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ABSTRACT 

There are global increases in the use of HIV antiretroviral therapy (ART), guided by clinical benefits of 
early ART initiation, and the efficacy of treatment as prevention of transmission. Separately, it has been 
shown theoretically and empirically that HIV virulence can evolve over time. Observed virulence levels 
may reflect an adaptive balance between infected lifespan and per-contact transmission rate. Critically, 
the potential effects of widespread ART on HIV virulence are unknown. To predict these effects, we used 
an agent-based stochastic model to simulate changes in HIV virulence, using set point viral load as a 
virulence proxy. We calibrated our epidemic model to the prevalence and incidence trends of South 
Africa. We repeated our analysis using a separate calibration, as a sensitivity analysis, and found that 
predicted impact of ART on virulence was relatively insensitive to calibration. We explored two ART 
scenarios, at increasing coverage: ART initiation based on patients reaching a CD4 count threshold, or 
based on time elapsed since infection (a scenario that mimics the “universal testing and treatment” 
aspirations). We found that HIV virulence is generally unchanged in scenarios of CD4-based initiation. 
However, with ART initiation based on time since infection, virulence can increase moderately within 
several years of ART rollout, under high coverage and early treatment initiation, albeit within the context 
of rapidly shrinking epidemics. Our modeling study suggests that increasing virulence driven by universal 
test and treat is likely not a major public health concern, but could be monitored in sentinel surveillance, 
in a manner similar to transmitted drug resistance.  

 

INTRODUCTION 

Worldwide, 15 million HIV-infected individuals are receiving ART (1). To take advantage of the benefits 
of earlier treatment initiation for both individual endpoints (better disease prognosis (2)) and population 
endpoints (decreased rates of onward transmission (3)), UNAIDS has set ambitious targets of 90-90-90 by 
2020 (90% of all people living with HIV will know their HIV status, 90% of all people with diagnosed 
HIV infection will receive sustained antiretroviral therapy, and 90% of all people receiving antiretroviral 
therapy will have viral suppression) (http://www.unaids.org/sites/default/files/media_asset/90-90-
90_en_0.pdf).  

However, it is unknown how widespread scale up of ART may affect HIV virulence. HIV virulence, 
defined here as the rate of disease progression in untreated infections, is commonly estimated via the 
proxies of set point viral load (SPVL; the viral load after acute infection but prior to AIDS), baseline 
CD4+ T-cell count, rate of CD4+ T-cell decline, immune activation, or viral replicative capacity.  

Modeling studies of HIV virulence have suggested that, in epidemics where ART use is not widespread, 
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HIV may adaptively evolve toward an intermediate level of virulence, to balance the per-contact 
transmission rate with the infected lifespan (4-6). These findings are consistent with the “trade-off” theory 
of virulence evolution, where an optimal virulence level should exist that maximizes the (pathogen’s) 
lifetime transmission success (7, 8). For example, low HIV virulence (low SPVL) will result in decreased 
per-contact infectivity but more lifetime transmissions in untreated infections (due to longer infected 
lifespans); high virulence (high SPVL) will result in higher per-contact infectivity but fewer total 
transmissions (due to shorter infected lifespans) (4). These HIV virulence models have focused on SPVL, 
as SPVL is prognostic for the rate of disease progression (9-12). Importantly, SPVL is a phenotype with 
the necessary requirements for adaptive evolution:  variation in the host population (13, 14); correlation 
with the per-contact transmission rate (viral fitness) (15-19); and at least partially determined by genotype 
(i.e. heritable across transmission pairs) (20-24). 

Empirical studies of HIV virulence have revealed unexplained variation in population-level estimates of 
virulence and trends in virulence among local HIV epidemics (local as defined by cohort, population, or 
country) (14). Hypothesized explanations for this variation include: founding viral lineages of local 
epidemics had different virulence levels (6); different epidemic ages have allowed for varying amounts of 
HIV adaptation to the host population (6, 25); virulence estimates have been affected by sampling biases 
related to improvements in HIV screening and diagnosis (6) or the time between last negative and first 
positive HIV antibody tests (which can affect the precision of SPVL measurements) (14); and, related to 
the current study, differences in the history and extent of antiretroviral therapy (ART) in each local 
epidemic (25). 

Large-scale “treatment as prevention” or “universal testing and treatment” programs will likely shift the 
distribution of HIV transmissions by individual stage of infection (26), potentially modifying the balance 
between per-contact transmission rate and the length of the infected lifespan. It is possible that biomedical 
interventions that extend the lifespans of HIV-infected individuals will shorten the (effective) viral 
lifespans and result in increased HIV virulence: less virulent viruses will no longer reap the benefits of 
longer infected lifespans. Alternatively, it is possible that individuals infected with the most virulent 
viruses will initiate treatment the earliest, thus providing an added evolutionary advantage to less virulent 
viruses. In short, viruses that transmit the most before treatment initiation may have a selective advantage. 
However, because of the range of possible interactions and counter-acting selection pressures, these 
evolutionary scenarios are hard to intuit, and so need to be studied within the context of a mathematical 
model. It is important to identify specific ART-related scenarios in which HIV virulence could evolve, 
and how rapidly virulence could change. 

Our goal was to predict, using a stochastic, agent-based modeling approach, the effect of ART scale-up 
on HIV virulence. We used SPVL as a virulence proxy to investigate whether ART can apply 
evolutionary pressure on the balance between HIV per-contact infectivity and the infected lifespan. 
Additionally, we examined whether different scale-up scenarios (e.g., based on observed clinical practice 
or national treatment guidelines) for ART eligibility and initiation mediate this pressure. Our model 
allowed for fine-scale variation among viral lineages in virulence (individual SPVL), and allowed for 
population-based levels of virulence (mean SPVL) to change over time. We used our model to predict 
changes in HIV incidence and prevalence that result from ART intervention programs (which are 
comparable to earlier modeling studies), and concurrently to predict the changes in virulence in these 
same epidemic scenarios. 

