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Abstract

Current evolutionary biology models usually assume that a phenotype under-
goes gradual change. This is in stark contrast to biological intuition which in-
dicates that change can also be punctuated — the phenotype can jump. Such a
jump can especially occur at speciation, i.e. dramatic change occurs that drives the
species apart. Here we derive a central limit theorem for punctuated equilibrium.
We show that if adaptation is fast for weak convergence to hold dramatic change
has to be a rare event.

Keywords : Branching diffusion process, Conditioned branching process, Cen-
tral Limit Theorem, Lévy process, Punctuated equilibrium, Yule–Ornstein–Uhlenbeck
with jumps process

1 A model for punctuated stabilizing selection

1.1 Phenotype model
Stochastic differential equations (SDEs) are today the standard language to model con-
tinuous traits evolving on a phylogenetic tree. The general framework is that of a
diffusion process

dX(t) = µ(t,X(t))dt +σadBt . (1)

The trait follows Eq. (1) along each branch of the tree (with possibly branch specific
parameters). At speciation times this process divides into two processes evolving in-
dependently from that point. The full generality of Eq. (1) is not implemented in
contemporary phylogenetic comparative methods (PCMs). Currently they are focused
on the Ornstein–Uhlenbeck (OU) processes

dX(t) =−α(X(t)−θ(t))dt +σadBt , (2)

where θ(t) can be piecewise linear, with different values assigned to different regimes
[see e.g. 7, 10, 16]. There have been a few attempts to go beyond the diffusion frame-
work into Laplace motion [4, 5, 17] and jumps at speciation points [5, 8, 9]. We follow
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in the spirit of the latter and consider that just after a branching point with a probability
p, independently on each daughter lineage, a jump can occur. We assume that the jump
random variable is normally distributed with mean 0 and variance σ2

c < ∞. In other
words if at time t there is a speciation event then just after it, independently for each
daughter lineage, the trait process X(t+) will be

X(t+) = (1−Z)X(t−)+Z(X(t−)+Y ), (3)

where X(t−/+) means the value of X(t) respectively just before and after time t, Z is
a binary random variable with probability p of being 1 (i.e. jump occurs) and Y ∼
N (0,σ2

c ).
Combining jumps with an Ornstein–Uhlenbeck process is attractive from a bio-

logical point of view. It is consistent with the original motivation behind punctuated
equilibrium. At branching dramatic events occur that drive species apart. But then sta-
sis between these jumps does not mean that no change takes place, rather that during
it “fluctuations of little or no accumulated consequence” occur [15]. The OU process
fits into this idea because if the adaptation rate is large enough then the process reaches
stationarity very quickly and oscillates around the optimal state. This then can be in-
terpreted as stasis between the jumps — the small fluctuations. Mayr [18] supports this
sort of reasoning by hypothesizing that “The further removed in time a species from
the original speciation event that originated it, the more its genotype will have become
stabilized and the more it is likely to resist change.”

We first introduce some notation, illustrated in Fig. 1 [see also 5, 6, 22]. We
consider a tree that has n tip species. Let Un be the tree height, τ(n) the time from today
(backwards) to the coalescent of a pair of randomly chosen tip species, τ

(n)
i j the time

to coalescent of tips i, j, ϒ(n) the number of speciation events on a random lineage,
υ(n) the number of common speciation events for a random pair of tips bar the splitting
them event and υ

(n)
i j the number of common speciation events for a tips i, j bar the

splitting them event. Furthermore let Tk be the time between speciation events k and
k+1 and tk+1 be the time between speciation events k and k+1 on a randomly chosen
lineage.

Let Yn be the σ–algebra that contains information on the Yule tree. The described
above model was studied previously [5] where I showed that, conditional on the tree
height and number of tip species (the n index on pn and σ2

c,n will be discussed in the
next section), the mean and variance of a tip species, X (n), are

E
[
X (n)|Yn

]
= θ + e−αUn(X0−θ)

Var
[
X (n)|Yn

]
= σ2

a
2α

(1− e−2αUn)+σ2
c,n pn

ϒ+1
∑

i=2
e−2α(tϒ+1+...+ti).

(4)

A key difference that the phylogeny brings in is that the tip measurements are corre-
lated through the tree structure. One can easily show that conditional on the tree, the
covariance between a pair of extant traits, X (n)

1 and X (n)
2 is
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Figure 1: A pure–birth tree with the various time components marked on it. If we
“randomly sample” node “A” then ϒ(n) = 3 and the between speciation times on this
lineage are t1 = T1, t2 = T2, t3 = T3 +T4 and t4 = T5. If we “randomly sample” the pair
of extant species “A” and “B” then υ(n) = 1 and the two nodes coalesced at time τ(n).
See also Bartoszek [5]’s Fig. A.8. for more detailed discussion on relevant notation.

Cov
[
X (n)

1 ,X (n)
2 |Yn

]
=

σ2
a

2α
(e−2ατ

(n)
12 − e−2αUn)+σ

2
c,n pn

υ+1

∑
i=2

e−2α(τ
(n)
12 +tυ+1+...+ti). (5)

1.2 Tree model
In this work we consider a fundamental model of phylogenetic tree growth — the
conditioned on number of tip species pure birth process. By conditioning we consider
stopping the tree growth just before the n+ 1 species occurs, or just before the n–
th speciation event. Therefore the tree’s height Un is a random stopping time. The
asymptotics considered in this work are when n→ ∞, we stop the process when there
are more and more species. The two parameters pn and σ2

c,n are fixed for a given n,
but may vary with n. In fact we will later see that for a central limit theorem to hold a
product of them must decay to 0 with n. This is in fact the key characteristic that jumps
bring in.

