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Zika virus is a mosquito-borne pathogen that is rapidly spreading across the Americas1. 
Due to a probable association between Zika virus infection and a congenital neurological 
disorder called microcephaly2, the epidemic trajectory of this viral infection poses a 
significant concern for the nearly 15 million children born in the Americas each year. The 
potential magnitude of the ongoing Zika epidemic is exceedingly difficult to gauge based on 
existing data3, due to a number of uncertainties that cloud the relationship between 
observed cases and true infections. As an alternative to methods that depend on unreliable 
case data, we developed and applied a new method that leverages highly spatially resolved 
data about drivers of Zika transmission to project that 1.1 (1.0–1.9) million infections in 
childbearing women and 64.2 (53.6–108.1) million infections across all demographic strata 
could occur before the first wave of the epidemic concludes. Our projection is largely 
consistent with annual, region-wide estimates of 53.8 (40.0–71.8) million infections by 
dengue virus4, which has many similarities to Zika. Our projection is also consistent with 
state-level data from Brazil on confirmed, Zika-associated microcephaly cases5, and it 
suggests that the current epidemic has the potential to negatively impact tens of thousands 
of pregnancies. These projections constitute an important early contribution to efforts to 
understand the potential magnitude of the Zika epidemic, and our methods offer a new 
way to make rapid assessments of the threat posed by emerging infectious diseases. 
 
On February 1, 2016, the World Health Organization (WHO) designated the ongoing Zika virus 
epidemic in the Americas as a Public Health Emergency of International Concern (PHEIC), 
defined as an “extraordinary event” that “potentially require[s] a coordinated international 
response”6. This declaration acknowledges the high potential for Zika to establish across the 
Americas given that its dominant vector, Aedes aegypti mosquitoes, are endophilic and occupy 
an exceptionally broad range7. Concern underlying this rare WHO declaration also stems from an 
association between Zika virus infection in pregnant women and congenital microcephaly in 
their babies8. Nearly 5,000 cases of microcephaly have been documented in areas experiencing 
Zika virus transmission5, and there is widespread concern that these numbers could grow rapidly 
as the virus sweeps across the Americas1,9. 
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A number of uncertainties surround the future of Zika in the Americas, including uncertainty 
about the causal relationship between Zika and microcephaly10, as well as unexplained 
discrepancies in estimated microcephaly rates in different regions. Adding to these uncertainties 
is poor understanding of how many childbearing women may be at risk of Zika virus infection 
and possible microcephaly3. This latter uncertainty is extremely difficult to address directly, 
because an estimated 80% of infections are asymptomatic11 and diagnostics for ascertaining 
recent Zika virus infection are further confounded in areas where related arboviruses circulate1. 
Compounding these problems are variable access to healthcare and inconsistent case reporting12. 
These numerous uncertainties largely invalidate methods that depend on case data13 and render 
the interpretation of epidemiological patterns a formidable challenge. 
 
To quantify the potential magnitude of the ongoing Zika epidemic, we formulated and applied a 
method for projecting location-specific epidemic attack rates on highly spatially resolved human 
demographic projections14. The central concept behind our approach is that of the “first-wave” 
epidemic. Zika and other arboviruses have been known to exhibit explosive outbreaks, infecting 
as much as 75% of a population in a single year15. Classical epidemiological theory predicts that 
some proportion of a population will always remain uninfected during an epidemic, because herd 
immunity eventually causes the epidemic to burn out16. A related prediction of this theory is that 
the proportion infected prior to burnout (i.e., the epidemic attack rate) has a one-to-one 
relationship with the basic reproduction number, R0

17. The latter quantity has a well-established 
mechanistic formulation for mosquito-borne pathogens18 that easily accommodates the effects of 
environmental drivers on transmission19. For example, the incubation periods of viruses in the 
Ae. aegypti mosquitoes that transmit Zika virus have a well-characterized relationship with 
temperature20, which can in turn be used to inform calculations of R0. Together with similar 
relationships for other transmission parameters, it is possible to characterize R0, a fundamental 
measure of transmission potential, as a function of local environmental conditions21,22. 
 