RESULTS 

Calibration 

Our primary results focus on the calibration of a stochastic, agent-based model (6) to the HIV epidemic of 
South Africa (Table 1). We chose to calibrate the model in this way first, because the epidemic in South 
Africa is one of the largest, globally, and secondly, to make our study explicitly and readily comparable to 
the 12 models of ART and HIV incidence that were documented and compared by Eaton et al. (27). 
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These 12 models, and comparisons among them represent the fullest attempt, to date, at quantifying the 
potential impact of ART on HIV incidence in a high-incidence generalized epidemic. These 12 models 
included simulations starting in 1990 with ART rollout starting in 2012. The models were compared 
based on epidemiological endpoints measured at 8 and 38 years after ART rollout (2020 and 2050, 
respectively); we followed this same structure. Our simulations were initiated with 2% HIV prevalence 
and initial mean SPVL of 3.5, 4.5 or 5.5 log10 copies/mL. Incidence (per 100 person years) rose quickly to 
~3%, followed by a decline to ~1.75% and stabilization around year 2010  (Figure 1). Prevalence rose to 
~12%, followed by a decline to ~8%. 20% of transmissions occured in the from individuals in their first 
year of infection; the majority of transmissions occured in chronic infection. These epidemic outputs, in 
the absence of ART, were similar to outputs from the 12 models compared by Eaton et al. (27). 

Virulence evolution in the absence of ART 

Starting with initial SPVL distributions that reflected low, intermediate, and high virulence (mean SPVLs 
of 3.5, 4.5, and 5.5 log10 copies/mL, respectively), HIV evolved toward an intermediate level of virulence 
(Figure S1). Additionally, as predicted under stabilizing selection, the population variance of SPVL 
decreased over time in all scenarios. Under the current model assumptions, the evolutionary optimal mean 
SPVL, in the absence of ART, is predicted to be ~4.70 log10 RNA copies/mL. We have previously 
performed sensitivity analyses for the effects of viral and behavioral parameters on SPVL levels and 
SPVL evolution in our model (6); we summarize these here. The inferred optimal virulence (mean SPVL) 
was insensitive to variation in the following viral parameters: a) rate of viral load increase in chronic 
infection (s from Equation 1); b) maximum transmission rate (Bmax in Equation 2); c) maximum time to 
AIDS; and d) peak viremia in acute infection. The rate at which mean SPVL evolved to an inferred 
population-level optimum (as seen in Figure S1) depended principally on Bmax; mean SPVL increased 
more rapidly in the early years of epidemics with higher Bmax values, before arriving at similar mean 
SPVL levels (6). The inferred optimal virulence (mean SPVL) was sensitive to the mean degree of the 
sexual network, defined as the average number of sexual partners that each person has at any given time. 
Higher mean degrees were associated with higher mean SPVL. Because we were interested in comparing 
mean SPVL between simulations with and without ART, this sensitivity did not affect our main findings. 
However, our alternate model calibration, performed as a sensitivity analysis and  described below, 
includes a lower mean degree and thus lower mean SPVL. 

Virulence evolution in the presence of ART 

Time since infection thresholds for ART initiation, representing Universal Test and Treat.   

With ART initiation thresholds based on time elapsed since infection (without consideration of CD4 
count or stage of infection), virulence was slightly increased by 2020 (8 years after ART rollout), except 
in scenarios with 100% coverage, in which mean SPVL was increased by 0.2 log10 with initiation at three 
years after infection (Figure 2). By 2050, however, increased virulence was seen at all coverage levels, at 
all initiation times. The largest increases were seen with ART initiation at two, three and four years after 
infection and ART coverage at and above 60%. In these scenarios the maximum increases in mean SPVL 
were ~0.4 log10 copies/mL by 2050 (e.g. from ~4.7 to ~5.1 log10 copies/mL) (Figure 2 and Figure S2). 
These increases in virulence only occurred in the context of very large reductions in incidence (Figure 
S3). Figure 3 shows the specific example of increasing mean SPVL for ART initiation at three years after 
infection, for ART coverage ranging from 40% to 100%. Similar plots for SPVL trends under each of the 
evaluated time thresholds, at increasing coverage levels, are shown in the Supporting Information (Figure 
S4).  

CD4 count thresholds for ART initiation.   

With CD4 count thresholds for ART initiation, mean SPVLs at eight and 38 years after ART rollout 
(2020 and 2050) were generally unchanged between ART and counterfactual (no ART) simulations 
(Figure 2 and Figure S5). Small decreases in virulence (decreases in mean SPVL up to ~0.10 log10 
copies/mL) were seen by 2020 for the CD4<500 ART initiation threshold at higher coverage levels (80% 
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and 100%), with the magnitude of change greater with increasing coverage. These decreases in virulence 
were not maintained by 2050. Slight increases in virulence were seen by 2050 in the CD4>500 scenario 
(all individuals are eligible for ART) with high coverage; incidence was near zero in these scenarios 
(Figure S6). Additional plots for SPVL trends under the examined range of CD4 thresholds, at increasing 
coverage levels, are shown in the Supporting Information (Figure S7). 

Incidence trends in the presence of ART  

Our model produced estimates of person-years of ART needed per infection averted, and reductions in 
incidence, that were similar to estimates described in Eaton et al. (27) (Table 2). In ART simulations with 
80% coverage and an ART initiation threshold of CD4<350, we observed a mean percent reduction in 
incidence of 40.03% (s.d. 2.31) by 2020 (eight years after ART rollout) and of 36.82% (s.d. 2.92) by 
2050. In these simulations, the mean person-years of ART needed per infection averted was 7.42 (s.d. 
0.22) and 8.60 (s.d. 2.47) in 2020 and 2050, respectively. As expected, we observed greater declines in 
incidence as ART coverage or CD4 count eligibility thresholds increased (Figure S6). Reassuringly, 
incidence declined even in the ART scenarios that led to increasing HIV virulence.  

