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Zika virus is a mosquito-borne pathogen that is rapidly spreading across the Americas. 
Due to associations between Zika virus infection and a range of fetal maladies1,2, the 
epidemic trajectory of this viral infection poses a significant concern for the nearly 15 
million children born in the Americas each year. Ascertaining the portion of this 
population that is truly at risk is an important priority. One recent estimate3 suggested that 
5.42 million childbearing women live in areas of the Americas that are suitable for Zika 
occurrence. To improve on that estimate, which did not take into account the protective 
effects of herd immunity, we developed a new approach that combines classic results from 
epidemiological theory with seroprevalence data and highly spatially resolved data about 
drivers of transmission to make location-specific projections of epidemic attack rates. Our 
results suggest that 1.65 (1.45–2.06) million childbearing women and 93.4 (81.6–117.1) 
million people in total could become infected before the first wave of the epidemic 
concludes. Based on current estimates of rates of adverse fetal outcomes among infected 
women2,4,5, these results suggest that tens of thousands of pregnancies could be negatively 
impacted by the first wave of the epidemic. These projections constitute a revised upper 
limit of populations at risk in the current Zika epidemic, and our approach offers a new 
way to make rapid assessments of the threat posed by emerging infectious diseases more 
generally. 
 
On February 1, 2016, the World Health Organization (WHO) designated the ongoing Zika virus 
epidemic in the Americas as a Public Health Emergency of International Concern (PHEIC), 
defined as an “extraordinary event” that “potentially require[s] a coordinated international 
response”6. This declaration acknowledges the high potential for Zika to establish across the 
Americas given that its dominant vector, the Aedes aegypti mosquito, is endophilic and occupies 
an exceptionally broad range7. Concern underlying this rare WHO declaration also stems from an 
association between Zika virus infection in pregnant women and a range of adverse fetal 
outcomes2, most notably congenital microcephaly1. As of April 28, 2016, there were 1,286 
confirmed cases of microcephaly associated with Zika virus infection in five countries8, and 
there is widespread concern that these numbers could increase further as the virus continues to 
spread across the Americas9. 
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A number of uncertainties surround the future of the Zika epidemic in the Americas, particularly 
questions about how many women may be at risk of having children with congenital 
microcephaly and other adverse outcomes associated with Zika virus infection10. Of women who 
become infected with Zika virus during a vulnerable stage of their pregnancy, evidence is 
emerging that 1-13% may go on to develop congenital microcephaly2,4,5. However, the number 
of women who become infected with Zika virus during that timeframe is difficult to ascertain. 
One recent study3 estimated that 5.42 million births occurred in 2015 in regions of the Americas 
with “suitability” for Zika “occurrence.” Such estimates come with many caveats though, as they 
rely on a relatively limited number of reported cases and apply a method based on equilibrium 
assumptions to a situation involving active range expansion11. Most importantly, the estimate of 
5.42 million births3 reflects the total population within a demarcated area and does not take into 
account that large fractions of the populations in those areas may remain uninfected due to herd 
immunity and other factors12,13. 
 
To quantify the potential magnitude of the ongoing Zika epidemic in terms of people who 
realistically might become infected, we formulated and applied a method for projecting location-
specific epidemic attack rates on highly spatially resolved human demographic projections14. The 
central concept behind our approach is that of the “first-wave” epidemic. Zika and other 
mosquito-borne viruses have been known to exhibit explosive outbreaks, infecting as much as 
75% of a population in a single year15. Classical epidemiological theory predicts that some 
proportion of a population will remain uninfected during an epidemic, because herd immunity 
eventually causes the epidemic to burn out12. A related prediction of this theory is that the 
proportion infected prior to epidemic burnout (i.e., the epidemic attack rate) has a one-to-one 
relationship with the basic reproduction number, R0

13. The latter quantity has a well-known 
mechanistic formulation for mosquito-borne pathogens16 that accommodates the effects of 
environmental drivers on transmission17,18. For example, the incubation periods of dengue 
viruses in the Ae. aegypti mosquitoes that transmit Zika virus have an empirically derived 
relationship with temperature18, which can in turn be used to inform calculations of R0. Together 
with similar relationships for other transmission parameters, it is possible to characterize R0, a 
fundamental measure of transmission potential, as a function of local environmental conditions. 
 