We leveraged these classic results from epidemiological theory to first perform highly spatially 
resolved calculations of R0 (Fig. 1a) and then to translate those calculations into location-specific 
projections of first-wave epidemic attack rates (Fig. 1b). Because values of transmission 
parameters for Zika virus are unknown, we used well-established parameter values for dengue 
virus in our R0 calculations. We furthermore calibrated our attack rate projections to match 
empirically estimated attack rates from 12 chikungunya epidemics and one Zika epidemic 
(Extended Data Table 1). These calibration steps enhanced the realism of the model with respect 
to the intensely heterogeneous nature of arbovirus transmission23 and with respect to differences 
in human-mosquito contact associated with economic disparities24. The final step in our analysis 
was to apply our projected attack rates to spatially gridded demographic projections (Fig. 1c) to 
obtain expected numbers of infections in the overall population and among childbearing women 
in particular (Fig. 1d). All calculations were performed on a 5x5 km grid across Latin America 
and the Caribbean. 
 
Our results are among the very first projections of the potential magnitude of the ongoing Zika 
epidemic in the Americas. In total, we project that 64.2 (53.6–108.1) million people in the 
Americas could be infected during the first wave of the epidemic (Fig. 1e). This total is 
consistent with an estimate of 53.8 (40.0–71.8) million dengue infections in this region in 2010 
alone4. Indeed, it is reasonable to expect Zika incidence to be higher than dengue incidence given 
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that far more people are currently susceptible to Zika. At the country level, we project that Brazil 
will have the largest total number of infections by more than three fold, due to a combination of 
its size and suitability for transmission. Island countries in the Caribbean are projected to 
experience the highest nationally averaged attack rates, with 14 of the highest 20 values 
projected for countries including Aruba, Haiti, and Cuba. This projection is consistent with a 
frequent history of arbovirus outbreaks on islands25 and likely owes to the uniformity of 
environmental conditions on portions of islands where people live. In more heterogeneous 
regions, the 5x5 km spatial resolution of our maps allows for nuanced projections for areas of 
interest to local stakeholders (Fig. 1d). 
 
We also projected numbers of Zika virus infections in childbearing women, because Zika’s 
disease burden is expected to derive disproportionately from microcephaly following prenatal 
exposure8. Our results indicate that 1.14 (0.95–1.91) million childbearing women could be 
infected before the first wave of the epidemic concludes (Fig. 1f). To assess how this projection 
compared with reported microcephaly cases in Brazil, we performed a zero-intercept linear 
regression (Fig. 2b) of state-level, Zika-associated microcephaly incidence against state-level 
projections of Zika virus infections in childbearing women during the first wave of the epidemic 
(Fig. 2a). We found a positive, statistically significant relationship between these quantities (t24 = 
3.516, p < 0.002, R2 = 0.34), which is consistent with other findings that suggest an association 
between prenatal Zika infection and microcephaly. Extrapolating a slope of 1.1x10-3 (4.5x10-4–
1.7x10-3) to our projections of 1.14 (0.95–1.91) million Zika virus infections in childbearing 
women, we project that there could be at least 1,135 (427–3,253) microcephaly cases across the 
Americas in the first wave of the ongoing Zika epidemic. 
 
Our projection of microcephaly cases during the first wave of the epidemic could be an 
underestimate for several reasons. First, there is no indication at present that the Zika epidemic in 
Brazil is abating, in which case it could take another year or more for numbers of infections 
comparable to our projections to be obtained. Second, if babies are only prone to Zika-induced 
microcephaly during a limited portion of their mother’s pregnancy, then microcephaly cases 
come from a smaller pool of childbearing women than the annual numbers of births that we used 
in our projections. Third, our analyses did not account for the 3,670 microcephaly cases that are 
still being investigated in Brazil5, nor did they account for the possibility of miscarriages and 
stillbirths that could be associated with Zika infection8. Altogether, our analysis suggests that on 
the order of tens of thousands of pregnant women could experience negative outcomes 
associated with the first wave of the Zika virus epidemic in the Americas. 
 