The key model parameter describing the tree component is λ , the birth rate. At the
start the process starts with a single particle and then splits with rate λ . Its descendants
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behave in the same manner. Without loss generality we take λ = 1, as this is equivalent
to rescaling time.

In the context of phylogenetics methods this branching process has been intensively
studied [6, 11, 12, 13, 14, 19, 22, 23], hence we will just describe its key property. The
time between speciation events k and k+ 1 is exponential with parameter k. This is
immediate from the memoryless property of the process and the distribution of the
minimum of exponential random variables. From this we obtain some important prop-
erties of the process. Let Un be the height of the tree and τ(n) the time (counted from
today) till coalescent of a random pair tips. Let Hn = 1+ 1/2+ . . .+ 1/n be the n–th
harmonic number, x > 0 and then their expectations and Laplace transforms are [6, 22]

E [Un] = Hn,
E
[
e−xUn

]
= bn,x,

E
[
τ(n)
]

= n+1
n−1 Hn− 2

n−1 ,

E
[
e−xτ(n)

]
=

{
2−(n+1)(x+1)bn,x

(n−1)(x−1) x 6= 1,
2

n−1 (Hn−1)− 1
n+1 x = 1,

where

bn,x =
1

x+1
· · · n

n+ x
=

Γ(n+1)Γ(x+1)
Γ(n+ x+1)

∼ Γ(x+1)n−x,

Γ(·) being the gamma function.
We will call the considered model the Yule–Ornstein–Uhlenbeck with jumps (YOUj)

process. For it I calculated [5] the mean, variance, covariance and interspecies corre-
lation for random tips. We recall, denoting κn = 2pnσ2

c,n/(2pnσ2
c,n +σ2

a ), δ = (X0−
θ)/
√

σ2
a /2α

E
[
X (n)

]
= bn,α X0 +(1−bn,α)θ ,

Var
[
X (n)

]
=

σ2
a+2pnσ2

c,n
2α

(
(1−κn)V

(n)
a (α,δ )+κnV (n)

c (α)
)
,

Cov
[
X (n)

1 ,X (n)
2

]
=

σ2
a+2pnσ2

c,n
2α

(
(1−κn)C

(n)
a (α,δ )+κnC(n)

c (α)
)
,

ρn = (1−κ)C(n)
a (α,δ )+κnC(n)

c (α)

(1−κn)V
(n)
a (α,δ )+κnV (n)

c (α)
,

(6)

where,

C(n)
a (α,δ ) =


2−(n+1)(2α+1)bn,2α

(n−1)(2α−1) −bn,2α +δ 2
(
bn,2α −b2

n,α
)
, 0 < α 6= 0.5,

2
n−1 (Hn−1)− 2

n+1 +δ 2
(

1
n+1 −b2

n,0.5

)
, α = 0.5,

C(n)
c (α) =


2−(2αn−2α+2)(2α+1)bn,2α

(n−1)(2α−1) , 0 < α 6= 0.5,
2

n−1

(
Hn− 5n−1

2(n+1)

)
, α = 0.5,

V (n)
a (α,δ ) = 1−bn,2α +δ 2(bn,2α −b2

n,α),

V (n)
c (α) = 1− (1+2α)bn,2α .
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For large n these behave as

E
[
X (∞)

]
= θ +O(n−α),

Var
[
X (∞)

]
=

σ2
a+2p∞σ2

c,∞
2α

+O(n−2α),

Cov
[
X (∞)

1 ,X (∞)
2

]
∼ σ2

a+2p∞σ2
c,∞

2α
·


(
(1−κ∞)C

(∞)
a (α,δ )+κ∞C(∞)

c (α)
)

n−2α , 0 < α < 0.5,

2n−1 lnn, α = 0.5,
2

2α−1 n−1, α > 0.5,

ρn ∼


(
(1−κ∞)C

(∞)
a (α,δ )+κ∞C(∞)

c (α)
)

n−2α , 0 < α < 0.5,

2n−1 lnn, α = 0.5,
2

2α−1 n−1, α > 0.5 .
(7)

1.3 Martingale formulation
Our main aim is to study the asymptotic behaviour of the sample average and it actually
turns out to be easier to work with scaled trait values, Y (n) = (X (n)− θ)/

√
γn, where

γn := (σ2
a +2pnσ2

c,n)/2α and then denoting δ ∗n = (X0−θ)/
√

γn

E
[
Y (n)

]
= δ ∗n bn,α ,

Var
[
Y (n)

]
= (1−κn)V

(n)
a (α,δ )+κnV (n)

c (α),

Cov
[
Y (n)

1 ,Y (n)
2

]
= (1−κn)C

(n)
a (α,δ )+κnC(n)

c (α).

(8)

The initial condition of course will be Y0 = δ ∗0 . Just as Bartoszek and Sagitov [6] did
we may construct a martingale related to the average

Y n =
n

∑
i=1

Y (n)
i .

Then [cf. Lemma 10 in 6] we define

Hn := (n+1)e(α−1)UnY n, n≥ 0.

This is a martingale with respect to Fn, the σ–algebra containing information on the
Yule n–tree and the phenotype’s evolution.