We leveraged these classic results from epidemiological theory to first perform highly spatially 
resolved calculations of R0 and then to translate those calculations into location-specific 
projections of first-wave epidemic attack rates (Fig. 1a). Because Zika-specific values of 
transmission parameters are largely unknown at present but may be well approximated by 
dengue-specific values19, we used some parameter values for dengue virus in our R0 calculations. 
We furthermore calibrated our attack rate projections to match empirically estimated attack rates 
from 12 chikungunya epidemics and one Zika epidemic in naïve populations (Extended Data 
Table 1). This step afforded us the flexibility to enhance the realism of the model with respect to 
firmly established but poorly quantified associations between human-mosquito contact and 
economic prosperity20. In doing so, one departure from the classic relationship between R0 and 
attack rate that we made was to rescale R0 by an exponent 𝛼 ∈ (0,1] to allow for better 
correspondence with observed attack rates. Although there is no theoretical justification for this 
or any other particular scaling relationship, it is consistent with theoretical expectations21 that 
attack rates should be lower in populations with equal R0 values but more heterogeneous contact 
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patterns, which are typical for transmission by Ae. aegypti22. To provide a point of reference for 
our model-based approach, we also fitted a statistical description of the 13 seroprevalence 
estimates as a function of the environmental drivers that we considered. For both approaches, we 
applied their respective location-specific attack rate projections to demographic projections on a 
5x5 km grid across Latin America and the Caribbean to obtain expected numbers of infections in 
the overall population and among childbearing women in particular (Fig. 1c). All such 
calculations were performed for 1,000 Monte Carlo samples of model parameters. 
 
In total, our median projection suggests that as many as 93.4 (range: 81.6-117.1) million people 
in Latin America and the Caribbean could become infected during the first wave of the epidemic 
(Fig. 1b). To place this number into context, we refer to an estimate23 that 53.8 (40.0–71.8) 
million dengue infections occurred in this region in 2010 alone. Our projections of nearly double 
this number for Zika are not surprising, given that there is extensive immunity to dengue but not 
Zika in this region and given that it would likely take longer than a year for the first wave of the 
epidemic to conclude in all locations within this region. At the country level, we project that 
Brazil will have the largest total number of infections by more than double that of any other 
country, due to a combination of its size and suitability for transmission. Island countries in the 
Caribbean are projected to experience the highest nationally averaged attack rates, with 7 of the 
highest 10 values projected for countries including Aruba, Haiti, and Cuba. This projection is 
consistent with a frequent history of arbovirus outbreaks on islands24 and may owe to the 
uniformity of environmental conditions on the portions of islands where people tend to live. In 
more heterogeneous regions, the 5x5 km spatial resolution of our maps allows for nuanced 
projections for areas of interest to local stakeholders (Fig. 1d,e). 
 
Among childbearing women, our median projection suggests that there could be as many as 1.65 
(range: 1.45–2.06) million infections in Latin America and the Caribbean before the first wave of 
the epidemic concludes (Fig. 1b). Assuming that birth rates are temporally constant, our 
projections are robust to uncertainty about the timing of local epidemics and the timeframe of the 
first wave of the epidemic, because they are based on cumulative proportions infected. These 
projections can also be used to postulate numbers at risk of microcephaly by multiplying them by 
the fraction of a year in which a pregnant woman is susceptible to developing microcephaly (e.g., 
multiply by 1/4 in the case of first-trimester susceptibility). We also note that there were some 
discrepancies in our projections in terms of the rank order of countries experiencing the most 
infections among childbearing women versus the population as a whole. In particular, Cuba was 
5th in terms of projected infections in the overall population but 12th in terms of infections among 
childbearing women due to its low birth rate compared to other countries in the Americas25. Such 
discrepancies are also likely to exist subnationally26, and their elucidation should be a priority for 
future work.  
 
