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Abstract

Horizontal gene transfer (HGT) is a fundamental
mechanism that enables organisms such as bacteria to di-
rectly transfer genetic material between distant species.
This way, bacteria can acquire new traits such as antibi-
otic resistance or pathogenic toxins. Current bioinfor-
matics approaches focus on the detection of past HGT
events by exploring phylogenetic trees or genome com-
position inconsistencies. However, this normally requires
the availability of finished and fully annotated genomes
and of sufficiently large deviations that allow detection.
Thus, these techniques are not widely applicable. Espe-
cially in an outbreak scenario where new HGT mediated
pathogens emerge, there is need for fast and precise HGT
detection. Next-generation sequencing (NGS) technolo-
gies can facilitate swift analysis of unknown pathogens
but, to the best of our knowledge, so far no approach
uses NGS data directly to detect HGTs.

We present Daisy, a novel mapping-based tool for HGT
detection directly from NGS data. Daisy determines
HGT boundaries with split-read mapping and evaluates
candidate regions relying on read pair and coverage in-
formation. Daisy can successfully detect HGT regions
with base pair resolution in both simulated and real data,
and outperforms alternative approaches using a genome
assembly of the reads. We see our approach as a power-
ful complement for a comprehensive analysis of HGT in
the context of NGS data. Daisy is freely available from
http://github.com/ktrappe/daisy.

1 Introduction

In bacteria, genetic material is commonly exchanged be-
tween organisms, a process known as horizontal gene
transfer (HGT) or lateral gene transfer (Ochman et al.,
2000, Boto, 2009, Wiedenbeck and Cohan, 2011). In con-
trast to vertical gene transfer, i.e. from one generation to
the next, HGT enables the exchange of genetic material
even between distant species mediated usually by trans-
duction, transformation, or conjugation (Gyles and Boer-
lin, 2013). Via transduction or conjugation, the foreign
DNA is carried in a plasmid or a bacteriophage, respec-
tively, whereas via transformation, the recipient takes
up nascent DNA from the environment. By means of

HGT, complete genes and functional units, called inser-
tion sequences (IS) or genomic islands (GIs), can be in-
corporated into the recipients’ genome. Each bacterium
can also carry several phages at distinct phage insertion
sites. Phages of the same type, e.g. λ phages, can also
carry diverse genes in their replaceable region with the
result that one bacterium can have multiple highly simi-
lar phages but with different gene content.

Not surprisingly, HGT greatly contributes to bacte-
ria’s ability to adapt to changing environments (Hu et al.,
2011, McElroy et al., 2014, Gyles and Boerlin, 2013). It
has been demonstrated to play a major role for the acqui-
sition of resistance to antibiotics (Barlow, 2009, Warnes
et al., 2012). Moreover, HGT is not limited to bacte-
ria but can also occur in vertebrates, including primates
(and humans) (Crisp et al., 2015). However, the focus
of the bioinformatics community with respect to HGT
has mainly been on methods for detecting past HGT
events (Ravenhall et al., 2015) from phylogenetic trees
(e.g. Boc et al., 2010, Bansal et al., 2012) or based on
genome composition (e.g. Metzler and Kalinina (2014),
Jaron et al. (2013)). Composition properties such as
GC content or k-mer frequencies usually deviate between
different organisms and can therefore be used to detect
sequence content of foreign origin. However, over time
the foreign sequence signature ameliorates to its new
host. Alien Hunter (Vernikos and Parkhill, 2006), e.g.,
therefore combines various compositional characteristics
or motifs in a variable fashion, called Interpolated Vari-
able Order Motifs (IVOM), to improve sensitivity. Their
IVOM approach does not require gene annotation or gene
position information and can hence be applied to newly
sequenced genomes.