The most literal interpretation of the quantities we projected is that they represent the number of 
people who would be infected before herd immunity would drive local, isolated epidemics to 
burn out. Like many models of mosquito-borne pathogen transmission26, ours assumes that local 
populations are deterministic, well-mixed, and demographically static, with spatially variable but 
temporally homogenous conditions for transmission. These assumptions may often be violated in 
reality, but strengths of our approach include that its use of these assumptions is transparent17 
and that relaxing these assumptions can be achieved through simulation modeling27. 
Furthermore, our approach has absolutely no reliance on data from the ongoing epidemic, 
because its predictions are based solely on highly resolved spatial information about drivers of 
transmission. The availability of tools such as ours in the context of an emerging epidemic of a 
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disease whose natural history is poorly known offer an attractive alternative to more data-
intensive approaches, and it should be a research priority to develop similar capabilities for other 
high-risk emerging diseases. 
 
In addition to the methodological advance that our approach represents, our highly spatially 
resolved projections have a number of policy implications. First, our projections provide 
information about the possible magnitude of the epidemic and could allow for better planning for 
surveillance and outbreak response, both internationally and locally9. Second, our focus on the 
conditions for epidemic burnout serve as a reminder of the transient nature of epidemics. For 
those for whom the option is available, postponement of pregnancy until after the first wave of 
the epidemic has passed could be a rational strategy for minimizing microcephaly risk. For those 
for whom postponement of pregnancy is not an option and for the general population in high-risk 
areas, aggressive measures to reduce Zika virus transmission by Ae. aegypti mosquitoes should 
be regarded as an urgent priority. 
 
METHODS 
 
Data sources and processing 
 
Human demography 
To estimate the annual numbers of pregnancies per 1x1 km grid cell in 2015, methods developed 
by the WorldPop project (www.worldpop.org28,29) were adapted for the Americas region. High-
resolution estimates of population counts per 100x100 m grid cell for 2015 were recently 
constructed for Latin American, Asian, and African countries14. With consistent subnational data 
on sex and age structures, as well as subnational age-specific fertility rate data across the 
Americas currently unavailable for fully replicating the approaches of Tatem et al.28, national 
level adjustments were made to construct pregnancy counts. Data on estimated total numbers of 
births30 and pregnancies31 occurring annually in 2012 were assembled for all Latin American 
study countries, as well as births in 201530. As no 2015 pregnancy estimates existed at the time 
of writing, the ratios of births to pregnancies for each country in the Americas were calculated 
using 2011 and 2012 estimates, and then these were applied to the 2015 births numbers to obtain 
2015 estimates of annual pregnancy numbers per-country. This made the assumption that per-
country births-to-pregnancies ratios remained the same in 2015 as they were in 2011 and 2012. 
The 100 m spatial resolution gridded population totals were aggregated to 1 km spatial 
resolution, and the per-country totals were linearly adjusted to match the 2015 pregnancy 
estimates, to create gridded estimates of numbers of pregnancies across the Americas. Ongoing 
work is focused on refining these estimates using subnational age-sex structures and age-specific 
fertility rates, following previous approaches28,29, to better account for subnational variations 
within countries. 
 
Temperature 
We used interpolated meteorological station temperature data from the 1950-2000 period at a 
5x5 km resolution, processed to create climatological monthly averages that represent “typical” 
conditions (www.worldclim.org32). 
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Aedes occurrence probability 
To predict the likely distribution of the vector, Kraemer et al.7 generated high-resolution 
occurrence probability surfaces based on a species distribution modeling approach13. More 
specifically, a boosted regression tree model was applied using a comprehensive set of known 
occurrences (n = 19,930) of Ae. aegypti and a set of environmental predictors known to influence 
the distribution of the species7. Covariates included a temperature suitability mask19, 
contemporary mean and range maps of the Enhanced Vegetation Index and precipitation33, and 
an urbanization index from the Global Rural Urban Mapping Project. For our mean projections, 
we used a spatial layer of median occurrence probabilities. To generate lower and upper bounds, 
we sampled 100 spatial layers from the posterior distribution of these maps and calculated layers 
representing 0.025 and 0.975 quantiles of this posterior sample distribution. 
 
