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In a recent manuscript [18], Yang and colleagues criticized our paper,

‘Limitations of GCTA as a solution to the missing heritability problem’ [9].

Henceforth we refer to our original paper as SK and the critique as YC.

Here we show that their main claims are statistically invalid. We begin

with an overview and the mathematical details follow in subsequent sections.

1 Overview

YC begin their critique with a qualitative description of how they believe the

genotype ought to influence the phenotype. That discussion motivates the

statistical model they use to estimate heritability. In our analysis (SK), we

do not contest their motivation for constructing the model (e.g., their view

that some tagged SNPs are in strong LD with the causal SNPs). We sim-

ply analyze their mathematical model, and show that it produces unreliable

estimates. We first summarize our arguments, highlighting material omitted

from SK because of space restrictions.

The GCTA model

A GWAS is summarized in a ‘genotype’ matrix, Z for N individuals and

P SNPs, and we want to know how this genotypic information influnces
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some particular phenotype. GCTA models the phenotype vector of the N

individuals, y as

y = Zu + ε, (1)

where the vector, u ∼ N (0, σ2I) and ε ∼ N (0, α2I). This equation can be

rewritten as

y = g + ε, (2)

where g ∼ N (0, Pσ2A), and A = (1/P )ZZT is the Genetic Relatedness

Matrix (GRM). In reality, we only have an estimate of the genetic structure

(for many reasons, e.g., the population of people is a sample from some larger

population; the same holds for the SNPs sampled; we may not be able to

accurately call the state of all SNPs for all individuals; some SNPs make

no contribution or unequal contributions to the phenoype) described in (1).

Therefore, we assume in SK that Z (correspondingly, A) differs from a true

genotype matrix (GRM), Z1 (correspondingly, A1) by some estimation error,

E(correspondingly F) so that

Z = Z1 + E, (3)
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and

A = A1 + F. (4)

Equations (1)-(4) provide a precise mathematical description of GCTA; the

assumptions made by GCTA follow from the mathematical restrictions en-

forced by the model. The key assumptions of GCTA and our (SK) deductions

from them are:

• GCTA assumes that the covariance matrix of u is diagonal, hence every

SNP used in the GCTA model (irrespective of whether it is in strong

LD with a causal SNP) necessarily makes a random contribution to

the phenotype. Non-causal SNPs would make zero contributions to

the phenotype, which would require that the corresponding diagonal

entries of the covariance matrix of u be zero; GCTA does not set any

diagonal entry to 0 in its formulation.

• Equation (1) is not stated as conditional on N or P and therefore σ2 is

also not conditional on N or P . YC state that σ2 must be interpreted

as the ‘variance of SNP effects when it is fitted jointly with all other

SNPs’. However, in the model as stated, σ2 is the variance of a random

contribution made by each SNP, irrespective of which other SNPs are

used in the analysis. We discuss this point in greater detail below in
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section 2.

• Since the model formulation involves no specification of Z|Z1, the dis-

tinction between causal and non-causal SNPs is irrelevant to the appli-

cation of GCTA.

• Since the off diagonal entries in the covariance matrix of u are assumed

to be 0, GCTA necessarily assumes that the random contribution made

by each SNP is not correlated with the random contributions made

by any other SNPs used in the analysis. In SK, we interpreted this

assumption to mean that the SNPs are in linkage equilibrium with

each other, regardless of their linkage status with the (unknown) causal

SNPs.

Our analysis of GCTA

In SK, we used population genetics, theory of random matrices and numerical

analysis to show that the heritability estimates produced by GCTA will be

unreliable.
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The data used in SK

In SK we used the Framingham (FHS) Share dataset containing information

on N = 2, 698 ‘unrelated’ individuals and P = 49, 214 SNPs. For our analy-

sis, we used pedigree information in the FHS to retain only those individuals

who did not share the same parents (i.e., the relatedness is reduced to at

most first cousins). We also filtered our data to remove missing entries using

an analysis similar to what is done in table 2 of [11]. The phenotype data

we used in our paper is taken from study accession phs000007.v23.p8.

We argue that (a) the singular values of Z are skewed i.e., the largest

singular value of Z (or eigenvalue of A) is much larger than the smallest

singular value of Z, and that (b) the smallest singular values of Z are close

to 0. This is not a novel observation; the skews in the singular values for

the Framingham dataset have previously been reported in Figure 4 of Hoff-

man [7] where the eigenvalues of the GRM, A were analyzed for different

datasets.(That figure is reproduced here as Fig. 1, with permission). In Fig.