2 Asymptotic regimes — main results
Branching Ornstein–Uhlenbeck models commonly have three asymptotic regimes. [1,
2, 3, 5, 6, 20, 21] . The dependency between the adaptation rate α and branching rate
λ = 1 governs in which regime the process is. If α > 1/2 then the contemporary sample
is similar to an i.i.d. sample, in the critical case α = 1/2 we can after appropriate
rescaling still recover i.i.d. behaviour and if 0 < α < 1/2 then the process has “long
memory” [“local correlations dominate over the OU’s ergodic properties”, 1, 2]. In
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the OU process with jumps setup the same asymptotic regimes can be observed, even
though in [1, 2, 20, 21] the tree is observed at a given time point, t, with nt being
random. In what follows in the paper the constant C may change between (in)equalities.
It may in particular depend on α .

Theorem 2.1 Let Y n = (Xn− θ)/
√

γn be the normalized sample mean of the YOUj
process with Y 0 = δ ∗0 . The process Y n has the following asymptotic with n behaviour
depending on α .

(I) If 0.5 < α and σ2
c,nκn→ 0 then

√
(n) Y n is asymptotically normally distributed

with mean 0 and variance (2α +1)/(2α−1).

(II) If 0.5 = α and σ2
c,nκn → 0 then

√
(n/ lnn) Y n is asymptotically normally dis-

tributed with mean 0 and variance 2.

(III) If 0<α < 0.5 then nαY n converges almost surely and in L2 to a random variable
Yα,δ ∗∞,κ∞

with first two moments

E
[
Yα,δ ∗∞,κ∞

]
= δ ∗∞Γ(1+α),

E
[
Y 2

α,δ ∗∞,κ∞

]
=

(
δ ∗

2
∞ +(1−κ∞)

4α

1−2α

)
Γ(1+2α).

Remark 2.2 The assumption σ2
c,nκn→ 0 is an essential one for α ≥ 0.5. This is visible

from the proof of Lemma 3.4. In fact this is the key difference that the jumps bring in
— if they occur too often (or with too large magnitude) then they will disrupt the weak
convergence of the process.

One natural way of achieving this desired limit is keeping σ2
c,n constant and allow-

ing pn→ 0, the chance of jumping becomes smaller relative to the number of species.
Alternatively σ2

c,n→ 0, which could mean that with more and more species — smaller
and smaller jumps occur at speciation. Actually this could be biologically more realis-
tic — as there are more and more species, then there is more and more competition and
smaller and smaller differences in phenotype drive the species apart. Specialization
occurs and tinier and tinier niches are filled.

3 Key convergence lemmata
We will now prove a series of lemmata describing the asymptotics of driving compo-
nents of the considered YOUj process. Let Y ∗n denote the σ–algebra that contains
information on the Yule tree and jump pattern.

Lemma 3.1 [Lemma 11 in 6]

Var
[
E
[
e−2ατ(n) |Y ∗n

]]
=


O(n−4α) 0 < α < 0.75,

O(n−4α lnn) α = 0.75,
O(n−3) 0.75 < α.

(9)
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PROOF For a given realization of the Yule n-tree we denote by τ
(n)
1 and τ

(n)
2 two inde-

pendent versions of τ(n) corresponding to two independent choices of pairs of tips out
of n available. We have,

E
[(

E
[
e−2ατ(n) |Y ∗n

])2
]
= E

[
E
[

e−2α(τ
(n)
1 +τ

(n)
2 )|Y ∗n

]]
= E

[
e−2α(τ

(n)
1 +τ

(n)
2 )

]
.

Writing

πn,k = 2
n+1
n−1

1
(k+1)(k+2)

, f (a,k,n) :=
k+1

a+ k+1
· · · n

a+n

and as the times between speciation events are independent and exponentially dis-
tributed we obtain

E
[(

E
[
e−2ατ(n) |Y ∗n

])2
]
=

n−1

∑
k=1

f4α(k,n)π2
n,k +2 ∑

k1<k2

f2α(k1,k2) f4α(k2,n)πn,k1πn,k2 .

On the other hand,(
E
[
e−2ατ(n)

])2
=
(
∑
k1

f2α(k1,n)πn,k1

)(
∑
k2

f2α(k2,n)πn,k2

)
.

Taking the difference between the last two expressions we find

Var
[
E
[
e−2ατ(n) |Y ∗n

]]
= ∑

k

(
f4α(k,n)− f2α(k,n)2

)
π2

n,k

+2
n−1
∑

k1=1

n−1
∑

k2=k1+1
f2α(k1,k2)

(
f4α(k2,n)− f2α(k2,n)2

)
πn,k1πn,k2 .

Using the simple equality

a1 · · ·an−b1 · · ·bn =
n

∑
i=1

b1 · · ·bi−1(ai−bi)ai+1 · · ·an

we see that it suffices to study the asymptotics of,

n−1

∑
k=1

An,kπ
2
n,k and

n−1

∑
k1=1

n−1

∑
k2=k1+1

f2α(k1,k2)An,k2πn,k1πn,k2 ,

where

An,k :=
n

∑
j=k+1

f2α(k, j)2
( 4α2

j( j+4α)

)
f4α( j,n).

To consider these two asymptotic relations we observe that for large n
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An,k . 4α
2 bn,4α

b2
k,2α

n

∑
i=k+1

b2
j,2α

b j,4α

1
i(4α + i)

.C
bn,4α

b2
k,2α

n

∑
i=k+1

i−2 .C
bn,4α

b2
k,2α

k−1.