Incidence trends for evolving versus static SPVL 

Our HIV epidemic model includes a distribution of virulence levels among individuals and allows 
virulence (mean SPVL) to evolve. To assess the potential effects of these model characteristics on 
standard epidemic output, we repeated our simulations with a single, time invariant SPVL (4.5 log10 
copies/mL) and 100% heritability (i.e., all individuals have SPVL=4.5 over the course of a simulation), 
and compared the output of this static SPVL model to the output of the evolving SPVL model.  

With a variable and evolving SPVL, the predicted benefits of ART are greater than predicted by a model 
with static SPVL (in an epidemic scenario of 80% ART coverage and an ART initiation threshold of 
CD4<350) (Table 2). With evolving SPVL, incidence reductions are greater by years 2020 and 2050 (e.g. 
~40% vs ~32% reduction by year 2020), and fewer person-years of ART are required per infection 
averted (e.g. 7.42 person-years vs. 9.98 person-years at year 2020; 8.60 vs 12.80 person-years by year 
2050).  

Results from the alternate model calibration 

We repeated our simulation experiments with alternate parameterization of the epidemic model, as a test 
of the sensitivity of our primary results (above) to the overall model calibration. These alternate epidemic 
simulations were initiated with 2% HIV prevalence and initial mean SPVL of 4.5 log10 copies/mL; 
incidence (per 100 person years) rises at a slower rate than in our primary model, but continues rising to 
~5% incidence by the end of the epidemic simulation (Figure S8). This alternate model produced results, 
with respect to HIV virulence evolution, equivalent to those obtained from the primary model calibration:  
ART initiation based on CD4 count results in generally unchanged HIV virulence (mean SPVL relative to 
the no ART counterfactual), while ART initiation based on time since infections results in moderate 
increases in mean SPVL, in scenarios of early initiation and high coverage (Figure S9, Figure S10  (Time 
trends), and Figure S11 (CD4 trends)). 

DISCUSSION 

HIV virulence evolution has attracted a considerable amount of recent interest (4, 14). Separately, the 
effects of ART on HIV transmission, incidence, and prevalence are issues of critical public health 
importance (3, 27). In our analysis we have used a mathematical model to jointly examine these inter-
related aspects of HIV evolution and epidemiology.  

ART scenarios and virulence evolution 

Based on our model, we predict that widespread ART use will, overall, have minimal effects on HIV 
virulence. However, specific scenarios may yield clinically significant increases in SPVL: when treatment 
initiation is based solely on the time elapsed since infection (rather than a CD4 count threshold), when 
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treatment initiation occurs relatively early after infection, and when treatment population coverage is 
relatively high (at or above 60%). The maximum predicted increases in mean SPVL were ~0.4 log10 
copies/mL by 2050, 38 years after ART rollout (e.g. from ~4.7 to ~5.1 log10 copies/mL). In these 
scenarios, the beneficial impact of ART programs could be partially mitigated by the emergence of highly 
virulent viruses; nonetheless, the model predicts substantial and durable reductions in incidence for these 
scenarios.  

Table 3 compares clinically relevant results of distinct ART modeling scenarios, including 80% coverage 
and initiation at CD4<350 threshold (used as the ART scenario for the primary model comparisons 
described in Eaton et al. (27)), and the time since infection scenario with 80% coverage and initiation 
threshold of three years since infection. In the time since infection scenario, which represent universal test 
and treat, our model predicts increases in mean SPVL of 0.27 log10 copies/mL by 2050 (4.72 to 4.97) 
(Figure 3). Following the transmission and disease progression functions of our model (see Materials and 
Methods and Supporting Information), an increase of this magnitude results in a ~8% increase in annual 
transmission rate (infectivity) and a ~13% decrease in time to CD4<350. This change in infectivity hinges 
on the shape of our viral load and transmission function (Equation 2), which assumes that infectivity 
plateaus at high viral loads (4). If, rather, infectivity does not plateau but rather continues to increase with 
higher viral loads, increases in transmission rate due to virulence evolution will be greater (28, 29); 
previous studies (using different underlying functions) have predicted that SPVL increases of 0.50 log10 
will decrease the median time to AIDS by 3 years (30), and will increase the annual transmission rate by 
up to 37% (4, 17, 18, 28).  

The predicted dynamics of virulence evolution (Figure 2) suggest that the selective advantage of high 
virulence is greatest with early ART initiation times after infection (<4 years after infection). i.e. There is 
a length of infection prior to ART initiation in which the majority of high virulence viruses will have 
already killed their host, and thus the evolutionary cost of ART is only born by low virulence viruses. As 
the time threshold for ART initiation increases (up to 6 years and beyond), the observed change in mean 
SPVL (HIV virulence) decreases—because these scenarios are approximating the natural history of HIV 
without ART, and the evolutionary balance between high virulence (short lifespans with high infectivity) 
and low virulence (long lifespans with low infectivity) is unaffected by ART. 

The generally stable virulence level predicted by the ART scenarios with CD4 count thresholds is perhaps 
surprising, given that the mean times to these CD4 thresholds are similar to the time thresholds for 
initiation that produced increased virulence (i.e. three to five years after infection). This can be explained 
by the selective advantage of higher virulence viruses being mitigated by the selective earlier removal of 
these same high virulence lineages (by ART), relative to lower virulence lineages. In effect, ART 
initiation based on CD4 count appears to balance the selective processes for and against more virulent 
viruses, while ART initiation based on time elapsed since infection provides a selective advantage only 
for more virulent viruses. This can be seen in the relative proportions of transmissions that occur after 
ART rollout, for high (defined here as >4.70 log10 copies/mL, the observed population average, 4.7) and 
low (<4.70 log10 copies/mL) virulence viruses (Figure S12). 