1 the eigenvalues fall sharply to an intermediate value, but eventually fall to

values close to 0 (recall: eigenvalues are (1/P ) times squared singular val-

ues). Importantly, the ratio of the largest to the smallest eigenvalue value of

the sample GRM A (or the ratio of the largest to smallest singular value of

Z) is large.
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The skew we report for the singular values from FHS is to be expected

given the theoretical work in [12]. Similar skews have been reported from

analysis of other datasets (see the eigenvalue distributions for the Asian, Eu-

ropean, African American and Hispanic populations in Fig. 1). The skew

observed in the Framingham dataset is not a special case: to demonstrate,

we plot in Fig. 2 the skew in the singular values (marked with red dots) de-

rived from the Health and Retirement Study (HRS) dataset (quality control

instructions are provided in http://hrsonline.isr.umich.edu/sitedocs/

genetics/HRS_QC_REPORT_MAR2012.pdf). For clarity, in Fig. 3 we also pro-

vide the first 10 eigenvalues of the GRM (matching exactly Figure 16 of the

link above). The ratio of the largest to smallest eigenvalue of the GRM in

the HRS dataset is 6.7×1018, which is the same order of magnitude reported

for FHS in our paper (SK).

The smallest eigenvalue in the GRM for the HRS dataset is so small that it

falls below machine accuracy in our computation, and is therefore reported

as −4.3 × 10−17. Since the GRM is positive semi-definite, we assume the

smallest value is 4.3 × 10−17, although the true value might be a smaller

positive number. It is important to note that the smallest eigenvalue of the

GRM is near-zero, but not precisely zero. We know from (a) Theorem 3 in

[12] that the smallest eigenvalue of the true GRM is precisely 0, and (b) from
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standard results in perturbation theory [15] that the smallest eigenvalue of

the true GRM and sample GRM will not be exactly the same.

YC analyze the FHS data, and report that when they chose ‘unrelated’

individuals using the filtering techniques in [17] (which they call relatedness

thresholding), they do not find large skews in the singular values. Further-

more, they do not find any singular values close to 0 and accordingly conclude

that we have made a mistake in our analysis. We show in section 4 below

that YC do not observe the skew because the filtering technique suggested

in [17] is flawed.

A description of our analysis

In SK, we analyzed the likelihood function used in the GREML and showed

that it produces unstable estimates even when the assumptions in GCTA

are satisfied exactly. The instabilities arise because the singular values of Z

are packed close to one another. Furthermore, we showed that when there is

population stratification (as is to be expected in most real datasets), the in-

stabilities can be severe because the ratio of the largest to smallest eigenvalue

of the GRM will be large.

YC do not address the problems we raise regarding the close packing of

the singular values, but do address our claims of large skews in the singular
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values of Z. They claim that even when present, such skews will not cause

instabilities in the estimates. In Section 5 below, we provide a precise math-

ematical description of why large skews in the singular values of Z make the

GREML estimates sensitive to even small sampling errors; we use published

results to show that the sampling errors in the GRM are large and therefore,

the estimates produced by GCTA are unreliable.

In SK, we showed that GCTA overfits the data because it estimates

O(NP ) parameters from a dataset containing NP entries. In such a setting

overfitting is guaranteed, and is a direct consequence of the bias-variance

tradeoff, In their critique YC simply state that GCTA is not overfitting;

they try to show that GCTA is not overfitting by comparing it to seemingly

similar statistical models such as linear regression and mixed linear mod-

els. We show that in Section 3 below that, in contrast to these methods,

GCTA omits either (a) important conditioning arguments or (b) procedures

to prevent against overfitting.

Our simulation experiments

SK demonstrated the instabilities in the GCTA estimates by producing a

contradiction: we constructed subsets of SNPs from an overall sample, and

showed that several of the σ2 estimates for these subsets (σ2
subset) lie outside
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the 99.5% confidence intervals predicted from the estimates and standard

errors of σ2 for the overall sample (σ2
total). YC claim that our analysis is

flawed because σ2
subset is not, in their view, the same parameter as σ2

total.

However, as we explain below, the equality of σ2
subset is and σ2

total is precisely

what we do expect. We also used published results to demonstrate that

GCTA’s estimates are sensitive to the sample of people used in the study,

and to population stratification.

