 1 2 
 PF_006004 hgcI clade Actino. 1 0 0 1 2 
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 PF_008706 Pedobacter Bact. 1 0 0 1 1 
 PF_000153 Uncl. Roseobacter* Alpha. 51 1 40 10 48 
 PF_000126 Brevundimonas* Alpha. 6 0 1 5 9 
 PF_000171 Fluviicola* Bact. 42 3 17 22 41 
Microbial rain PF_000722 NS5 marine group* Bact. 17 0 2 15 17 
 PF_000812 Owenweeksia* Bact. 11 0 0 11 15 
 PF_000215 NS11-12 marine group* Bact. 18 0 12 6 32 
 PF_000294 VC2.1 Bac22* Bact. 8 0 3 5 2 
 PF_001042 Uncl. Deltaprotebacterium* Delta. 4 0 0 4 7 
 PF_000116 Uncl. Gammaproteobacterium* Gamma. 14 0 5 9 19 
 PF_000263 FukuN18 freshwater group* Verruco. 34 0 16 18 33 
 PF_000199 AEGEAN-169 marine group Alpha. 35 4 27 4 16 
 PF_000103 Uncl. Roseobacter Alpha. 11 1 4 6 40 
 PF_000383 SAR116 clade Alpha. 21 0 8 13 20 
Microbial PF_000118 Flavobacteriales Bact. 27 1 15 11 50 
evanescence PF_000183 Leadbetterella Bact. 40 0 23 17 28 
 PF_000313 Owenweeksia Bact. 38 0 15 23 15 
 PF_000087 Uncl. Bacteroidetes Bact. 103 19 69 15 47 
 PF_000143 Synechococcus Cyano. 23 2 10 11 43 
 PF_000060 Synechococcus Cyano. 48 5 32 11 37 
 PF_000091 Halomonas Gamma. 21 3 6 12 77 
         
 828	
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