Can ART explain empirical (observed) virulence trends?  

The fastest mean linear increase in SPVL (estimated after ART rollout, from 2012 to 2050) was 0.008 
log10 copies/mL/year, for 100% coverage and ART initiation at 3 years after infection (Figure 4); 50% 
slower than the SPVL increase observed in the largest cohort study completed to date (0.016 log10 
copies/mL/year; 95% CI 0.013–0.019) (31), and 40% slower than the summary trend from a meta-
analysis of 8 published SPVL trends (0.013 log10 copies/mL/year; 95% CI -0.001–0.03) (14). Given that 
our maximum rate was produced in a scenario with 100% coverage, we infer that the empirical SPVL 
trends are likely not due to ART rollout alone—although we can not absolutely rule out that differences in 
the primary transmission routes of our modeled epidemic (heterosexual sex) and the empirical estimates 
(mostly men-who-have-sex-with-men epidemics in North America and Europe) would result in different 
effects of ART on virulence.  
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It has been suggested that decreases in HIV virulence (measured by the proxies of viral replicative 
capacity and viral load) observed in ART-naïve antenatal cohorts in Gaborone, Botswana (compared to 
Durban, South Africa) may be due partially to historical increases in ART coverage (and more 
substantially to the extent of viral adaptation to the host immune response) (25). Our model does not 
simulate the evolution of viral replicative capacity per se, but we can assess whether the observed 
difference in median viral loads (4.19 and 4.47 log10 copies/mL, respectively, in Gaborone and Durban) 
can be explained by ART. A decline of this magnitude (~0.3 log10 copies/mL; ceteris paribus) in median 
VL is not seen in our model when comparing ART and counterfactual simulations; the largest decreases 
due to ART (median decrease of ~0.1 log10 copies/mL) occurred either: A) 38 years after ART rollout, or 
B) at high CD4 threshold (<500) and 100% coverage within 8 years of rollout—two scenarios not 
consistent with the history of ART in Botswana. A recent meta-analysis estimated the mean CD4 count at 
ART initiation in southern Africa to be 152 cells/uL (32). Thus, the majority of HIV infected individuals 
are likely starting ART late in infection, regardless of a given CD4-based guideline. Our model predicts 
that this will result in moderate increases in HIV virulence, not decreased virulence. Qualitatively, then, 
we infer that ART has not contributed to the postulated decreased HIV virulence in Botswana. 

Conclusions 

Our evolutionary and epidemiological model predicts that under certain ART scenarios, which align 
closely with the “treatment as prevention,” “universal testing and treatment,” and “90-90-90” scenarios 
that HIV public health programs aspire to implement, HIV virulence may increase relatively rapidly. 
These results are seen both in a model calibrated based on South Africa HIV incidence and prevalence 
trends and in an alternate model with entirely different parameterization. We note that incidence declines 
in these scenarios of increased virulence, but individuals with untreated infections will progress more 
quickly and per-act transmission rates will rise. These results are consistent with theoretical explorations 
of the effects of treatment on pathogen virulence, a key observation of which was that increasing 
treatment rates resulted in increasing optimal virulence (33); we observed this same result, as increasing 
ART coverage resulted in increasing virulence. Our results are also qualitatively consistent with a recent 
study that used a deterministic model to predict the effects of ART on the relative frequencies of two HIV 
strains representing high or low virulence (34). Further study is warranted to assess these HIV-specific 
predictions, including modeling aspects of combination prevention programs that may modulate these 
effects, e.g. PrEP, medical male circumcision, or condom use, and using cohort data to evaluate empirical 
relationships between trends in ART coverage and HIV virulence markers.  

An additional conclusion from our study is that standard HIV epidemic models (models that do not 
include parameters related to population-level variation in SPVL and to the capacity for HIV virulence to 
evolve) may underestimate the benefits of ART prevention programs. It may be beneficial, as HIV 
epidemiologic models continue to develop, to include realistic functions of viral evolutionary dynamics in 
such models. Even in worst case scenarios, our modeling study suggests that increasing virulence driven 
by universal test and treat is likely not a major public health concern, with a risk far outweighed by the 
benefits of improved clinical outcomes and reduced incidence. Changing virulence is amenable to being 
monitored alongside transmitted drug resistance in sentinel surveillance.  

MATERIALS AND METHODS  

We previously developed a stochastic, agent-based HIV evolutionary and epidemic model that simulates 
viral dynamics within and between individuals (6). This model allows for an HIV virulence phenotype 
(set point viral load; SPVL) to change over the course of a simulated epidemic, and thus provides an 
evolutionary framework in which a balance can be achieved between infectivity (efficiency of viral 
transmission) and virulence (rate of disease progression). The underlying model was written in C with a 
front-end written in R. The code is freely available from the authors, upon request. 

Simulated population  

Each epidemic simulation starts with N total individuals at time zero (HIV-uninfected and infected), with 
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each infected individual (of n total HIV-infected individuals) provided a SPVL value randomly selected 
from a normal distribution with user-defined mean and variance (Table 1). Entry of new (HIV-uninfected) 
individuals into the population occurs at a constant rate, such that the overall population will stay at its 
initial value.  