2 What does GCTA estimate?

Suppose the P SNPs which satisfy GCTA’s assumption exactly are known

(i.e., the true genotype matrix Z1 is known). Then the variance in the phe-

notype can be be estimated precisely as

Var(y|Z1) = Z1Z1
Tσ2 + Iα2 =

1

P
Z1Z1

T (Pσ2) + Iα2 = A1σ
2
P + Iα2. (5)

where A1 is the true GRM (corresponding to G in [17]). Thus GCTA actually

assumes that

Var(y|Z1) ≈ Var(y|Z) (6)
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for all Z. This implies that

Var(y|Z1) ≈
1

P
ZZT (Pσ2) + Iα2 = Aσ2

P + Iα2. (7)

Comparing (5) and (7) shows that GCTA requires A1 ≈ A irrespective of

which P SNPs are used in the analysis. This requirement is satisfied only

when all SNPs in the data set make independent and identically distributed

contributions to the phenotype. This is the assumption we state in SK.

It is important to note that GCTA does not assume that the observed A

is an estimate of the true A1. The latter assumption would require treating

A|A1 as a random variable, which would invalidate the variance calculation

in (7).

Put another way, the SNPs included in any GWAS are determined by

the technology and not by prior information about the causal or non-causal

relationship between these SNPs and the phenotype under study. Thus we

should expect to get the same GCTA estimates of variance from a data set

on N people obtained by using say five chips each with 500,000 distinct and

non-overlapping SNPs, or by using 1 chip with all 2.5 Million SNPs. Thus

we do expect that σ2
subset and σ2

total describe the same parameter, and since

the number of individuals in both studies is the same, we expect the two

10
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parameters to produce near-identical confidence intervals.

Furthermore, since GCTA’s model assumes that the variance contribution

of each SNP is the same, we expect the total variance contribution of all

the SNPs used in the analysis to be directly proportional to the number of

SNPs. We demonstrated a violation of this expectation in the section titled

‘Saturation of heritability estimates’ in SK.

The total genome-wide variance cannot be compared across different stud-

ies because the number of SNPs used in different studies is different; these

comparisons often produce misleading results. To illustrate this point, we

use results from page 520 in [19] where a heritability estimate of 0.448(0.029)

was obtained for height using data on 565,040 SNPs for 11,586 unrelated

individuals and it was concluded that this estimate is in line with the her-

itability estimate of 0.445(0.083) obtained using GCTA on an Australian

cohort (3,925 unrelated individuals genotyped at 294,831 SNPs). The σ2

estimate for the first study is 7.92e-7(5.1e-8), and the σ2 estimate for the

Australian cohort is 1.5e-6 (2.81e-7). These two σ2 estimates are 15 stan-

dard errors apart ((1.5e-6 - 7.92e-7)/5.1e-8). These two estimates also have

non-overlapping 99.5% confidence intervals of σ2 and are certainly dissimilar.

SK reports large differences between σ2
subset and σ2

total. Similar large devi-

ations have been reported [11] in studies conducted by some of YC’s authors.
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In table 6 of [11], for a missing genotype threshold of 200 (which means that

the analysis includes only those SNPs for which there are at most 200 missing

entries among the people being studied), for all SNPs without chromosome

6, GCTA produces an estimate of 0.23(0.07) for h2 on 297,028 SNPs, which

corresponds to a σ2 estimate of 7.75 e-7 (2.3e-7). When only the 21,016

SNPs on chromosome 6 are used, GCTA produces an estimate estimate of

0.33(0.02) for h2; this corresponds to a σ2 estimate of 1.58e-5(9e-7). The two

σ2 estimates are (1.58e-5 - 7.75e-7)/2.3e-7 = 65 standard errors apart, and

produce non-overlapping 99.5% confidence intervals for σ2

2.1 Sensitivity to people used in the study

YC claim that GCTA does not overfit the data because the parameter be-

ing fitted in their model is random, and not fixed. However, overfitting has

nothing to do with the parameter being fixed or random; it is a reflection of

the bias-variance tradeoff. When the data are fit using the entire training

sample, the estimation error is always going to be optimistic (see section 7.4

in [5]) and therefore, the confidence intervals produced by the model under-

state the uncertainty in the parameter being estimated. Cross-validation is

essential, no matter what the nature of the parameter being estimated.