Common methods aim to retrace evolutionary history
of finished bacterial genomes and have mostly been devel-
oped before next-generation sequencing (NGS) became
available, and hence, do not directly use NGS data. NGS
technologies are well established and widely used by now,
and enormous amounts of NGS data is available in public
repositories. NGS also offers the chance to detect HGT
events early in analyses which can be important in out-
break scenarios. One prominent example is the EHEC
outbreak in Germany back in 2011 (Frank et al., 2011),
where non-pathogenic Escherichia coli bacteria residing
in the gut of every human suddenly acquired two new
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Figure 1: Daisy evidence and workflow. (A) Mapping evidence based on read signature: For an acceptor genome (green) and a donor genome (dark blue) with the
transferred region (light blue), we evaluate read mapping information from split-reads (yellow arrows) crossing the transfer boundaries, pairs exclusively mapping within
the transferred region (light blue arrows), and read pairs spanning the boundary, i.e. they have one read on either side of the boundary (dark red arrows). (B) Mapping
evidence based on coverage: We evaluate the coverage based on acceptor reads (green arrows) and donor reads (dark blue arrows). We expect the coverage of the
acceptor genome to be high and homogeneous (green lines) except for the HGT insertion site (light green line). The coverage in the transferred region (light blue
line) should be comparable to the acceptor genome and higher than the coverage in the remaining donor region (dark blue lines). (C) Workflow overview: After initial
read mapping (1), unmapped reads are split mapped to determine single HGT boundaries (2). Single boundaries are paired up to form candidate regions according
to size constrains (3), and evaluated in accordance with mapping information regarding coverage and read pair signatures (4).

toxins from another bacterium leading to excessive and
often dangerous hemorrhagic gut infections. Especially
here, identification and characterization of the pathogen
causing the outbreak is highly important. Fast and reli-
able pathogen identification or detection of antibiotic re-
sistance are generally of particular interest (Byrd et al.,
2014). Important applications in diagnostics in the con-
text of HGT are the detection of novel bacterial strains
evolved through HGT or the distinction of a single infec-
tion with such a strain from a parallel infection by two
different strains (Fricke and Rasko, 2013). This distinc-
tion is important for treatment and to prevent spreading
of the disease, especially with the more frequently occur-
ring cases of antibiotic resistances. With a special focus
on these applications, we developed an HGT detection
tool that directly uses NGS data.

While methods that directly address the detection of
HGT events from NGS data are lacking, various meth-
ods for finding structural variations (SVs) in human ex-
ist, as for instance reviewed by Medvedev et al. (2009),
Alkan et al. (2011), and Pabinger et al. (2014). Further-
more, first systematic attempts are being made to trans-
fer methods for SV discovery to other species, including
plants (Leung et al., 2015) and bacteria (Barrick et al.,
2014, Hawkey et al., 2015). The latter approaches focus
on detecting SVs within a genome and do not aim to de-
tect the transfer of genetic material between species. To
our knowledge, no such method exists to date (Ravenhall
et al., 2015).

Conceptually, detecting an HGT event has similari-
ties to identifying an inter-chromosomal translocation in
an organism with multiple chromosomes (such as hu-
man). Nonetheless, a number of differences render ex-
isting methods not directly applicable for the purpose of

detecting HGT events. On the one hand, the underly-
ing mechanisms are different, e.g. phage-mediated trans-
fers versus integration of nascent DNA, which potentially
leads to other breakpoint signatures. On the other hand,
bacteria are subject to much higher mutation rates than
humans and can undergo faster evolution (Lee et al.,
2012). This usually also implies fast divergence of se-
quences acquired via HGT (Iranzo et al., 2014). Besides
sequence deviation due to evolution, reference databases
still contain a number of draft genomes or mis-assemblies
(Salzberg and Yorke, 2005, Kuhring et al., 2015), adding
sequence deviation due to technical artifacts. Usually,
the peformance of methods for calling structural varia-
tions from human NGS data deteriorates in the presence
of large amounts of sequence divergence. Despite these
issues, structural variant detection methods, which we
briefly survey below, provide an excellent starting point
to approach HGT detection when we combine their indi-
vidual strengths.