Economic index 
To account for socio-economic differences among populations residing in different regions, we 
used one-degree resolution gridded estimates of purchasing power parity (PPP) in U.S. Dollars 
from 2005 adjusted for inflation (G-Econ)34. When we encountered missing values, we imputed 
values in one of two ways. Grid cells in small island countries with data missing for the entire 
country were uniformly filled with population-adjusted PPP figures obtained from the U.S. CIA 
World Factbook35. Missing values in continental grid cells were imputed with the mean of the 
surrounding eight grid cell values. Once we obtained a complete PPP grid layer at one-degree 
resolution, we expanded the layer to a resolution of 5x5 km to match the resolution of gridded 
layers for human demography, temperature, and Ae. aegypti occurrence probability. 
 
Seroprevalence estimates 
To calibrate our model, we identified published estimates of seroprevlance that were relevant to 
the context of our study (Extended Data Table 1). Specifically, we sought estimates of 
seroprevalence to either Zika or chikungunya viruses in populations that were presumably naïve 
prior to an outbreak. Thus, we excluded some seroprevalence estimates that were obtained from 
endemic populations. We also excluded estimates from small islands—namely, Reunion and 
Grande Comore—for which it was clear that gridded temperature data were unrealistically low 
due to steep elevational gradients and other features of island geography. Appropriately, a 
number of the seroprevalence estimates we obtained pertained specifically to pregnant women, 
although there do not appear to be differences in the seroprevalence of pregnant women and the 
population at large, at least in the context of a naïve population following an outbreak36. 
 
Calculation of epidemiological quantities 
 
Mosquito abundance 
Occurrence probabilities can be translated into proxies for abundance provided that an 
assumption is made about how abundance is distributed as a random variable37. Assuming that 
mosquito abundance is distributed as a Poisson random variable, the probability that there is at 
least one mosquito present in a given location is 1 − exp −𝜆 , where 𝜆 is the expected 
abundance of mosquitoes. Inverting this relationship, we obtained an estimate 𝜆 = − ln 1 −
occurrence	probability  of expected mosquito abundance under the Poisson model and used 
this as a proxy for mosquito abundance in our calculations. 
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Mosquito-human ratios 
The estimates of mosquito occurrence probability that we used7 incorporated a number of 
environmental variables. They did not account for factors that modulate contact between 
mosquitoes and humans, however. Due largely to economic differences, factors such as air 
conditioning can drastically limit mosquito-human contact and virus transmission, even when 
mosquitoes are abundant24. We accounted for the effect of economic differences between 
locations by multiplying our proxy for mosquito abundance 𝜆 by a function of the gross cell 
product economic index that we fitted to match our attack rate predictions with published 
seroprevalence estimates. We fitted this function with a shape constrained additive model, or 
SCAM38, because relationships between mosquito-human ratios and economic indices should be 
monotonically decreasing, nonlinear, and without a predictable functional form. The response 
variable to which we fitted this relationship was a set of scalar multiples of expected mosquito 
abundances that would result in a perfect correspondence between attack rates predicted by our 
model and published seroprevalence estimates. 
 
Basic reproduction number R0 
We calculated the basic reproduction number R0 according to its classic Ross-Macdonald 
formulation and as a function of temperature T, 
 

𝑅5 𝑇 =
𝑚𝑏𝑐𝑎;𝑒=> ? @ ?