Overfitting produces counter-intuitive results. For example in supple-
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mentary table S2 in [16], the heritability of neuroticism was computed using

GCTA for a sample of 5,016 unrelated men, a sample of 6,945 unrelated

women, and the combined sample of 11,961 individuals; all three computa-

tions used the same 849,801 SNPs. The heritability estimate for just the

women is 0.057 (0.05) and for just the men is 0.161 (0.07). The h2 estimate

for the men is (0.161-0.057)/0.05 = 2.08 standard errors away from the h2

estimate of the women (since the number of SNPs used in all three studies

is the same, here we can directly compare the h2 estimates instead of σ2

estimates). Furthermore, GCTA reports that the h2 estimate for the overall

population is 0.056, which is smaller than the h2 estimates for both men and

women.

A more extreme example is found in supplementary table S5 of [4], where

estimates of the heritability of Bi-Polar Disorder (BPD) were compared for

three sub-cohorts using information on 995,971 SNPs. For Subcohort 2 (2,540

cases and 2,058 controls), an h2 estimate of 0.44 (0.07) was reported, and for

Subcohort 3 (1,699 cases and 2,915 controls), the h2 estimate was 0.73(0.06).

These estimates two estimates are (0.73-0.44/0.07)≈ 4 standard errors apart

and produce non-overlapping 99.5% confidence intervals for σ2.

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2016. ; https://doi.org/10.1101/039594doi: bioRxiv preprint 

https://doi.org/10.1101/039594
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2 Using Principal components as fixed effects

Our criticism of GCTA stems from instabilities in the eigenvalues/vectors

of the GRM. Since fixed effects terms (like principal components) do not

change the spectral properties of the GRM, they will not solve the problems

addressed in our paper.

3 GCTA and similar statistical models

In their critique YC, claim that GCTA does not overfit by comparing it to

other popular statistical methods. In this section, we will show that GCTA

has little in common with the methods described in their critique. We show

that at best, GCTA is an extreme generalization of linear regression. The

standard regression model is stated as

y = Zb + ε, (8)

where y is the dependent variable, Z is an N × r data matrix describing the

entries of r independent variables (Z1, Z2...Zr) for the N individuals used in

the study, b is a vector of regression coefficients, and ε is a vector describing

the errors.
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There are 2 paradigms for viewing the standard linear regression model

[8]. The most popular one is the ‘fixed Z’ paradigm according to which the

regression function E(y|Z) is assumed to be linear. Here Z is considered

‘fixed’ and y is considered random; for the same ‘fixed’ values of Z, different

values of y are obtained as a result of sampling errors due to ε.

The less frequently used ‘random Z’ paradigm assumes that the predic-

tors and phenotype constitute an r + 1 dimensional random vector, with

assumptions about the joint distribution providing equivalence with (8). It

is well known (see pg. 112 in [8]) that although the descriptions differ as to

how the data are generated in the ‘fixed Z’ and ‘random Z’ cases, the ordi-

nary least squares estimator of b turns out to be the same in the two cases.

Although the structural form of (8) seems similar to that used in GCTA,

there are important differences between these two models

• In linear regression, the r predictors are the same in the training and

test sets. However, in GCTA, the predictors are actually sets of SNPs;

hence the predictor variables for different studies (that use different

sets of SNPs) can be different.

• For linear regression, it has been shown that the estimate obtained in

the ‘Fixed Z’ and ‘Random Z’ cases are the same. No such results

are available for mixed effects models (i.e., when b is assumed to be

15
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sampled from a multivariate normal distribution).

What is known for mixed effects models?

Statistical insights into mixed effects models come from the pioneering work

of Henderson [6]; a survey of Henderson’s original work and several extensions

are given in [14]. As stated in [14] and [13] (cited in the YC critique),

these models assume that the GRM is known and not estimated. This may

be reasonable in animal breeding because individuals used in the study are

closely related and detailed pedigree information is commonly available. A

known GRM corresponds to the case of N fixed and P → ∞ and in this

limit, there are no sampling errors and therefore our analysis does not apply.

Henderson’s model can be stated as

y|Z = Zu + ε, (9)

where, as before, u ∼ N (0, σ2I) and ε ∼ N (0, α2I). Often, the formulation

in (9) is loosely stated as

y = Zu + ε, (10)

but it is made clear that Z is a fixed matrix. For this formulation, Henderson

has shown that the estimate of σ2 will be the Best Linear Unbiased Predictor
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(BLUP). Note that (9) has strong similarities with the ‘fixed Z’ case in linear

regression – the predictors and the people used in the study are fixed.