Viral load parameters  

The model includes the following parameters related to HIV viral load:  1) the distribution of SPVL in a 
population of HIV-infected individuals (13, 14); 2) the daily progression of viral load over the course of 
an individual infection, including distinct viral load trajectories for acute, chronic, and AIDS stages (15, 
35-37); 3) the predictive relationship between HIV viral load and the per-day transmission rate (assuming 
a given probability of sexual contact per day; see below) (4, 5); 4) the predictive relationship between 
SPVL and the rate of disease progression, mediated through rates of individual CD4+ T cell decline that 
are stratified by individual SPVL (38); and 5) a viral role in the determination of each individual’s SPVL 
(i.e. variation in the viral genotype explains a portion of the population variation in SPVL; non-zero 
heritability of SPVL in the infected population) (20-24). Parameter estimates for these viral components 
were fixed based on relevant literature (Table 1), and parameter uncertainty was addressed systematically 
by sensitivity analyses reported in our previous description of the model (6), and by performing our 
experiments on two separate model calibrations. See Supporting Information for further descriptions of 
the above model functions.  

Primary model calibration 

We performed a two-step process to calibrate our primary model, with the intent to reproduce incidence 
and prevalence trajectories based on prevalence data from South Africa (39), so that the output of our 
main analysis was directly comparable to the 12 HIV epidemic models described in Eaton et al. (27). As 
such, we first used evidence-based (i.e. viral load, CD4) parameter values within our evolutionary model; 
these are discussed in depth in our previous description of the model, and in the Supporting Information 
(6). Second, we calibrated assumption-based (i.e. behavioral) parameter values specifically to produce 
epidemic trends similar to those observed in South Africa, and based on similar calibration of the 12 
models included in Eaton et al. (27).  

It is not straightforward to calibrate HIV epidemic models to accurately reflect the decreases in incidence 
and prevalence observed in epidemics of sub-Saharan Africa (40); as in all epidemic models, it is widely 
accepted that the observed epidemic trends in sub-Saharan Africa require relatively complex assumptions 
about population structure (different risk groups), patterns of sexual contact, or changes in risk behavior 
over time (40, 41). The 12 models in Eaton et al. all dealt with this issue, and used varying degrees of 
assumption-based parameter values in their calibration; none were able to reproduce realistic epidemic 
dynamics without some underlying epidemiological complexity (27). Our choice of behavioral parameters 
to include in this primary model, based on an epidemic with a core group of individuals with increased 
transmission rates, and the parameter settings of which produced the calibrated model output, follow from 
previous HIV epidemic models. This approach allowed us to externally validate our model epidemic 
output, and to interpret potential clinical and epidemiological impacts of our evolutionary output in a 
realistic (and accepted) framework. Further explanation of our model parameterization and calibration is 
included in the Supporting Information.  

Alternate model calibration 

It was not the goal of our overall study to assess the potential effects of variation in behavioral parameters 
on the interaction of ART and HIV virulence evolution. Rather, our goal was to asses the effects of ART 
on HIV virulence evolution, with ART applied under a wide variation of scenarios and coverage, while 
maintaining the primary epidemic calibration based on South Africa and the 12 models in Eaton et al. 
However, we assessed whether the predicted effects of ART on virulence evolution were robust to 
variation in the overall epidemic scenarios (different variants of the underlying epidemic model, including 
underlying parameterization and resulting incidence and prevalence trends). To do this, we modified our 
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behavioral parameters by: 1) decreasing the mean degree; 2) removing the core group of individuals that 
had short relative relationship durations and elevated rates of sexual contact; 3) incorporating a random 
mixing sexual network that eliminated the assortative mixing of sexual contacts by relationship duration 
category (Table 1). With this alternate epidemic model we repeated the entirety of our ART-based 
experiments. 

Antiretroviral therapy parameters   

We structured ART dynamics as a heuristic starting point for theoretical studies of ART and HIV 
virulence evolution. As such, we assumed a single, standard regimen, with complete adherence and 
retention, and without the emergence of drug resistant mutations and associated changes in viral fitness 
(numerous studies report that transmitted drug resistance is rare in most populations (42, 43) and that the 
vast majority of transmitted drug resistance mutations have low fitness costs (44, 45). Individual ART use 
was applied after fulfilling necessary criteria of eligibility threshold, initiation time, and population 
coverage. We evaluated two types of ART eligibility scenarios. First, eligibility was based on CD4 count 
thresholds (entry into a CD4 count category: CD4>500; CD4<500; CD4<350; CD4<200). These 
scenarios are most relevant to how treatment has been implemented in recent years, as countries have 
followed WHO guidelines. Second, eligibility was based on time elapsed since date of infection (one, 
two, three, four, five, or six years after infection). These scenarios reflect likely changes in the future as 
treatment becomes nearly universally available through the UNAIDS 90-90-90 initiative. 

Initiation of ART after an individual became eligible was immediate for the “time since infection” 
eligibility criterion but was delayed for one year for the “CD4 count category” criterion (this is consistent 
with the models compared in Eaton et al. (27), and realistic given testing rates). No individuals were 
eligible for ART during acute infection in any scenario (regardless of CD4 count category). Population-
level ART coverage was implemented via individual probabilities of initiating ART, after meeting the 
eligibility criteria described above. (With complete adherence, our estimates of population-level coverage 
are likely slight overestimates of coverage rates in epidemics with equivalent individual probabilities of 
initiating ART but less than complete adherence.) Decreases in transmission probability for individuals 
receiving ART were mediated entirely by a immediate decrease in viral load to 50 copies/mL upon 
treatment initiation. 

Simulations and output   

We ran epidemic simulations for 60 years, in discrete time-steps of one day. For each model run we 
tracked the distribution (mean, median and variance) of SPVL (viral load at the end of acute infection and 
prior to initiation of ART) and the population incidence and prevalence. For specific comparisons to the 
models described in Eaton et al. (27), we evaluated changes to mean SPVL, incidence, and person-years 
of ART per infection averted that were observed at eight and 38 years after the roll-out of a population-
level ART program that began in 2012—with treatment eligibility at CD4 count <350 cells/uL and 
population coverage at 80% (compared to counterfactuals in the same populations without ART). This 
specific treatment scenario was used by Eaton et al. (27) to approximate an implementation of World 
Health Organization guidelines (current at the time of that study) and the Joint United Nations 
Programme on HIV/AIDS definition of ‘‘universal access’’ as reaching 80% of HIV-infected individuals.  