Now since πn,k =
2(n+1)

(n−1)(k+2)(k+1) , it follows

n−1

∑
k=1

An,kπ
2
n,k .Cbn,4α

n−1

∑
k=1

1
k5b2

k,2α

.Cn−4α
n

∑
k=1

k4α−5 .C


n−4α 0 < α < 1

n−4 lnn α = 1
n−4 1 < α

and

n−1
∑

k1=1

n−1
∑

k2=k1+1
f2α(k1,k2)An,k2πn,k1πn,k2 .Cbn,4α

n−1
∑

k1=1

n−1
∑

k2=k1+1

bk2,2α

bk1,2α bk2,4α

1
k2

1k3
2

. n−4α
n−1
∑

k1=1
k2α−2

1

n−1
∑

k2=k1+1
k2α−3

2 .C



n−4α
n−1
∑

k1=1
k4α−4

1 0 < α < 1

n−4
n
∑

k2=2
k−1

2

k2
∑

k1=1
1 α = 1

n−4α
n
∑

k2=2
k4α−4

2 1 < α

.C



n−4α 0 < α < 0.75
n−3 lnn α = 0.75

n−3 0.75 < α < 1

n−4
n
∑

k2=2
1 α = 1

n−3 1 < α

.C


n−4α 0 < α < 0.75

n−3 lnn α = 0.75
n−3 0.75 < α < 1
n−3 α = 1
n−3 1 < α.

Summarizing

n−1
∑

k1=1

n−1
∑

k2=k1+1
f2α(k1,k2)An,k2πn,k1πn,k2 .C


n−4α 0 < α < 0.75

n−3 lnn α = 0.75
n−3 0.75 < α < 1.

Notice that obviously Var
[
E
[
e−2ατ(n) |Y ∗n

]]
= Var

[
E
[
e−2ατ(n) |Yn

]]
.

�

Remark 3.2 The above Lemma 3.1 is a corrected version of Bartoszek and Sagi-
tov [6]’s Lemma 11. There it is wrongly stated that Var

[
E
[
e−2ατ(n) |Yn

]]
= O(n−3)

for all α > 0. From the above we can see that this holds only for α > 3/4. This
does not however change Bartoszek and Sagitov [6]’s main results. If one inspects
the proof of Theorem 1 therein then one can see that for α > 0.5 it is required that
Var
[
E
[
e−2ατ(n) |Yn

]]
= O(n−(2+ε)), where ε > 0. This by Lemma 3.1 holds. Theorem

2 [6] does not depend on the rate of convergence, only that Var
[
E
[
e−2ατ(n) |Yn

]]
→ 0

with n. This is true, just with a different rate.
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Lemma 3.3 Let Ji be a binary random variable indicating if a jump took place on
the i–th (counting from the origin of the tree) speciation event of a randomly sampled
lineage. For a fixed jump probability p we have

Var

[
E

[
ϒ(n)+1

∑
i=2

Jie−2α(tϒ+1+...+ti)|Y ∗n

]]
. p


n−4α 0 < α < 0.25
n−1 lnn α = 0.25
n−1 0.25 < α.

(10)

PROOF We introduce the random variables

Ψ
∗(n) :=

ϒ(n)+1

∑
i=2

Jie−2α(tϒ+1+...+ti)

and

φ
∗
i := Zie−2α(Tn+...+Ti+1) E [1i|Y ∗n ] .

Recall that Zi is the binary random variable if a jump took place at the i–th speciation
event of the tree and 1i the indicator random variable if the i–th speciation event is on
the randomly sampled lineage. Obviously

E
[
Ψ
∗(n) |Y ∗n

]
=

n−1

∑
i=1

φ
∗
i .

Immediately (for i < j)

E [φ ∗i ] = 2p
i+1

bn,2α

bi,2α
,

E
[
φ ∗i φ ∗j

]
= 4p2

(i+1)( j+1)
bn,4α

b j,4α

b j,2α

bi,2α
,

E
[
φ ∗i

2] = p bn,4α

bi,4α
E
[
(E [1i|Y ∗n ])2

]
.

The term E
[
(E [1i|Y ∗n ])2

]
can be [see Lemma 11 in 6] expressed as E

[
1(1)i 1(2)i

]
where

1(1)i and 1(2)i are two independent copies of 1i, i.e. we sample two lineages and ask if
the i–th speciation event is on both of them. This will occur if these lineages coalesced
at a speciation event k ≥ i. Therefore

E
[
1(1)i 1(2)i

]
= 2

i+1

n−1
∑

k=i+1
πk,n +πi,n =

n+1
n−1

2
i+1

(
n−1
∑

k=i+1

2
(k+1)(k+2) +

1
i+2

)
= n+1

n−1
2

i+1

( 2
i+2 −

2
n+1 +

1
i+2

)
= n+1

n−1
6

(i+1)(i+2) −
2

n−1
2

i+1 .

Together with this

E
[
φ
∗
i

2
]
= p

bn,4α

bi,4α

(
n+1
n−1

6
(i+1)(i+2)

− 1
n−1

4
i+1

)
.