In GCTA, Z is not fixed, but an estimate of the true value, Z1. There-

fore, although GCTA uses a formulation that looks similar to that studied

by Henderson, the equations are in fact completely different and therefore,

analogies between the two models cannot be valid.

In the next section, we will show that the reason YC do not observe the

skew in singular values observed in SK is that they are using the ‘related-

ness thresholding’ suggested in [17] to select unrelated individuals, and this

method is flawed.

4 Issues with Cryptic Relatedness

GCTA claims to correct for cryptic relatedness by removing all individuals

whose relatedness to another is greater than some threshold (0.05 or 0.1);

these thresholds are based on expectations about the true GRM, A1. How-

ever, large entries in the sample GRM, A do not imply that the corresponding

entries in the ‘true’ GRM are large, when N and P are large. As stated in

the introduction of [10], when N and P are large, the extreme values of the

GRM ‘tend to take on extreme values not because this is “the truth”, but
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because they contain an extreme amount of error’. Therefore, the largest en-

tries in the GRM will be most unreliable and the ‘relatedness thresholding’

done by GCTA becomes subject to a lot of error.

To expand on this issue, consider a multivariate normal distribution for a

2500-dimensional vector with mean 0 and covariance matrix P (of dimension

2, 500×2, 500, corresponding to the ‘true’ GRM) with diagonal entries equal

to 1 and all off-diagonal entries equal to 0.04. We sample 50,000 random

vectors from this distribution, each of dimension 2500× 1, and compute the

sample covariance matrix P̂.

A histogram of the off-diagonal entries of P̂ is plotted in Fig. 4. The

largest off-diagonal entry in P̂ is 0.062, and the smallest is 0.0146; these

extremes correspond to errors of more than 50% of the true value (which

is 0.04). To apply GCTA’s threshold of 0.05 to this sample matrix, several

hundred observations would have been excluded from the analysis because

they would have incorrectly been deemed ‘related’. On a similar note, the

small entries in the sample GRM do not mean that the subjects are ‘less

related’. This example demonstrates the well known fact (see the introduc-

tions of [3],[1], [2]) that when N and P are large, no reliable inferences can

be drawn from entries in the sample covariance matrix.

Since GCTA performs its relatedness filtering on the basis of entries in
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the sample GRM, we expect the filtering to perform poorly, and this is indeed

the case.

4.1 The problems with Figure 1 of YC

From the genotype matrix, Z, we can only compute the singular values (ŵi)

of the sample GRM, Z. However, we are interested in the singular values

(wi) of the true GRM, Z1 . For GCTA to work reliably, the error, ie., the

difference between the singular values of the sample GRM (ŵi), and the true

GRM (wi) should be small. Applying Weyl’s inequality (see equation 2 in

[15]) , we can bound this error in eqn. (3) as

|ŵi − wi| ≤ ||E||2, (11)

where ||E||2 is the largest singular value of E. To simplify the analysis further,

assume E = αZ, where α describes the proportional error in Z, so that

||E||2 = αŵ1. Note that a value of α = 0.01 corresponds to a 1% estimation

error in Z.

In their critique, YC apply the relatedness threshold suggested in GCTA

to the Framingham dataset (analyzed in our paper) and report that they

do not find the large skews in the singular values we reported in SK. For a
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threshold of 0.05, although they find the largest singular value (ŵ1 ≈ 500)

is of about the same order of magnitude as that reported in our paper, they

find that the smallest singular value (ŵN ≈ 110) is substantially larger (we

thank Jian Yang for providing us with the numbers).

Suppose that the sampling error in Z is small, say 5% (an optimistic

value, as we show) i.e., α = 0.05 and ||E||2 = 25. With ||E||2 = 25 and

ŵN = 110, (11) states that wN must lie between 85 and 135. But we know

that when there is no cryptic relatedness, the smallest singular value of the

true GRM is 0 (Part 2 of Theorem 3 in [12]) and therefore, the sampling

error must be larger than 5%.

So set α = 0.2, for which (11) states that wN must lie between 10 and

210, but even this interval does not contain 0, and is therefore not large

enough. This demonstration shows that the GRM used in GCTA is making

estimation errors of at least 20%. These large errors suggest that GCTA’s

relatedness threshold cannot,in fact, pick out unrelated individuals.