Thus, we began our simulations in year 1990, ART was introduced to the populations in the beginning of 
year 2012, and evaluations were done using output from the midpoint of years 2020 (eight years) and 
2050 (38 years). In addition to the specific comparison to Eaton et al. outputs, we evaluated combinations 
of ART coverage (40 to 100%, by 20% increments) and either ART time since infection eligibility (one, 
two, three, four, five, or six years after infection) or ART CD4 count threshold eligibility (all eligible 
(CD4>500), CD4<500, CD4<350, or CD4<200). For each combination of coverage and eligibility we 
performed 10 replicate simulations. 
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Table 1. Parameters of the model and initial values. Parameters with an asterisk had different values between the original 
and alternate model calibrations. 
 
 
 
  

Parameter Value 

Demographic and behavioral 
 

Initial overall population size 1x105 individuals 

Initial number of infected 2x103 individuals 

Minimum relationship duration 0.1 years 

Maximum relationship duration 5.0 years 

Subgroups defined by relationship duration* original: <0.5 yrs, 0.5-2.5 yrs, >2.5 yrs 
 

 alternate: 1 group (no subgroups) 

Probability of sexual contact, in each group* original: 1.0, 0.05, 0.03 per day 
 

 alternate: 1.0 

Mean degree* original: 0.9 

 alternate: 0.7 

Virologic 
 

Viral load at time zero  10 copies/mL 

Viral load at peak viremia 1.0x107 copies/mL (15, 35) 

Time to peak viremia 21 days (15, 35) 

Total time of acute infection 91 days  (15) 

Viral load progression rate, natural log 0.05 per year (37) 

Viral load at AIDS (CD4<200)  5.0x106 copies/mL (37) 

Set point viral load 
 

Variance of log10 SPVL 0.7 (13) 

Heritability of SPVL across transmissions (h2)  0.36 (24) 

Mutational variance 0.20 

Transmission 
 

Maximum transmission rate 0.005 per day (4, 5) 

Viral load at 0.5 max transmission rate  13,938  copies/mL (4, 5) 

Hill coefficient, transmission function 1.02 (4, 5) 

Shape parameter, transmission function 3.46 (4, 5) 

Disease progression 
 

See Cori et al. for CD4 wait time matrix stratified by SPVL (38) 

Antiretroviral therapy 
 

Time to initiation after becoming eligible by CD4 1 year (27) 

Viral load after ART initiation 50 copies/mL 
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Table 2. Simulated impacts of ART, comparing models with evolving HIV virulence (a distribution of individual SPVL 
values and allowing for evolutionary change) and static SPVL (all individuals have SPVL of 4.5 log10 copies/mL and 
individual SPVLs are identical across transmissions). Two ART scenarios are shown for evolving and static SPVL 
models:  ART initiation and eligibility at CD4<350 cells/ul and 80% coverage; and ART initiation and eligibility at four 
years elapsed after infection and 80% coverage. Values are means and standard deviations for ten replicate model runs. 
 

 

  
  Time since infection threshold CD4 count threshold 

  Static SPVL Evolving SPVL Static SPVL Evolving SPVL 
Percent reduction in incidence 
year 2020 53.99 ±2.51  54.27 ±2.92 32.42 ±2.83 40.03 ±2.31 
year 2050 43.61 ±4.03  38.72 ±2.23 31.42 ±2.45 36.82 ±3.46 
Person-years of ART per infection averted 
year 2020 7.52 ±0.24 6.08 ±0.22 9.98 ±0.19 7.42 ±0.22 

year 2050 9.39 ±1.67 7.59 ±0.46 12.80 ±1.75 8.60 ±2.47 
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Table 3. Impact of HIV virulence evolution given in terms of:  A) mean SPVL; B) infectiousness (mean annual 
transmission rate); and C) years until specific CD4+ T-cell counts. The baseline comparison for simulated epidemics 
without ART is shown. ART scenarios with 80% coverage are shown for two eligibility types:  1) ART eligibility at 
CD4<350 cells/ul; and 2) ART eligibility at four years elapsed after infection. Values are means for all new infections 
between 2045 and 2050 (33 to 38 years after ART, the last 5 years of 60 year epidemic runs), for 10 replicates each, for 
the SPVL (viral load at the end of primary infection). 
 

 

 

  

  
  

mean SPVL 
mean annual 

transmission rate 
mean years  
to CD4<500 

mean years  
to CD4<350 

mean years  
to CD4<200 

No ART 4.72 0.76 2.40 4.47 7.03 
A. With ART;  
CD4<350 
threshold  

4.70 0.75 2.30 4.27 6.86 

B. With ART;  
3 years after 
infection 
threshold  

4.97 0.82 2.05 3.91 6.25 

B. With ART;  
4 years after 
infection 
threshold  

4.90 0.81 2.18 4.14 6.73 
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Figure 1. Simulated trends in HIV incidence for ART scenarios of 40, 60, 80 and 100% coverage (individual prob
of receiving ART with complete adherence) and CD4 count threshold for treatment initiation <350 cells/mL, versu
counterfactual epidemic simulation with no ART. Shown are LOESS regression lines for ten random replicates for
ART coverage scenario (thin lines), and the mean of these replicates (thick lines). Initial mean SPVL was 4.5 log10

copies/mL. 
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Figure 2. Surface plots showing change in mean SPVL between epidemic simulations with and without ART, for 
scenarios of increasing ART coverage (individual treatment probability) and ART initiation based either on time si
infection or CD4 count threshold. For epidemic scenarios with ART initiation based on time since infection, A) sho
mean SPVL change 8 years after ART rollout (from year 2012 to year 2020), and B) shows mean SPVL change 38
after rollout (from year 2012 to year 2050). For epidemic scenarios with ART initiation based on CD4 count, C) an
show mean SPVL at 8 and 38 years after rollout, respectively. 
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Figure 3. Example simulated trends in HIV virulence (mean SPVL) for scenarios of 40, 60, 80 and 100% coverage
(individual probability of treatment) and ART initiation at 3 years elapsed after infection, versus the counterfact
simulation with no ART. Shown are LOESS regression lines for ten random replicates for each ART coverage scen
(thin lines), and the mean of these replicates (thick lines). Initial mean SPVL was 4.5 log10 copies/mL. ART covera
lines start at year 22, corresponding to a simulation starting at year 1990 with ART rollout at year 2012.{Bonhoeff
#25} 
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Supporting Information 