By accounting for uncertainty distributions for each of the key drivers of our model (Fig. 2a-e), 
we found that uncertainty distributions for infections across the region as a whole and by country 
were often multimodal (Fig. 2f-o) due to uncertainty in the shape of the relationship between 
mosquito-human contact and the local economic index that we considered (Fig. 2d). Summing 
our projections across Latin America and the Caribbean revealed variation that was modest, in 
the sense that none of our 1,000 Monte Carlo samples resulted in fewer than 81 million 
infections overall and 1.4 million among childbearing women (Fig. 2f,k). There are many 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2016. ; https://doi.org/10.1101/039610doi: bioRxiv preprint 

https://doi.org/10.1101/039610
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   4 

reasons that even these numbers could be overestimates though. Our projections are conditioned 
on a local epidemic taking place in each 5x5 km grid cell in the region, which is unlikely to 
happen given dispersal limitation, stochastic fadeout, geographic mismatches in seasonality, and 
other factors. Therefore, it is most appropriate to interpret our projections as either a plausible 
worst-case scenario or an expectation of local epidemic size conditional on there being a local 
epidemic in the first place.  
 
Although our approach was very much rooted in mechanistic models from epidemiological 
theory, two critical steps in our method involved fitting curves to describe theoretically 
motivated but heretofore unknown relationships: an association between mosquito-human 
contact and economic prosperity (Fig. 2d), and a scaling relationship between R0 and attack rates 
(Fig. 2e). Allowing these relationships to be informed by local seroprevalence estimates 
(Extended Data Table 1) left open the question of the extent to which our projections were 
informed by the mechanistic assumptions of the model versus statistical fits to the 
seroprevalence estimates that we used. On the one hand, an alternative statistical approach 
accounted for much more variation in seroprevalence estimates (R2=0.89) than did the model-
based approach (R2=0.32). On the other hand, the statistical approach offered a dichotomous set 
of projections about numbers of infections outside the context of the data to which it was fitted: 
either everyone will become infected or very few people will (Fig. 3). Relationships between 
attack rates and predictor variables inferred by the statistical approach (Fig. 4d-i) were also 
implausible: a narrow temperature range in which attack rates increase sharply towards 100% 
(Fig. 4d-h), and a reversal of economic effects whereby wealthy populations experience higher 
attack rates than poor populations when mosquito occurrence probabilities are high (Fig. 4f,i). 
By contrast, the model-based approach yielded more moderate attack rate projections overall 
(Fig. 2f vs 3a) in which temperature, economic prosperity, and mosquito occurrence probability 
all had plausible relationships with attack rates (Fig. 4a-c). 
 
In conclusion, our model-based approach offers a unique way to leverage a variety of spatially 
detailed data products7,14,27,28 to make a priori projections of attack rates and infections that could 
be experienced in the first wave of the ongoing Zika epidemic. Projections such as these have an 
important role to play in the early stages of an epidemic, when planning for surveillance and 
outbreak response is actively underway both internationally and locally9. At the same time, it is 
important for consumers of this information to be aware of uncertainties in these and other 
projections, which often exceed the amount of uncertainty that can be identified a priori29. 
Likewise, following up on these projections in the aftermath of the epidemic—by comparing 
against projections made with alternative models and additional serological surveys30—will 
provide an exceptional opportunity to enhance capabilities to anticipate the severity of future 
epidemic threats. 
 