The most commonly used methods to detect struc-
tural variants from NGS reads are based on mapping
reads to reference genomes. To this end, three differ-
ent paradigms exist: (i) Coverage information can be
used to detect copy number variants (e.g. Abyzov et al.
(2011), Miller et al. (2011)). This allows finding regions
that are covered by significantly more or less reads than
the background genome in order to predict copy num-
ber gains or losses. Such approaches are effective for
large events, usually starting from approximately 5 kb,
and work best if multiple samples are available for com-
parison, allowing for properly handling coverage biases
(Dohm et al., 2008). (ii) The second class of approaches
leverages read pair information. Here, the idea is to de-
tect deviation from the expected relative mapping po-
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sitions of two paired reads generated by mate pair or
paired-end sequencing. This technique allows for uncov-
ering also copy neutral events such as inversions, or copy-
neutral translocations. The accuracy in terms of break-
point placement and event length strongly depends on
the insert size distribution of the library. In practice,
approaches that first classify read pairs as concordant or
discordant and then make predictions based on the dis-
cordant reads (e.g. Chen et al. (2009), Hormozdiari et al.
(2010)) are usually effective for events of approximately
250 bp and larger, while approaches that use all reads
(e.g. Lee et al. (2009), Marschall et al. (2012)) can predict
variants starting from approximately 30 bp. (iii) Finally,
it is possible to align reads across SV breakpoints, which
is often referred to as split alignment or split-read map-
ping (Trappe et al., 2014, Emde et al., 2012, Ye et al.,
2009, Marschall and Schönhuth, 2013, Karakoc et al.,
2012). Such approaches can deliver single base pair res-
olution, but have limitations with respect to repetitive
regions: Splitting the reads makes alignment ambiguity
even more likely to occur than for full length reads. Espe-
cially split-read approaches then have to trade sensitivity
for high numbers of false positive calls.

The different paradigms outlined above have different
strengths and weaknesses and use different information
sources. Therefore, many hybrid techniques that use
more than one of these ideas have been developed in the
past years (e.g. Rausch et al. (2012), Marschall et al.
(2013), Jiang et al. (2012)). In contrast to these hybrid
approaches, that integrate different techniques into one
algorithm, meta tools provide a unifying platform to inte-
grate the results of complementary methods into a unified
variant call set (Lin et al., 2014, Leung et al., 2015).

Besides mapping reads to reference genomes for SV
detection, it is also possible to subject them to de
novo assembly (Luo et al., 2012a, Bankevich et al.,
2012, Zerbino and Birney, 2008). There are many
advantages to this approach, including that biases due
to the choice of reference are avoided, all classes of
SVs can be addressed, and 1 bp resolution is attained.
However, these advantages only apply if the reads can
be assembled into sufficiently long contigs, which cannot
always be achieved from short read data. Although long
read sequencing technologies can drastically improve
the ability to assemble difficult regions (Chaisson et al.,
2015), short read technologies are still more prevalent,
more cost effective and will thus continue to play a major
role in the coming years. This holds in particular for the
application to fast evolving genomes such as bacteria
since here the low technical error rates of short reads is
of clear advantage. Hence, short read technologies are
most likely the method of choice in outbreak situations.

Contributions In this manuscript, we introduce
Daisy, a novel mapping-based HGT detection tool using
NGS data. Daisy facilitates HGT detection in outbreak
scenarios such as the EHEC outbreak 2011 in Germany.

B - Acceptor phages C - Donor phage

Head & Tail Ly�c func�ons
Replaceable

region

Split-readA - Phage gene�c map

Figure 2: Phage composition. (A) Basic genetic map of a λ phage: Each λ
phage has mosaic like coding regions for head, tail (blue), and lytic functions
(green). In addition, the phage may contain an interchangeable region (orange).
HGT related split-reads (yellow) cross the border between these regions. (B) The
acceptor is likely to carry similar phages (variants of blue and green) with another
replaceable content (red). This can make the split-read mapping ambiguous
between the blue and green parts, respectively. (C) The donor very likely carries
the transferred HGT region (orange) in a similar phage (blue and green) as the
HGT organism.