𝜇 𝑇 𝑟 	, 

 
with adult mosquito mortality 𝜇 and extrinsic incubation period n specified as functions of 
temperature. Parameters that did not depend on temperature were set at the following values 
according to published estimates for Ae. aegypti and dengue virus: mosquito-to-human 
transmission probability, b = 0.4 [39]; human-to-mosquito transmission probability times 
number of days of human infectiousness, c / r = 3.5 [40]; and mosquito biting rate, a = 0.67 [41]. 
The ratio of mosquitoes to humans, m, was quantified using a combination of occurrence 
probabilities and the gross cell product economic index. For mosquito mortality, we used the 
temperature- and age-dependent model by Brady et al.42, to which we added an additional force 
of extrinsic mortality (0.025 d-1) to match an overall daily mortality value of 0.115 estimated in a 
mark-release-recapture experiment carried out under temperatures ranging 20–34 °C43. We then 
computed the mean of the age- and temperature-dependent lifespan distribution as a function of 
temperature to inform 𝜇 𝑇 . We used the relationship between temperature and mean duration of 
the extrinsic incubation period, 𝑛 𝑇 = exp 8 − 0.2	𝑇 , estimated by Chan and Johansson20. 
Because temperature values were available for each location on a monthly basis, we computed 
monthly values of R0 for each location and then used the mean of the highest six monthly values 
as a singular estimate of R0 for each location. 
 
Attack rates 
Under a susceptible-infected-recovered (SIR) transmission model, there is a one-to-one 
relationship between R0 and final epidemic size, which is equivalent to the attack rate over the 
course of an epidemic17. There is no explicit solution for this quantity, but the final epidemic size 
can be estimated numerically by obtaining an implicit solution of 𝑆J = 𝑒=KL M=NO  for 𝑆J, 
which is the proportion remaining susceptible after the epidemic has burned out17. Thus, we 
consider the attack rate over the course of an epidemic to be 𝐴𝑅 = 1 − 𝑆J. 
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Lower and upper bounds 
For our mean projections, we used published, best-fit estimates of the parameters described 
above. To obtain lower and upper bounds on our projections, we ran our model under lower and 
upper bound estimates of three key parameters that describe the relationship between 
environmental drivers and transmission intensity. For the mosquito-to-human ratio, m, we used 
0.025 and 0.975 quantile estimates of the Ae. aegypti occurrence probability layer for lower- and 
upper-bound scenarios, respectively. We then converted occurrence probabilities into estimates 
of our proxy for abundance according to the same Poisson relationship described above37. We 
then adjusted those estimates by the economic index in the same way that we made that 
adjustment for the mean scenario. We did not utilize lower and upper bounds of the relationship 
between the economic index and mosquito densities, because that relationship was calibrated to 
seroprevalence data for downstream analyses. It was therefore not clear in what direction 
differing estimates of that relationship would alter our projections. For adult mosquito mortality, 
µ(T), we estimated the relationship between mortality and temperature for lower- and upper-
bound scenarios in the same way that we did for the mean scenario, except that we calibrated the 
force of extrinsic mortality to yield overall daily mortality estimates of 0.09 and 0.14, rather than 
0.115, averaged across 20–34 °C. The former values reflect two independent estimates of Ae. 
aegypti mortality from the field43 that we averaged to obtain our mean estimate of 0.115. For the 
extrinsic incubation period, n(T), we first took joint uniform random draws of slope and intercept 
parameters ranging -0.29 to -0.12 and 6–10, which corresponded to 95% confidence interval 
values reported by Chan and Johansson20. We then took the mean of slope and intercept 
parameter values that resulted in extrinsic incubation period values at 30 °C within 0.1 d of the 
95% confidence interval values of 3.4 and 9.9 reported by Chan and Johansson20. This resulted in 
the following lower- and upper-bound parameter values: slope, -0.224 and -0.191; intercept, 7.94 
and 8.02. Our lower (upper) bound projections of attack rates combined the lower (upper) bound 
estimates of each of these three parameters. By combining lower and upper bounds of each 
parameter independently, we considered a broader range of parameter values than would be 
obtained from lower and upper bounds of their joint densities, which we did not calculate due to 
the heterogeneous data sources from which these estimates were derived. 
 