Now

9
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Var

[
n−1

∑
i=1

φ
∗
i

]
=

n−1

∑
i=1

(
E
[
φ
∗
i

2
]
− (E [φ ∗i ])

2
)
+2

n−1

∑
i< j

(
E
[
φ
∗
i φ
∗
j
]
−E [φ ∗i ]E

[
φ
∗
j
])

(11)

=
n−1

∑
i=1

(
p

bn,4α

bi,4α

(
n+1
n−1

6
(i+1)(i+2)

− 1
n−1

4
i+1

)
− 4p2

(i+1)2

(
bn,2α

bi,2α

)2
)

+2
n−1

∑
i< j

(
4p2

(i+1)( j+1)
bn,4α

b j,4α

b j,2α

bi,2α

− 4p2

(i+1)( j+1)
bn,2α

bi,2α

bn,2α

b j,2α

)

. 2p
n−1

∑
i=1

1
(i+1)2

(
3

bn,4α

bi,4α

−2p
(

bn,2α

bi,2α

)2
)

I

+4p(n−1)−1
n−1

∑
i=1

bn,4α

bi,4α

(
3

(i+1)2 −
1

i+1

)
II

+8p2
n−1

∑
i< j

(
1

(i+1)( j+1)
b j,2α

bi,2α

(
bn,4α

b j,4α

−
(

bn,2α

b j,2α

)2
))

.
III

We use the equality [cf. Lemma 11 in 6]

a1 · · ·am−b1 · · ·bm =
m

∑
i=1

b1 · · ·bi−1(ai−bi)ai+1 · · ·am

and consider the three parts in turn.

I

n−1
∑

i=1

1
(i+1)2

(
3 bn,4α

bi,4α
−2p

(
bn,2α

bi,2α

)2
)

=
n−1
∑

i=1

1
(i+1)2

((
bn−1,2α

bi,2α

)2(
3n

n+4α
− 2pn2

(n+2α)2

)
+3

n−1
∑

k=i+1

(
bk−1,2α

bi,2α

)2(
k

k+4α
− k2

(k+2α)2

)
bn,4α

bk,4α

)

=
n−1
∑

i=1

1
(i+1)2

((
bn−1,2α

bi,2α

)2
n2

(n+2α)2
(3−2p)n+(3−2p)4α+n−112α2

n+4α
+3

n−1
∑

k=i+1

(
bk−1,2α

bi,2α

)2
k2

(k+2α)2
4α2

k(k+4α)

bn,4α

bk,4α

)
. (3−2p)n−4α

n
∑

i=1
i4α−2 +12α2n−4α

n
∑

i=1
i4α−3

∼


Cn−4α 0 < α < 0.25

Cn−1 lnn α = 0.25
(3−2p)(4α−1)−1n−1 0.25 < α.

II

n−1
n−1
∑

i=1

bn,4α

bi,4α

(
6

(i+1)2 − 1
i+1

)
. 6n−4α−1

n
∑

i=1
i4α−2−n−4α−1

n
∑

i=1
i4α−1 ∼


−(4α)−1n−1 0 < α < 0.25
−n−1 α = 0.25

−(4α)−1n−1 0.25 < α.
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III

n−1
∑

i< j

(
1

(i+1)( j+1)
b j,2α

bi,2α

(
bn,4α

b j,4α
−
(

bn,2α

b j,2α

)2
))

= bn,4α

n−1
∑

i< j

1
(i+1)( j+1)

1
bi,2α b j,2α

n
∑

k= j+1

b2
k,2α

bk,4α

4α2

k(k+4α)

.Cn−4α
n
∑

i< j
i−1+2α j−2+2α ∼


Cn−4α 0 < α < 0.25

Cn−1 lnn α = 0.25
(1−2α)−1(4α−1)−1n−1 0.25 < α < 0.5

n−1 α = 0.5
(2α−1)−1(4α−1)−1n−1 0.5 < α.

Putting these together we obtain

Var
[

n−1
∑

i=1
φ ∗i

]
. pC


n−4α 0 < α < 0.25
n−1 lnn α = 0.25
n−1 0.5 < α.

On the other hand the variance is bounded from below by
III

. Its asymptotic be-
haviour is tight as the calculations there are accurate up to a constant (independent of
p). This is further illustrated by graphs in Fig. 2.
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Figure 2: Numerical evaluation of scaled Eq. (11) for different values of α . The
scaling for left: α = 0.1 equals n−4α , centre: α = 0.25 equals n−1 logn and right α =
1 equals (2p(3− 2p)/(4α − 1)− 4p/(4α) + 32p2α2(1/(8α2) + 1/(2α(2α − 1))−
1/(4α2)−1−1/((2α−1)(4α−1))))n−1. In all cases p = 0.5.

�

Lemma 3.4 Using the same notation as in Lemma 3.3 we have for a fixed jump prob-
ability p

Var

[
E

[
υ(n)+1

∑
i=2

Jie−2α(τ(n)+tυ+...+tυi+1)|Y ∗n

]]
. p


n−4α 0 < α < 0.5,

n−2 lnn α = 0.5,
n−2 0.5 < α.

(12)
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PROOF We introduce the notation

Ψ
(n) :=

υ(n)

∑
i=2

Jie−2α(τ(n)+tυ+...+tυi+1)

and we obviously have

Var

[
E

[
υ(n)

∑
i=2

Jie−2α(τ(n)+tυ+...+tυi+1)|Y ∗n

]]
= E

[(
E
[
Ψ

(n)|Yn

])2
]
−
(

E
[
Ψ

(n)|Yn

])2
.

We introduce the random variable

φi = Zi1ie−2α(Tn+...+Ti+1)

and obviously (for i1 < i2)

E [φi] = 2p
i+1 bn,2α/bi,2α ,

E
[
φ 2

i
]

= 2p
i+1 bn,4α/bi,4α ,

E [φi1φi2 ] = 4p2

(i1+1)(i2+1)
bn,4α

bi2,4α

bi2,2α

bi1,2α
.