METHODS 
Data sources and processing 
Human demography 
To estimate the annual numbers of pregnancies per 1x1 km grid cell in 2015, methods developed 
by the WorldPop project (www.worldpop.org25,31) were adapted for the Americas region. High-
resolution estimates of population counts per 100x100 m grid cell for 2015 were recently 
constructed for Latin American, Asian, and African countries14,32. With consistent subnational 
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data on sex and age structures, as well as subnational age-specific fertility rate data across the 
Americas currently unavailable for fully replicating the approaches of Tatem et al.31, national 
level adjustments were made to construct pregnancy and birth counts. Data on estimated total 
numbers of births33 and pregnancies31 occurring annually in 2012 were assembled for all Latin 
American study countries, as well as births in 201533. As no 2015 pregnancy estimates existed at 
the time of writing, the ratios of births to pregnancies for each country in the Americas were 
calculated using 2011 and 2012 estimates, and these were then applied to the 2015 births 
numbers to obtain 2015 estimates of annual pregnancy numbers per-country. This made the 
assumption that per-country births-to-pregnancies ratios remained the same in 2015 as they were 
in 2011 and 2012. The 100x100 m gridded population totals were aggregated to 1x1 km spatial 
resolution, and the per-country totals were linearly adjusted to match the 2015 pregnancy 
estimates. 
 
Temperature 
We used interpolated meteorological station temperature data from the 1950-2000 period at 5x5 
km spatial resolution, processed to create climatological monthly averages that represent 
“typical” conditions (www.worldclim.org27). 
 
Aedes aegypti occurrence probability 
To predict the likely distribution of Aedes aegypti mosquitoes, Kraemer et al.7 generated high-
resolution occurrence probability surfaces based on a species distribution modeling approach11. 
More specifically, a boosted regression tree model was applied using a comprehensive set of 
known occurrences (n = 19,930) of Ae. aegypti and a set of environmental predictors known to 
influence the distribution of the species7. Covariates included a temperature suitability index17, 
contemporary mean and range maps of the Enhanced Vegetation Index and precipitation34, and 
an urbanization index from the Global Rural Urban Mapping Project. We used a set of 100 
spatial layers sampled from the posterior distribution estimated by Kraemer et al.7. 
 
Economic index 
To account for socio-economic differences among populations residing in different regions, we 
used one-degree resolution gridded estimates of purchasing power parity (PPP) in U.S. Dollars 
from 2005 adjusted for inflation (G-Econ)28. When we encountered missing values, we imputed 
values in one of two ways. Grid cells in small island countries with data missing for the entire 
country were uniformly filled with population-adjusted PPP figures obtained from the U.S. CIA 
World Factbook35. Missing values in continental grid cells were imputed with the mean of the 
surrounding eight grid cell values. Once we obtained a complete PPP grid layer at one-degree 
resolution, we resampled the layer to a resolution of 5x5 km to match the resolution of gridded 
layers for human demography, temperature, and Ae. aegypti occurrence probability. 
 
Seroprevalence estimates 
To calibrate our model, we identified published estimates of seroprevlance that were relevant to 
the context of our study (Extended Data Table 1). Specifically, we sought estimates of 
seroprevalence to either Zika or chikungunya viruses in populations that were presumably naïve 
prior to an outbreak. Thus, we excluded some seroprevalence estimates that were obtained from 
endemic populations. We also excluded estimates from small islands—namely, Reunion and 
Grande Comore—for which it was clear that gridded temperature data were unrealistically low 
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due to steep elevational gradients and other features of island geography. Although the focus of 
our analysis was on Latin America and the Caribbean, we were not able to exclude locations on 
the basis of location given that only 2/13 came from the focal region. Appropriately however, a 
number of the seroprevalence estimates we obtained pertained specifically to pregnant women, 
although there did not appear to be differences in the seroprevalence of pregnant women and the 
population at large, at least in the context of a naïve population following an outbreak36. 
 