 

Additional details of the epidemic model 

Within-host component (viral load dynamics)   

For each individual, upon HIV-1 infection with an initial viral population of size V0, viral load increases 
exponentially at rate r until a user-defined peak viremia, Vpeak, at a user-defined time tpeak. Viral load then 
declines exponentially at an individual-specific decay rate, dacute, until it reaches set point viral load 
(SPVL), Vsp, at time tsp. We define tsp, the time when Vsp is established, in the number of days after 
infection; this is a user-defined length from initial infection through peak viremia until set point is 
reached. After reaching set point (tsp), the viral load increases as (Equation 1): 

  V(t) = Vspe
s(t-tsp)       (1) 

where s is the user-defined parameter of annual viral load increase rate, and t is the time that has elapsed 
since the patient was first infected. For all HIV-1 infected individuals, we assume a log linear change in 
viral load after SPVL has been established until the onset of AIDS. Functionally this can be set to zero 
change, equivalent to stable viral load in the asymptomatic stage. Viral load upon onset of AIDS is 
defined as the same for all individuals, and is independent of SPVL. To reconcile population variation in 
SPVL (Vsp) with primary infection dynamics, we assume that V0, r, tpeak, tsp and s are the same in all 
individuals, but that dacute = ln(Vpeak/Vsp)/(tsp - tpeak) varies. 

Within-host parameters for disease progression (CD4+ T-cell count parameters)  

To model the relationship between SPVL and the rate of disease progression, as well as incorporate ART 
initiation thresholds based on CD4+ T cell counts, we included an intermediary function that related 
individual SPVL to the starting CD4 count category (individual CD4 count immediately after infection), 
and to subsequent disease progression based on waiting times in four CD4 count categories: CD4>500; 
500>CD4>350; 350>CD4>200; CD4<200 (AIDS). This function is based on data from the AIDS 
Therapy Evaluation in the Netherlands (ATHENA) observational cohort, which includes HIV-infected 
individuals followed in the 27 HIV treatment centers in the Netherlands since 1996 [27]. 

Across-host component (viral load and transmission)  

We assume that transmission rates follow available data from serodiscordant heterosexual partners; the 
probability of a HIV-infected person will transmit to a HIV-negative person is determined by an 
increasing Hill function (Equation 2) that follows Fraser [4]:   

           (2) 

where Bmax is the maximum probability of transmission per year, V is the donor’s viral load at the time of 
sexual contact, a is a Hill Coefficient that influences the steepness of the response curve, and K is the 
viral load at which the probability of transmission to a susceptible person is Bmax/2. We have followed the 
parameter values from Fraser [4], except for Bmax, which we have increased (from 0.001 per day in Fraser 
[4]) to account for the slower epidemic growth rates than expected, which may be explained as this value 
being from serodiscordant couples that are enrolled in HIV-1 cohorts and likely an underestimate relative 
to the general population. 

Across-host component (heritability of set point viral load) 

The SPVL, Vsp, is determined by both viral (the viral genotype, VirCont) and environmental (a 
combination of undefined host and environmental factors, EnvCont) factors. VirCont is different for each 
individual; HIV-infected individuals inherit the value of VirCont from the individual who infected them, 

B = B
max

V a

V a + K a
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with random variance introduced within a separate mutational variance parameter. Mathematically, we 
assume, for donor (i) and recipient (j) (Equations 3 - 5):  

 VirCont[ j ] = VirCont[i] + norm _ rand(0, MutationalVariance)  (3) 

 EnvCont[ j ] = norm _ rand(0, sqrt((1- h2 )*VarianceLogSP0)) (4) 

 log[Vsp ][ j ] = VirCont[ j ] + EnvCont[ j ]      (5) 

where h2 is the user-defined heritability.  

Sexual mixing network   

For each individual in a simulation, the model maintains a list of sexual partnerships and viral 
transmission pairs. Individuals were not marked by sex, and risks of infection were bidirectional, meaning 
that both partners have independent probabilities of infecting the other partner that are dependent on 
individual viral loads.  

For any one simulation, prior to the simulation of viral transmission, an initial set of contacts is formed by 
randomly choosing pairs from the population. The probability of each person entering into this link is set 
to e-Li, where Li is the number contacts that person i has (for this analysis we did not allow for concurrent 
relationships). If this probability was not met (or if Li > MaxLinks), another partner is selected at random 
from the population. This process is repeated until the total number of links equals N*M/2, where N is the 
total number of sexual active individuals, and M is the mean degree. The probability of a connection 
between individuals i and j dissolving is set to 2/(Duration[i] * Duration[j]), where Duration[x] is the 
expected time that person x stays in a relationship. After removing links from all newly dissolved 
partnerships, N*M/2 - L/2 links are added to the system, where N is the number of individuals after 
accounting for births and deaths that occurred that day and L is the number of links in the system after the 
dissolution step. If this quantity is negative, no links are added.  