Performance and refinement of attack rate projections 
 
The shape constrained additive model that we fitted to the relationship between the gross cell 
product economic index and the multiplication factor for mosquito densities followed a gradually 
decelerating negative slope as economic index values varied from low to high (Extended Data 
Fig. 1). The smooth term relating the economic index to the multiplication factor was not 
statistically significant (F1 = 0.57, p = 0.583). We incorporated this relationship into our 
projections nonetheless, because our goal was to quantify a strongly hypothesized relationship, to 
the extent that we could given available data, rather than to test that hypothesis. Although this 
relationship was not statistically significant, it was epidemiologically significant. Examining 
predicted values on a linear scale, which is how we applied them, we noted that they ranged 
more than three fold between the most and least economically prosperous sites from which we 
had seroprevalence estimates (Italy versus Madagascar). 
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Prior to incorporating the economic index into our model, attack rate projections from the model 
consistently underestimated empirical estimates of seroprevalence (Extended Data Fig. 2a). After 
applying the economic index adjustment to mosquito densities, higher attack rate projections 
were more consistently associated with higher seroprevalence estimates (Extended Data Fig. 2b). 
At the same time, the model revised to account for the economic index overshot a number of 
seroprevalence estimates. This overshooting was problematic given our goal of making a priori 
projections of attack rates across a vast geographic region with no other data with which to 
further calibrate our model. 
 
The shape of the curve defining the relationship between R0 and attack rate in Extended Data 
Fig. 2b only allowed for intermediate attack rates in a very narrow range of R0 = 1-2. Given that 
our projected R0 values fell within a plausible range for an arboviral epidemic21, we interpreted 
the tendency to overestimate attack rates as a consequence of unrealistic assumptions underlying 
the functional relationship between R0 and attack rate. Different functional relationships between 
these quantities can be derived under a variety of different epidemiological assumptions44, but 
one very common departure from the standard formulation shown in Extended Data Fig. 2b is 
that, due to contact heterogeneity45, the true relationship between R0 and attack rate should be 
lower than that derived under SIR model assumptions. There is broad empirical support for 
extensive heterogeneity in contacts between people and Ae. aegypti mosquitoes46,47, so a lower 
relationship than the one shown in Extended Data Fig. 2b is highly plausible. Indeed, such a 
relationship for mosquito-borne pathogens has been predicted by theoretical studies for precisely 
these reasons48. To obtain a curve that led to attack rate projections more consistent with 
published seroprevalence estimates, we substituted 𝑅5Q for 𝑅5 in the calculation of attack rates 
using a value of α = 0.14 obtained by minimizing the sum of squares of residuals between 
predicted and observed attack rates (Extended Data Fig. 2c). Concurrent with the estimation of 
α, we also re-estimated the relationship between the economic index and mosquito density, given 
that the latter affects projected values of 𝑅5. After simultaneously fitting both of these 
relationships, projected attack rates accounted for 29% of variation in seroprevalence estimates 
obtained from the literature. 
 
Relationship between R0 and environmental variables 
 
Our estimates of R0 were shaped by three environmental variables: temperature, Ae. aegypti 
occurrence probability, and economic index. With respect to temperature, peak values of R0 were 
obtained at around 30 °C (Extended Data Fig. 3). Linear increases in Ae. aegypti occurrence 
probability resulted in accelerating increases in R0 due to our assumed relationship between Ae. 
aegypti occurrence probability and our proxy for abundance. Differences in R0 attributable to 
differences in the economic index also increased steeply as lower economic index values were 
approached (Extended Data Fig. 3). Overall, projected values of R0 were consistent with 
published estimates of R0 for chikungunya21,22. 
 
Projecting R0, attack rate, and numbers of infections 
 
Combining spatial layers describing temperature, Ae. aegypti occurrence probability, and the 
gross cell product economic index, we first calculated a spatial layer describing R0. We then used 
the relationship in Extended Data Fig. 2c to translate the R0 spatial layer into a spatial layer 
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describing attack rate over the course of an SIR-like epidemic. To obtain estimates of numbers of 
infections in total and among childbearing women, we multiplied the attack rate layer by 
demographic layers for the corresponding population stratifications. High-resolution spatial 
projections of R0, attack rate, and number of infected childbearing women are presented in 
Extended Data Figs. 4-9. 
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FIGURES 
 