Calculation of derived quantities 
Mosquito abundance 
Occurrence probabilities can be translated into proxies for abundance provided that an 
assumption is made about how abundance is distributed as a random variable37. Assuming that 
mosquito abundance is distributed as a Poisson random variable, the probability that there is at 
least one mosquito present in a given location is 1− exp −𝜆 , where 𝜆 is the expected 
abundance of mosquitoes. Inverting this relationship, we obtained an estimate 𝜆 = − ln 1−
occurrence  probability  of expected mosquito abundance under the Poisson model and used 
this as a proxy for mosquito abundance in our calculations. 
 
Mosquito-human ratios 
The estimates of mosquito occurrence probability that we used incorporated a number of 
environmental variables7. They did not account for factors that modulate contact between 
mosquitoes and humans, however. Due in part to economic differences, factors such as air 
conditioning and piped water can drastically limit mosquito-human contact and virus 
transmission, even when mosquitoes are abundant20. We accounted for the effect of economic 
differences between locations by multiplying our proxy for mosquito abundance 𝜆 by a 
multiplication factor modeled with a function of the gross cell product economic index that we 
fitted to match our attack rate projections with published seroprevalence estimates. We fitted this 
function describing the multiplication factor using a shape constrained additive model 
(SCAM38), because relationships between mosquito-human ratios and economic indices should 
be monotonically decreasing, nonlinear, and without a predictable functional form. The response 
variable to which we fitted this relationship was a set of scalar multiples of expected mosquito 
abundances that would result in a perfect correspondence between attack rates derived from our 
model and published seroprevalence estimates. 
 
Basic reproduction number R0 
We calculated the basic reproduction number R0 according to its classic Ross-Macdonald 
formulation and as a function of temperature T, 

𝑅! 𝑇 =
𝑚𝑏𝑐𝑎!𝑒!! ! ! !

𝜇 𝑇 𝑟   ,                              (1) 

with adult mosquito mortality 𝜇 and extrinsic incubation period n specified as functions of 
temperature. Because temperature values were available for each location on a monthly basis, we 
computed monthly values of R0 for each location and then used the mean of the highest six 
monthly values of R0 as a singular estimate of R0 for each location. This approach was broadly 
consistent with the way in which a temperature suitability index was used to inform mosquito 
occurrence probabilities by Kraemer et al.7. 
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For mosquito mortality, we used the temperature- and age-dependent model of Brady et al.39, to 
which we added an additional force of extrinsic mortality (0.025 d-1) to match an overall daily 
mortality value of 0.115 estimated in a mark-release-recapture experiment carried out under 
temperatures ranging 20–34 °C 40. We then computed the mean of the age- and temperature-
dependent lifespan distribution as a function of temperature to inform 𝜇 𝑇 . For the relationship 
between temperature and mean duration of the extrinsic incubation period, we used the 
temperature-dependent exponential rate estimated by Chan and Johansson18. The ratio of 
mosquitoes to humans, m, was quantified using a combination of occurrence probabilities and 
the gross cell product economic index, as described in the previous two sections. Parameters that 
did not depend on temperature were set at the following values according to published estimates 
for Ae. aegypti and dengue virus: mosquito-to-human transmission probability, b = 0.4 41; 
human-to-mosquito transmission probability times number of days of human infectiousness,       
c / r = 3.5 42; and mosquito biting rate, a = 0.67 43. Although there is uncertainty around these 
parameter values, any such uncertainty was effectively subsumed by fitting m to seroprevalence 
data given that bca2/r entered R0 as a constant. 
 
Attack rates under a model-based formulation 
Under a susceptible-infected-recovered (SIR) transmission model, there is a one-to-one 
relationship between R0 and final epidemic size, which is equivalent to the attack rate over the 
course of an epidemic13. Intuitively, the final epidemic size is reached once herd immunity is 
sufficient to limit contacts between infectious and susceptible individuals to the extent necessary 
to reduce the pathogen’s force of infection to zero. There is no explicit solution for final 
epidemic size as a function of model parameters, but it can be calculated numerically by 
obtaining an implicit solution of 𝑆! = 𝑒!!! !!!!  for 𝑆!, which is the proportion remaining 
susceptible after the epidemic has burned out13. Under the assumptions of the SIR model, the 
attack rate over the course of an epidemic is 𝐴𝑅 = 1− 𝑆!. 
 