4.2 Trends in Figure 1 of YC

Insights into the singular value trends in figure 1 of YC come from the work of

Hoffman [7], who analyzed the effects of cryptic relatedness and population

stratification on the eigenvalues of the sample GRM (i.e., squares of the
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entries in Figure 1 of YC). Hoffman’s results are best summarized through

Fig. S1 in his paper (replicated as Fig. 5 below with permission). When

cryptic relatedness in the sample is small (panel (a) of Fig. 5), we expect the

eigenvalues of the sample GRM to fall sharply towards 0. When the cryptic

relatedness in the population is high, we expect to see long stretches of ‘large’

non-zero eigenvalues (panel (b) of Fig. 5, Figure 1 of YC). When there is a

combination of the two, we expect the fall to zero to be more gradual (panel

(c) of Fig. 5, Figure 3 in SK). Thus the YC results suggest that, even after

applying the filtering process suggested in [17], a large number of related

individuals is retained in the sample and produce confounding effects above

and beyond those described in SK.

In Hoffman’s analysis of the Framingham data set (using 3063 individu-

als), he finds a long stretch of intermediate singular values which he attributes

to cryptic relatedness (see section titled ‘Data Analysis’ in [7]). In SK, we did

a preliminary filtering using (limited, but reliable) pedigree information to

select 2968 ‘unrelated’ individuals for our analysis. As a result, the related-

ness in our sample is smaller than that observed in Hoffmann’s; accordingly,

the singular values in our plots fall to 0 more rapidly than shown here in Fig.

1. There is clearly some cryptic relatedness in our sample, since the singular

values fall to 0 somewhat gradually (similar to panel (c) of Fig. 5). When
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the cryptic relatedness in the sample is reduced, we expect the skew in the

singular values to be larger than that reported in our paper (see the skew

for the European population in Fig. 1). In SK we gave GCTA the benefit of

the doubt and assumed that the ‘unrelated’ individuals used in the analysis

were chosen using more reliable methods than those described in [17]. To

demonstrate that the problems with the relatedness threshold are not specific

to FHS, we next demonstrate similar problems with the HRS dataset.

4.3 The same problem in HRS data

Here we use the HRS dataset to compare the efficiency of kinship coefficients

(known to reliably filter unrelated individuals) with the relatedness threshold

suggested in [17]s. We show that the latter method, relatedness thresholds,

produces much larger errors than a mthod that uses kinship coefficients.

Therefore, studies using the relatedness threshold to chose individuals will

induce errors beyond those described in SK.

Plots of the singular values of Z when subjects are chosen on the basis

of kinship coefficients (marked with red dots) and the relatedness threshold

(marked with blue dots) are plotted in Fig. 2. Note in Fig. 2 that there is a

gap in the singular value spectra obtained using the two methods. Hoffman

[7] discusses this gap in his paper and shows that it is to be expected as a
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consequence of a high-dimensional process like cryptic relatedness.

When the individuals retained in the study are chosen using Kinship

Coefficients (see http://hrsonline.isr.umich.edu/sitedocs/genetics/

HRS_QC_REPORT_MAR2012.pdf for details), the singular values of Z are ex-

tremely skewed. In Fig. 2, the largest singular value is 3250, and the smallest

singular value is 8 × 10−6. For α = 10−4 (or ||E||2 = 3250 × 10−4 = 0.325),

equation (11) states that wN will approximately lie between -0.325 and 0.325

and therefore, the error in estimation of Z will be around 0.01%.

On the other hand, when we use a relatedness threshold of 0.025 as sug-

gested in [17] (see Fig. 2 for the scree plot, and Fig. 6 for a histogram

of the off-diagonal entries in the GRM), the largest singular value of Z is

13216, and the smallest singular value of Z is 802. Here, for α = 0.05 (or

||E||2 = 0.05 × 13216 ≈ 660) (11) states that wN will approximately lie

between 802-660 = 142 and 802+660 = 1462. Since this interval does not

include 0 and is therefore not large enough. Therefore, the estimation error

in Z must be larger than 5%.

This illustration shows that the relatedness threshold is an unreliable

method for filtering unrelated individuals. In the next section we describe

the extreme precision with which Z has to be estimated in order for GCTA

to work as stated; we will show that even seemingly accurate solutions (e.g.,
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when α = 10−4) produce extremely inaccurate estimates of heritability.