Behavioral parameters  

The virologic and CD4-based progression functions were embedded in a host population without explicit 
demographic (sex, age) heterogeneity, but with behavioral heterogeneity. Each individual was assigned a 
relational duration propensity (range: 6-60 months); when two individuals partner, their relationship was 
slated to last for the mean of these individual effects. The daily probability of sex varied by relationship 
duration (100% for relationships <= 6 months; 5% for relationships >6 months and <=30 months; 3% for 
relationships >30 months). The coital frequencies for the two higher categories were selected as part of 
the process of calibrating the model to epidemic data. Individuals were placed into relationship 
partnerships randomly, with no concurrency (those already in a relationship were not eligible to form a 
new partnership). The rate of partnership formation was a calibrated parameter value. We did not include 
a change in behavior over time, e.g. a reduction in the sexual contact rate over calendar time. 
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Supporting Information Figure S1. Simulated trends in HIV virulence (via set point viral load (SPVL) as a proxy
reveal adaptive evolution toward an optimum SPVL. Shown are LOESS regression lines for ten random replicates 
each initial mean SPVL (thin lines), and the mean of these replicates (thick lines).  
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Supporting Information Figure S2. Simulated effects of ART on HIV virulence evolution, measured at A) 8 and
years after rollout of ART (i.e. from ART rollout in 2012 to 2020 and 2050). ART initiation is determined based on
elapsed since infection. (Increases in mean SPVL for 100% coverage are not reported for initiation at one and two 
after infection because incidence is 0 in those scenarios.)  
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Supporting Information Figure S3. Simulated effects of ART on HIV incidence, for scenarios when ART is initi
based on time since infection, at increasing coverage levels, measured at A) Eight and B) 38 years after rollout of A
(from 2012 to 2020 and 2050). ART initiation is determined based on time since infection.  
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Supporting Information Figure S4. Simulated effects of ART on HIV virulence evolution, for scenarios when A
initiated based on time since infection, at increasing coverage levels. Shown are LOESS regression lines for ten ran
replicates for each ART coverage scenario (thin lines), and the mean of these replicates (thick lines). Initial mean S
was 4.5 log10 copies/mL. ART coverage lines start at year 22, corresponding to a simulation starting at year 1990 w
ART rollout at year 2012. Truncated lines are the result of epidemic runs ending with 0% incidence. 
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Supporting Information Figure S5. Simulated effects of ART on HIV virulence evolution, measured at A) 8 and
years after rollout of ART (from ART rollout in 2012 to 2020 and 2050). ART initiation is determined based on CD
count eligibility thresholds (shown on the X-axis). (Increases in mean SPVL for 100% coverage are not reported fo
CD4>500 because incidence is 0% in those scenarios.)  
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Supporting Information Figure S6. Effects of ART on HIV incidence, measured at A) eight and B) 38 years afte
rollout of ART (from 2012 to 2020 and 2050). ART initiation is determined based on CD4 count eligibility thresho
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Supporting Information Figure S7. Simulated effects of ART on HIV virulence evolution, for scenarios when A
initiated based on CD4+ T cell count, at increasing coverage levels. Shown are LOESS regression lines for ten ran
replicates for each ART coverage scenario (thin lines), and the mean of these replicates (thick lines). Initial mean S
was 4.5 log10 copies/mL. ART coverage lines start at year 22, corresponding to a simulation starting at year 1990 w
ART rollout at year 2012. Truncated lines are the result of epidemic runs ending with 0 incidence. 
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Supporting Figure S8. Alternate model results:  simulated trends in HIV incidence for ART scenarios of 40, 60, 8
100% coverage (individual probability of receiving ART with complete adherence) and CD4 count threshold for tr
initiation <350 cells/mL, versus the counterfactual epidemic simulation with no ART. Shown are LOESS regressio
for ten random replicates for each ART coverage scenario (thin lines), and the mean of these replicates (thick lines
mean SPVL was 4.5 log10 copies/mL. 
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Supporting Information Figure S9. Alternate (different calibration) model results:  surface plots showing change
mean SPVL between epidemic simulations with and without ART, for scenarios of increasing ART coverage (indi
treatment probability) and ART initiation based either on time since infection or CD4 count threshold. For epidemi
scenarios with ART initiation based on time since infection, A) shows mean SPVL change 8 years after ART rollo
(from year 2012 to year 2020), and B) shows mean SPVL change 38 years after rollout (from year 2012 to year 20
epidemic scenarios with ART initiation based on CD4 count, C) and D) show mean SPVL at 8 and 38 years after r
respectively. 
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Supporting Information Figure S10. Alternate model results:  simulated effects of ART on HIV virulence evolut
scenarios when ART is initiated based on time since infection, at increasing coverage levels. Shown are LOESS 
regression lines for ten random replicates for each ART coverage scenario (thin lines), and the mean of these replic
(thick lines). Initial mean SPVL was 4.5 log10 copies/mL. ART coverage lines start at year 22, corresponding to a 
simulation starting at year 1990 with ART rollout at year 2012. Truncated lines are the result of epidemic runs end
with 0 incidence. 
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Supporting Information Figure S11. Alternate model results:  simulated effects of ART on HIV virulence evolut
scenarios when ART is initiated based on CD4+ T cell count, at increasing coverage levels. Shown are LOESS reg
lines for ten random replicates for each ART coverage scenario (thin lines), and the mean of these replicates (thick
Initial mean SPVL was 4.5 log10 copies/mL. ART coverage lines start at year 22, corresponding to a simulation sta
year 1990 with ART rollout at year 2012. Truncated lines are the result of epidemic runs ending with 0 incidence. 
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Supporting Information Figure S12. Proportion of transmissions from SPVL lineages with higher (>4.74 log10 
copies/mL) and lower (<4.74 log10) levels than the population mean prior to ART rollout, for a scenario of 80% AR
coverage and two different ART initiation scenarios: A) ART eligibility based on CD4<350; or B) ART eligibility 
years elapsed after infection. 
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