To apply this theoretical insight to Zika or other mosquito-borne pathogens, several limiting 
assumptions of the SIR model must first be reconciled. One such assumption is that individuals 
become infectious immediately upon becoming infected and remain infectious for an 
exponentially distributed period of time44; mosquito-borne pathogens such as Zika virus are 
instead characterized by a distinct lag between human and mosquito infection45. Despite this 
discrepancy between assumptions of the SIR model and the reality of many pathogen systems, 
mathematical analyses46 have shown that final epidemic size is insensitive to details about the 
shape of the distribution that characterizes the time period between successive cases (i.e., the 
generation interval). 
 
Another limiting assumption of the SIR model is that of homogeneous encounters between 
people and mosquitoes44, which are understood to be extensive for mosquito-borne diseases22. 
Mathematical analyses21 in this case show that a seemingly infinite complexity of relationships 
between R0 and final epidemic size are possible in a heterogeneous system. As a general rule, 
however, final epidemic size in a system with contact heterogeneity and proportional mixing is 
expected to be strictly less than the final epidemic size in an otherwise equivalent system with 
homogeneous contacts21. How the ratio of these final epidemic sizes scales as a function of R0 
depends entirely on the details of a given system and has so far not been generalized 
mathematically. 
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To capture the potentially very strong effects of heterogeneity in reducing final epidemic size in 
populations subject to Zika epidemics, we scaled final epidemic size by substituting 𝑅!! for R0 in 
the SIR-based final epidemic size formula given some constant 𝛼 ∈ 0,1 . Although there is no 
theoretical justification for this or any other choice of how to scale R0 and AR in the presence of 
contact heterogeneity, the choice we made has the following desirable properties: (1) it implies 
that 𝐴𝑅 → 1 as 𝑅! → ∞; (2) it leads to the function AR(R0) having a more gradual slope and 
thereby allowing for intermediate attack rates to be more common than they would be otherwise; 
and (3) it preserves the property that 𝐴𝑅 = 0 for 𝑅! < 1. At the same time, this and possible 
alternative formulations are limited by a general lack of understanding about the relationship 
between R0 and AR in heterogeneous systems, relationships that may furthermore be 
heterogeneous themselves across different areas47. 
 
To estimate 𝛼, we performed the following procedure for candidate values of 𝛼 between 0.01 
and 1 in increments of 0.01: (1) calculate R0 according to eqn. 1 and assuming m = 1 for each of 
the 13 sites from which seroprevalence estimates were derived; (2) use those R0 values to 
calculate AR values for each of those sites based on the classic SIR formulation; (3) calculate 
what multiplication factor of R0 would be necessary for AR to match the empirical 
seroprevalence estimate; (4) fit a SCAM model of the economic index to the multiplication 
factors; and (5) use the fitted SCAM values to recalculate R0 and then AR for each site. Next, we 
calculated the sum of squares between the final predicted AR values associated with each 𝛼 and 
the empirical seroprevalence estimates, and we then selected the value of 𝛼 that minimized the 
sum of squares. Extended Data Figure 1 illustrates this process given mean estimates of Ae. 
aegypti occurrence probabilities, 𝜇 𝑇 , and n(T). 
 
Attack rates under a statistical formulation 
As an alternative to our model-based characterization of attack rates, we also considered a purely 
statistical approach that modeled probit-transformed seroprevalence observations as functions of 
averaged monthly temperatures, Ae. aegypti occurrence probabilities, and the economic index. 
We considered all combinations of linear, quadratic, and pairwise interaction terms of these 
variables, comparing them on the basis of Akaike Information Criterion using the lm and step 
functions in R48. Although additional functional forms would have been of interest, this suite of 
models was as complex as the limited set of 13 seroprevalence observations would support. 
 