5 Problems with the skew

GCTA uses the singular values ŵi of the sample matrix Z, while in reality it

should be using the singular values (wi) of the ‘true’ matrix Z1. Our analysis

shows that the MLEs depend on terms of the form log(1/ŵi
2). Performing

Taylor expansions about the ‘true’ singular value wi, the first order correction

in these terms will be of the form

∆ log

(
1

ŵi
2

)
≈ − 2

wi

(ŵi − wi). (12)

Therefore in essence, the ratio of the error in the singular value to the mag-

nitude of the singular value should be small.

Using (3) and standard results in perturbation theory (see equation 3 in

[15]), we can express ŵi in terms of wi as

ŵi = wi + Φ(E) +O(||E||22), (13)

where Φ(E) is a linear functional in E. Equation (13) shows that a ‘small’

error means that ||E||22 is small; i.e., the square of the largest singular value
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of E is small, which is consistent with Weyl’s inequality in (11) above. We

claimed in SK that the errors associated with the small singular values will

be large. To see why, we set E = αZ as in the previous section. For this

setting, ||E||22 = α2ŵ1
2. From (13), for the errors in the smallest singular

value (ŵN) to be small, we require

ŵN � α2ŵ1
2, (14)

or

C ≡ α2 ŵ1
2

ŵN

= Kŵ1α
2 � 1, (15)

where K = ŵ1/ŵN is the condition number of the matrix.

Inserting ŵ1 = 1000, ŵN = 100, and α = 0.01 in (15) gives C = 1; this

shows that even when the smallest singular value is ‘large’ and the condition

number is modest, extreme precision is required for proper estimation of Z1.

Further, this example demonstrates that the sampling error in the smaller

singular values will be large so long as they are small relative to the largest

singular values; the absolute magnitude has little relevance.

For the HRS dataset, with α = O(10−4), ŵ1 = O(103), and ŵN =

O(10−6), C = O(104); therefore, a sampling error of 0.01% in Z is extremely

large. This illustration demonstrates the very (unreasonably?) high accuracy
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required in Z for the GREML to work as described in YC.

When the singular values of Z are skewed, the precision required in the

GRM, A, is much higher than the precision required in Z. To see why,

we analyze the conditions under which the errors in the eigenvalues of the

GRM (âi = ŵi
2/P ) will be small . From (14), for the errors in the smallest

eigenvalue of the GRM to be small, we require the sampling error in the

GRM described in (4) (F = βA) to approximately satisfy

(
ŵ1

2

ŵN

β2

)
ŵ1

2

ŵN

� 1. (16)

Comparing (15) and (16) shows that

β =
α
√
ŵN

ŵ1

, (17)

which means that a high precision in Z corresponds to a much higher precision

in A.

In the context of the HRS dataset described above, α = 10−4 (which we

showed was too large) corresponds to β = O(10−8). This implies that an

error of 10−6% in the GRM would be too large.

It has been claimed in applying GCTA, that the errors they find in the

GRM are small; the problem is that they are not small enough. For instance
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in supplementary figure S1 of [16], the diagonal entries in the sample GRM

whose ‘true’ value is 1 are plotted and entries as large as 1.1 are found,

correspond to an error of 10%. This plot clearly shows that contrary to the

claims in YC, the sampling error in the GRM are not small, and problems

with the sampling errors are bound to exist.
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Figure 1: Skews in singular values for different populations. This is Fig. 4
in [7].
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Figure 2: Skews in Singular values when using samples filtered using kinship
coefficients (in red) and using relatedness threshold (in blue). Notice that
there is a ‘gap’ between the red and blue dots being caused because of cryptic
relatedness.
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Figure 3: First ten eigenvalues of the GRM for the HRS dataset.
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Figure 4: Histogram of off-diagonal entries of sample covariance matrix when
the ‘true’ covariance matrix has all off-diagonal entries = 0.04. Note that
there are some entries with errors greater than 50%
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Figure 5: What to expect from the singular(eigen) values of the GRM. Panel
(a) shows that when there is stratification and no cryptic relatedness, we
expect the eigenvalues to fall to 0 sharply. Panel (b) shows that when the
individuals in the population are related, we expect long stretches of non-
zero eigenvalues. Panel (c) shows that when there is a combination of the
two, we expect the eigenvalues to fall to 0 somewhat gradually. This is
Supplementary figure S1 in [7]
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Figure 6: Off-Diagonal entries in the GRM for the HRS dataset after 0.025
thresholding
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