As usual let (τ(n)1 ,υ
(n)
1 ,Ψ

(n)
1 ) and (τ

(n)
2 ,υ

(n)
2 ,Ψ

(n)
2 ) be two independent copies of (τ(n),υ(n),Ψ(n))

and now

E
[(

E
[
Ψ(n)|Y ∗n

])2
]
= E

[
E
[
Ψ

(n)
1 |Y ∗n

]
E
[
Ψ

(n)
2 |Y ∗n

]]
= E

[
E
[
Ψ

(n)
1 Ψ

(n)
2 |Y ∗n

]]
= E

[
Ψ

(n)
1 Ψ

(n)
2

]
.

Writing out

Var
[
E
[
Ψ

(n)|Y ∗n
]]

= E
[
Ψ

(n)
1 Ψ

(n)
2

]
−
(

E
[
Ψ

(n)
])2

(13)

=
n−1

∑
k=1

π
2
k,n

( I

k−1

∑
i=1

(
E
[
φ

2
i
]
−E [φi]

2
)
+2

II

k−1

∑
1=i1<i2

(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

)

+2
n−1

∑
1=k1<k2

πk1,nπk2,n

(
k1−1

∑
i=1

(
E
[
φ

2
i
]
−E [φi]

2
)

III

+2
k1−1

∑
1=i1<i2

(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

IV

+2
k1−1

∑
i1=1

k2−1

∑
i2=1

(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

V

)
.

We first observe
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E
[
φ 2

i
]
−E [φi]

2 = 2p
i+1

(
bn,4α

bi,4α
− 2p

i+1

(
bn,2α

bi,2α

)2
)
= 2p

i+1

(
(i+1)2

(i+1+2α)2
(i+1)+(4α−1)+(i+1)−14α(α−1)

(i+1+4α)

bn,4α

bi+4α

+4α2 bn,4α

b2
i,2α

n−1
∑

j=i+2

b2
j,2α

b j,4α

1
j( j+4α) +

(
bn,2α

bi,2α

)2 n(1−2p)+4α(1−2p)+n−14α2

n+4α

)
and

E [φi1φi2 ]−E [φi1 ]E [φi2 ] =
4p2

(i1+1)(i2+1)

(
bn,4α

bi2,4α

bi2,2α

bi1,2α
−
(

bn,2α

bi1,2α

)(
bn,2α

bi2,2α

))
= 4p2

(i1+1)(i2+1)
bn,4α bi2,2α

bi1,2α b2
i2,2α

(
n
∑

j=i2+1

b2
j,2α

b j,4α

4α2

j( j+4α)

)
.

Using the above we consider each of the five components in this sum separately.

I

n−1
∑

k=1
π2

k,n

k−1
∑

i=1

(
E
[
φ 2

i
]
−E [φi]

2
)

. 4pn−4α
n
∑

i=1

(
i4α−1 +(4α−1)i4α−2 +4α(α−1)i4α−3 +4α2i4α−2 +(1−2p)i4α−1

) n
∑

k=i+1
k−4

. pC


n−4α 0 < α < 0.75

n−3 lnn α = 0.75
n−3 0.75 < α

II

n−1
∑

k=1
π2

k,n

k−1
∑

1=i1<i2
(E [φi1φi2 ]−E [φi1 ]E [φi2 ]). 64α2 p2n−4α

n
∑

k=1
k−4

k
∑

i1=1
i2α−1
1

k
∑

i2=i1+1
i2α−2
2

. Cp2



n−4α
n
∑

i1=1
i4α−2
1

n
∑

k=i1+1
k−4 0 < α < 0.5

n−2
n
∑

k=1
k−4

k
∑

i2=2
1 α = 0.5

n−4α
n
∑

i1=1
i4α−2
1

n
∑

k=i1+1
k−4 0.5 < α

.Cp2


n−4α 0 < α < 1

n−4 lnn α = 1
n−4 1 < α

III

n−1
∑

1=k1<k2

πk1,nπk2,n
k1−1
∑

i=1

(
E
[
φ 2

i
]
−E [φi]

2
)

. 8pn−4α
n
∑

i=1

(
i4α−1 +(4α−1)i4α−2 +4α(α−1)i4α−3 +4α2i4α−2 +(1−2p)i4α−1

) n
∑

k1=i+1
k−3

1

. pC


n−4α 0 < α < 0.5

n−2 lnn α = 0.5
n−2 0.5 < α
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IV

n−1
∑

1=k1<k2

πk1,nπk2,n
k1−1
∑

1=i1<i2
(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

. 64α2 p2n−4α
n
∑

1=k1<k2

k−2
1 k−2

2

k1
∑

1=i1<i2

(
i2α−1
1 i2α−2

2

)
. p2C


n−4α 0 < α < 0.75

n−4α lnn α = 0.75
n−3 0.75 < α

V

n−1
∑

1=k1<k2

πk1,nπk2,n
k1−1
∑

i1=1

k2−1
∑

i2=1
(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

. 64α2 p2n−4α
n
∑

1=k1<k2

k−2
1 k−2

2

k1
∑

i1=1

k2
∑

i2=1

(
i2α−1
1 i2α−2

2

)

. 64α2 p2n−4α



n
∑

i1=1
i2α−1
1

n
∑

k1=i1+1
k−2

1

(
n
∑

i2=1
i2α−2
2

n
∑

k2=i2+1
k−2

2

)
α /∈ {0.5,1}

n
∑

k1=1
k−1

1

(
n
∑

k2=k1+1
k−2

2 Hk2

)
α = 0.5

1
2

n
∑

1=k1<k2

k−1
2 α = 1

. p2C



n−2 α = 0.5

n−4α
n
∑

i1=1
i2α−1
1

n
∑

k1=i1+1
k−2

1 α ∈ (0,1)\{0.5}

n−3 α = 1

n−2α−2
n
∑

i1=1
i2α−1
1

n
∑

k1=i1+1
k−2

1 1 < α

. p2C


n−4α 0 < α ≤ 0.5

n−2α−1 0.5 < α < 1
n−3 1≤ α.