Figure 1. Gridded spatial projections of component variables (a-c) that combine to yield a 
gridded spatial projection of Zika infections in childbearing women across Latin America and 
the Caribbean (d). Projections of total numbers of Zika infections in all people (e) and in 
childbearing women (f) for the top eight countries in each category were derived from 5x5 km 
gridded spatial projections such as (d). Numbers in e and f represent mean (lower bound – upper 
bound) with respect to relationships between environmental variables and transmission potential. 
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Figure 2. State-level projections of Zika infections in childbearing women derived from the 5x5 
km gridded spatial projection in Fig. 1d (a) and their relationship with state-level counts of 
microcephaly cases that have been confirmed to have an association with Zika infection (b). The 
linear relationship between state-level projections and case counts in (b) was obtained by fitting a 
zero-intercept linear regression (slope = 1.1x10-3, t24 = 3.516, p < 0.002, R2 = 0.34). The shaded 
region in b indicates the 95% confidence interval for the regression line. 
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EXTENDED DATA 
 
Extended Data Table 1. Seroprevalence estimates of Zika and chikungunya in the context of 
recent oubtreaks in a previously susceptible population. 
 
Seroprevalence Virus Location Reference 

0.75 CHIKV Lamu Island, Kenya 15 
0.73 ZIKV Yap Island, Federated States of Micronesia 11 
0.446 CHIKV Mananjary, Madagascar 49 
0.26 CHIKV Mayotte Island, Union of the Comoros 50 
0.24 CHIKV Orissa, India 51 
0.227 CHIKV Manakara, Madagasar 49 
0.169 CHIKV Saint Martin 52 
0.103 CHIKV Emilia-Romagna, Italy 53 
0.039* CHIKV Managua, Nicaragua 54 
0.031 CHIKV Moramanga, Madagascar 49 
0.011 CHIKV Ambositra, Madagascar 49 
0.01 CHIKV Ifanadiana, Madagascar 49 
0.0 CHIKV Tsiroanomandidy, Madagascar 49 

* This estimate was based on a clinical attack rate of 0.029 and an assumed reporting rate of 0.75. 
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Extended Data Figure 1. Fitted relationship between the gross cell product economic index and 
a multiplication factor to relate expected mosquito abundance to mosquito-human ratios, both of 
which are shown on a log scale. The mean estimate is shown with a black line, the blue band 
indicates standard error estimates around that mean, and points reflect data from locations with 
seroprevalence estimates listed in Extended Data Table 1. 
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Extended Data Figure 2. Projected values of the basic reproduction number R0 (x-axis), 
empirical estimates of attack rates (points), and projected attack rates (lines) under three different 
assumptions (a-c). Panel a reflects the baseline case in which expected mosquito abundance is 
treated as the mosquito-human ratio, panel b incorporates a multiplication factor based on the 
gross cell product economic index, and panel c adjusts the theoretical relationship between R0 
and attack rate to account for heterogeneous contact between mosquitoes and people within each 
location. 
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Extended Data Figure 3. Relationships between R0 and temperature (x-axis), mosquito 
occurrence probability (panels), and the gross cell product economic index (colors). The values 
of R0 shown here enter our calculations on a monthly basis, and the average of the six highest 
monthly values represents our singular estimate of R0 for a given location. R0 curves for 
intermediate values of ln(gross cell product) are hidden because of the flat relationship between 
ln(GCP) at intermediate and high values and the sharp increase once lower values of ln(GCP) are 
reached. 
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Extended Data Figure 4. Gridded spatial projections of the basic reproduction number R0 at 5x5 
km resolution in Central America and the Caribbean. 
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Extended Data Figure 5. Gridded spatial projections of the basic reproduction number R0 at 5x5 
km resolution in South America. 
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Extended Data Figure 6. Gridded spatial projections of epidemic attack rates at 5x5 km 
resolution in Central America and the Caribbean. 
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Extended Data Figure 7. Gridded spatial projections of epidemic attack rates at 5x5 km 
resolution in South America. 
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Extended Data Figure 8. Gridded spatial projections of infections in childbearing women at 5x5 
km resolution in Central America and the Caribbean. 
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Extended Data Figure 9. Gridded spatial projections of infections in childbearing women at 5x5 
km resolution in South America. 
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