Quantifying uncertainty around attack rate projections 
To quantify uncertainty associated with our projections, we generated 1,000 Monte Carlo 
samples from the uncertainty distributions of each model parameter. For 𝜇 𝑇  and n(T), we took 
random draws of their parameters consistent with published descriptions of uncertainty in the 
parameters of these functions from their original sources17,18. For Ae. aegypti occurrence 
probabilities, we drew randomly with replacement from 100 sample layers from the posterior 
distribution7. For the relationship involving the economic index and the R0 scaling factor 𝛼, we 
used best-fit SCAM models and 𝛼 values corresponding to each set of random draws of the 
parameters of 𝜇 𝑇 , n(T), and the Ae. aegypti layers. For each of the 1,000 Monte Carlo samples 
of the statistical model, we performed resampling with replacement among the 13 seroprevalence 
values, performed the same model fitting and model selection procedure described in the 
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previous section, and took a multivariate normal random sample of the parameter values of the 
best-fit model based on the model’s best-fit parameters and variance-covariance matrix. 
 
Projecting attack rates and numbers of infections 
To obtain estimates of numbers of infections in total and among childbearing women for the 
model-based and statistical approaches, we multiplied their respective attack rate projections 
applied to 5x5 km grids across Latin America and the Caribbean by human demographic layers 
for total population and births in 2015. For both the model-based and statistical approaches, we 
performed these calculations and summed at the country level once for each of the 1,000 Monte 
Carlo samples that we produced. High-resolution spatial projections of attack rates and numbers 
of infected childbearing women under the model-based approach are presented in Extended Data 
Figs. 2-10. Most projections based on the statistical approach resulted in attack rates of 100% in 
nearly all locations throughout Latin America and the Caribbean. 
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FIGURES 
 
Figure 1. Spatial projections of location-specific epidemic attack rates (a) that combine with 
demographic projections14 to yield projections of total numbers of Zika infections in all people 
and in childbearing women, which can either be summarized by country (b) or on a map (c). 
More detailed spatial projections of infections among childbearing women are shown for two 
areas: Cali, Colombia (d) and Recife, Brazil (e). 
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Figure 2. Monte Carlo samples from the uncertainty distributions surrounding each of the key 
drivers in the model (a-e) and uncertainty distributions for projected numbers of infections 
among all individuals (f-j) and among childbearing women (k-o) in different areas. All panels 
reflect the full range of uncertainty considered in 1,000 Monte Carlo samples. Panel a shows 
posterior distributions of mosquito occurrence probabilities for two example 5x5 km grid cells. 
 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2016. ; https://doi.org/10.1101/039610doi: bioRxiv preprint 

https://doi.org/10.1101/039610
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   14 

Figure 3. Projected numbers of infections among all individuals (a-e) and among childbearing 
women (f-j) for 1,000 Monte Carlo samples from the uncertainty distribution around parameters 
of the statistical model that was fitted to seroprevalence estimates from Extended Data Table 1. 
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Figure 4. Relationships between temperature (x-axis), economic index (red = low, green = high), 
mosquito occurrence probabilities (columns), and projected epidemic attack rates (y-axis). These 
relationships are shown for the model-based approach (a-c), the full statistical approach (d-f), 
and the version of the statistical approach chosen by stepwise model selection (g-i). 
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EXTENDED DATA 
 
Extended Data Table 1. Seroprevalence estimates for Zika and chikungunya viruses in the 
context of recent oubtreaks in a previously susceptible population. 
 