Putting I–V together we obtain

Var
[
Ψ

(n)
]
≤ pC


n−4α 0 < α < 0.5

n−2 lnn α = 0.5
n−2 0.5 < α.

The variance is bounded from below by
III

and as these derivations are correct up to
a constant (independent of p) the variance behaves as above. This is further illustrated
by graphs in Fig. 3.

�

4 Proof of the central limit theorem, Theorem 2.1
Lemma 4.1 Conditional on Y ∗n , for given pn,κn > 0 and denoting vn = α p−1

n κn the
first two moments of the scaled sample average are
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Figure 3: Numerical evaluation of scaled Eq. (13) for different values of α . The scaling
for left: α = 0.35 equals n−4α , centre: α = 0.5 equals 16p(1− p)n−2 logn and right
α = 1 equals (32p(1− p)(1/(4α−2)−1/(4α−1))/(4α))n−2. In all cases p = 0.5.

E
[
Y n|Y ∗n

]
= δ ∗n e−αUn

E
[
Y 2

n|Y ∗n
]

= n−1(1−κn)− (1−κn−δ ∗
2

n )e−2αUn +(1−n−1)(1−κn)E
[

e−2ατ
(n)
i j |Y ∗n

]
+n−1vn E

[
ϒ+1
∑

k=2
Jke−2α(tϒ+1+...+tk)|Y ∗n

]
+(1−n−1)vn E

[
υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)|Y ∗n

]
,

Var
[
Y n|Y ∗n

]
= n−1(1−κn)− (1−κn)e−2αUn +(1−n−1)(1−κn)E

[
e−2ατ

(n)
i j |Y ∗n

]
+n−1vn E

[
ϒ+1
∑

k=2
Jke−2α(tϒ+1+...+tk)|Y ∗n

]
+(1−n−1)vn E

[
υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)|Y ∗n

]
,

where Jk is the binary random variable indicating if the jump took place at the k–th
speciation event on the randomly sampled path.

PROOF The first equality is immediate. The variance follows from
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Var [Y1 + . . .+Yn|Y ∗n ] = n(1−κn)(1− e−2αUn)+ vn
n
∑

i=1

ϒi+1
∑

k=2
Jk(i)e

−2α(t(i)
ϒi+1+...+t(i)k )

+2
n
∑

i< j

(
(1−κn)(e

−2ατ
(n)
i j − e−2αUn)+

vn

υ(i, j)+1

∑
k=2

Jk(i, j)e
−2α(τ

(n)
i j +t(i, j)

υ(i, j)+1+...+t(i, j)k )

)
= n(1−κn)−n2(1−κn)e−2αUn +n(n−1)(1−κn)E

[
e−2ατ

(n)
i j |Y ∗n

]
+nvn E

[
ϒ+1
∑

k=2
Jke−2α(tϒ+1+...+tk)|Y ∗n

]
+n(n−1)vn E

[
υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)|Y ∗n

]
This immediately entails the second moment.

�
PROOF OF PART ((I)), α > 0.5
We will show convergence in probability of the conditional mean and variance

(µn,σ
2
n ) :=

(√
nE
[
Y n|Y ∗n

]
,nVar

[
Y n|Y ∗n

]) P−→
(

0,
2α +1
2α−1

)
n→ ∞,

as due to the conditional normality of Y n this will give the convergence of characteristic
functions and the desired weak convergence, i.e.

E
[
eix
√

n·Y n
]
= E

[
eiµnx−σ2

n x2/2
]
→ e−

2α+1
2(2α−1) x2

.

Using Lemma 4.1, the Laplace transform of the average coalescent time [Lemma 3 in
6]

E
[

e−2ατ
(n)
i j

]
=

2− (n+1)(2α +1)bn,2α

(n−1)(2α−1)
=

2
2α−1

n−1 +O(n−2α) (14)

and the following expectations [Appendix A.2 in 5]

E
[

ϒ+1
∑

i=2
e−2α(tϒ+1+...+ti)

]
= 2

2α
(1− (1+2α)bn,2α) =

2
2α

+O(n−2α)

E
[

υ+1
∑

i=2
e−2α(τ+tυ+1+...+ti)

]
= 2

2α

(
2−(2α+1)(2αn−2α+2)bn,2α

(n−1)(2α−1)

)
= 4

2α(2α−1)n−1 +O(n−2α)

(15)
we obtain
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E [µn] = δ ∗n E
[
e−αUn

]
= δ ∗n bn,α = O(n−α),

Var [µn] = n
(

E
[
µ2

n
]
− (E [µn])

2
)
= δ ∗

2
n n
(

E
[
e−2αUn

]
−
(
E
[
e−αUn

])2
)
= δ ∗

2
n n
(
bn,2α −b2

n,α
)

= δ ∗
2

n αnbn,2α

n
∑
j=1

b2
j,α

b j,2α

1
j( j+2α) = O(n−2α+1),

E
[
σ2

n
]

= n
(

n−1(1−κn)− (1−κn)E
[
e−2αUn

]
+(1−n−1)(1−κn)E

[
e−2ατ

(n)
i j

]
+n−1vn E

[
ϒ+1
∑

k=2
Jke−2α(tϒ+1+...+tk)

]
+(1−n−1)vn E

[
υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)

])
= (1−κn)+(1−κn)

2
2α−1 +κn

2
2α

+κn
4

2α(2α−1) +O(n−2α+1)

= (1−κn)
2α+1
2α−1 +κn

2(2α+2)
2α(2α−1) +O(n−2α+1).

We now write out, where ε is an appropriate constant [see Lemma 3.1 and Lemma 11
in 6]

Var
[
σ2

n
]
= n2 Var

[
Var
[
Y n|Y ∗n

]]
= n−2 Var [Var [Y1 + . . .+Yn|Y ∗n ]]

= n−2 Var
[

n(1−κn)−n2(1−κn)e−2αUn +n(n−1)(1−κn)E
[

e−2ατ
(n)
i j |Y ∗n

]
+nvn E

[
ϒ+1
∑

k=2
Jke−2α(tϒ+1+...+tk)|Y ∗n

]
+n(n−1)vn E

[
υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)|Y ∗n

]]
= n−2 Var

[
−n2(1−κn)e−2αUn +n(n−1)(1−κn)E

[
e−2ατ

(n)
i j |Y ∗n

]
+nvn E

[
ϒ+1
∑

k=2
Jke−2α(tϒ+1+...+tk)|Y ∗n

]
+n(n−1)vn E

[
υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)|Y ∗n

]]
≤ 4n−2

(
n4(1−κn)

2 Var
[
e−2αUn

]
+n2(n−1)2(1−κn)

2 Var
[

E
[

e−2ατ
(n)
i j |Y ∗n

]]
+n2v2

n Var
[

E
[

ϒ+1
∑

k=2
Jke−2α(tϒ+1+...+tk)|Y ∗n

]]
+n2(n−1)2v2

n Var
[

E
[

υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)|Y ∗n

]])
≤C

(
n2n−4α +n2n−2−ε +σ2

c,nκnn−1 +n2σ2
c,nκnn−2

)
= O(n−2(2α−1)+n−ε +σ2

c,nκn).

Therefore as we assumed pn → 0 we have Var
[
σ2

n
]
→ 0. Together this implies the

desired L2 and hence in P convergence of (µn,σ
2
n )→ (0,(2α +1)/(2α−1)).

On the other hand

Var
[
σ2

n
]
≥ n−2 Var

[
−n2(1−κn)e−2αUn +n(n−1)vn E

[
υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)|Y ∗n

]]
≥
(

1− 1√
2

)
n−2

(
n4(1−κn)

2 Var
[
e−2αUn

]
+n2(n−1)2v2

y Var
[

E
[

υ+1
∑

k=2
Jke−2α(τ(n)+tυ+1+...+tk)|Y ∗n

]])
= Ω(n−2(2α−1)+σ2

c,nκn).

From these we obtain that the assumption that σ2
c,nκn→ 0 is a necessary one for a CLT

to hold.
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PROOF OF PART ((II))
This is proved in the same way as PART (I) except with the normalizing constant
equalling n ln−1 n.

PROOF OF PART ((III))
We notice that the martingale Hn = (n+ 1)e(α+1)UnY n has uniformly bounded second
moments. Namely by Lemma 4.1 and Cauchy–Schwarz

E
[
H2

n
]
= (n+1)2 E

[
e2(α−1)Un E

[
Y 2

n|Y ∗n
]]
≤Cn2

(
n−1 E

[
e−2(1−α)Un

]
+E

[
e−2(1−α)Un−2ατ

(n)
i j

]
+n−1vn E

[
e−2(1−α)UnΨ∗

(n)
]
+ vn E

[
e−2(1−α)UnΨ(n)

])
≤Cn2

(
n−1n−2(1−α)+n−2(1−α)n−2α

+n−1κnn−2(1−α)n−4α +κnn−2(1−α)n−4α

)
≤C

(
n−1+2α +1+κnn−2α−1 +κnn−2α

)
→C < ∞.

Hence supn E
[
H2

n
]
< ∞ and by the martingale convergence theorem Hn→ H∞ a.s. and

in L2. Notice that this convergence result does not depend on κn → 0. In fact in this
regime κn can be constant (by definition κn ≤ 1). As in Bartoszek and Sagitov [6] we
obtain [Lemma 9 in 6] nαY n → V (α−1)H∞ a.s. as in L2. We may also obtain directly
the first two moments of nαY n,

nα E
[
Y n
]

= δ ∗n nα bn,α → δ ∗∞Γ(1+α)

n2α E
[
Y 2

n

]
= (1−κn)n2α−1− (1−κn−δ ∗

2
n )n2α bn,2α +n2α(1−n−1)(1−κn)E

[
e−2ατ(n)

]
+n2α−1vn E

[
Ψ∗

(n)
]
+n2α vn E

[
Ψ(n)

]
→ −(1−κ∞−δ ∗

2
∞ )Γ(2α +1)+(1−κ∞)

1+2α

1−2α
Γ(1+2α)

=
(

δ ∗
2

∞ +(1−κ∞)
4α

1−2α

)
Γ(1+2α).

Notice that again in this regime the convergence of the moments does not depend on
how κn behaves with n.
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