Seroprevalence Virus Location Reference 

0.75 CHIKV Lamu Island, Kenya 15 
0.73 ZIKV Yap Island, Federated States of Micronesia 49 
0.446 CHIKV Mananjary, Madagascar 50 
0.26 CHIKV Mayotte Island, Union of the Comoros 51 
0.24 CHIKV Orissa, India 52 
0.227 CHIKV Manakara, Madagasar 50 
0.169 CHIKV Saint Martin 53 
0.103 CHIKV Emilia-Romagna, Italy 54 
0.039* CHIKV Managua, Nicaragua 55 
0.031 CHIKV Moramanga, Madagascar 50 
0.011 CHIKV Ambositra, Madagascar 50 
0.01 CHIKV Ifanadiana, Madagascar 50 
0.0 CHIKV Tsiroanomandidy, Madagascar 50 

* This estimate was based on a clinical attack rate of 0.029 and an assumed reporting rate of 0.75. 
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Extended Data Figure 1. Relationships between the basic reproduction number R0 (x-axis) and 
epidemic attack rates (y-axis) under different model assumptions (a-c). In each panel, the curve 
shows this relationship under a given set of model assumptions and the points represent the 13 
seroprevalence estimates (ED Table 1) mapped on to the R0-axis based on conditions at the sites 
where those data were collected. (a) R0 calculations according to eqn. 1 under the assumption 
that m = 1 and with parameter 𝛼 = 1 determining the shape of the curve. (b) R0 calculations 
according to eqn. 1 under the assumption that m is determined by a SCAM model of the 
economic index and with parameter 𝛼 = 1. (c) Same as b but with with parameter 𝛼 = 0.13 fitted 
by least squares and a separate SCAM model fitted conditional on 𝛼. 
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Extended Data Figure 2. Gridded spatial projections of median epidemic attack rates at 5x5 km 
resolution in Latin America and the Caribbean. Each grid cell is shaded according to the median 
epidemic attack rate for that grid cell from the distribution of 1,000 Monte Carlo samples. 
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Extended Data Figure 3. Gridded spatial projections of minimum epidemic attack rates at 5x5 
km resolution in Latin America and the Caribbean. Each grid cell is shaded according to the 
minimum epidemic attack rate for that grid cell from the distribution of 1,000 Monte Carlo 
samples. 
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Extended Data Figure 4. Gridded spatial projections of maximum epidemic attack rates at 5x5 
km resolution in Latin America and the Caribbean. Each grid cell is shaded according to the 
maximum epidemic attack rate for that grid cell from the distribution of 1,000 Monte Carlo 
samples. 
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Extended Data Figure 5. Gridded spatial projections of median infections among the total 
population at 5x5 km resolution in Latin America and the Caribbean. Each grid cell is shaded 
according to the median number of infections for that grid cell from the distribution of 1,000 
Monte Carlo samples. 
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Extended Data Figure 6. Gridded spatial projections of minimum infections among the total 
population at 5x5 km resolution in Latin America and the Caribbean. Each grid cell is shaded 
according to the minimum number of infections for that grid cell from the distribution of 1,000 
Monte Carlo samples. 
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Extended Data Figure 7. Gridded spatial projections of maximum infections among the total 
population at 5x5 km resolution in Latin America and the Caribbean. Each grid cell is shaded 
according to the maximum number of infections for that grid cell from the distribution of 1,000 
Monte Carlo samples. 
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Extended Data Figure 8. Gridded spatial projections of median infections among childbearing 
women at 5x5 km resolution in Latin America and the Caribbean. Each grid cell is shaded 
according to the median number of infections for that grid cell from the distribution of 1,000 
Monte Carlo samples. 
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Extended Data Figure 9. Gridded spatial projections of minimum infections among 
childbearing women at 5x5 km resolution in Latin America and the Caribbean. Each grid cell is 
shaded according to the minimum number of infections for that grid cell from the distribution of 
1,000 Monte Carlo samples. 
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Extended Data Figure 10. Gridded spatial projections of maximum infections among 
childbearing women at 5x5 km resolution in Latin America and the Caribbean. Each grid cell is 
shaded according to the maximum number of infections for that grid cell from the distribution of 
1,000 Monte Carlo samples. 
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