Outbreak situations require fast and reliable characteri-
zation of novel or unknown pathogens, or the distinction
of such a novel pathogen from double infections to pre-
vent disease spreading and to apply proper treatment.
We incorporate all three paradigms of mapping-based SV
detection: We identify HGT boundaries with split-read
mapping and then filter candidate regions using cover-
age and read pair information (see Figure 1). The iden-
tification part ensures sensitivity in the presence of se-
quence divergence whereas the filtering part removes un-
specific, non-HGT related events. We show the utility
of mapping-based techniques for HGT detection by ap-
plying our approach to one simulated data set and two
different bacterial case studies, each showing that map-
ping can help beyond what can be achieved with assembly
for HGT detection. With Daisy, we provide an easy to
use open source software relying on community standards
such as VCF files and readily usable output.

2 Methods

Daisy is a comprehensive, mapping-based tool for HGT
detection using sequencing data of an HGT organism, i.e.
an organism with an acquired HGT, without a complete
reference sequence available. The input is a set of se-
quencing reads from an HGT organism, i.e. an organism
with a suspected, but not yet known or identified HGT
event. With no complete reference available that includes
the HGT event, we map the reads against the acceptor
genome reference (the parent genome of the HGT organ-
ism acquiring the HGT sequence) and the donor genome
reference (the parent donating the HGT sequence; see
Figure 1).

We assume that donor and acceptor references are
known. In a first read mapping step, Daisy identifies
possible split-read candidates and also acquires mapping
information around the HGT boundaries that is later in-
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corporated for HGT support (step 1 of the Workflow in
Figure 1C, details below). We use a dedicated split-read
mapper to determine the single boundaries (step 2), then
pair up the boundaries to HGT regions according to size
constraints (step 3), and integrate the mapping informa-
tion of read pairs spanning and mapping within the HGT
region (step 4). We further filter the results by a boot-
strap based approach where we resample coverage and
the number of reads spanning or within the HGT bound-
aries from random regions in acceptor and donor. As an
additional step, we map the read pairs of candidate donor
regions against a bacteriophage database, and flag those
candidates having relevant hits. All candidate regions
meeting a pre-defined support threshold are reported in
VCF format. Daisy has two modes. The automated
mode supports single acceptor and donor references with
full filtering options. The manual mode gives the possi-
bility to examine multiple donor genomes (see data set
KO11FL for an example), although without filtering.

Read filtering. We simultaneously map the reads
against the acceptor and the donor genome to identify
the fully mapping reads. We use Yara (successor of Ma-
sai, Siragusa et al. (2013)), a read mapper designed with
focus on efficiency and low-error mapping. Hence, Yara
does not incorporate partial mapping or bad-quality last
resort mapping. As a result, Yara maps less of these reads
compared to other mappers (data not shown) and more
split-read candidates are investigated during split-read
mapping.

Split-read mapping. In an HGT event, a part of
the donor genome has been integrated into the accep-
tor genome. Given a set of reads of the HGT organ-
ism, we expect to see reads mapping across the HGT
boundary where one part of a read maps to the acceptor
and the other part to the HGT origin in the donor (see
yellow reads in Figure 1). When these reads are split-
read mapped concurrently to both acceptor and donor,
we can identify the breakpoints of an HGT event because
the signature of an HGT in SV terms then resembles an
inter-chromosomal translocation.

These HGT breakpoints are also the main evidence for
an actual integration of the possible transferred region in
contrast to potential contamination or co-existences of
both donor and acceptor. We use the SV detection tool
Gustaf (Trappe et al., 2014). Gustaf works with single-
end data but also incorporates paired-end information
from paired-end data. It can handle multiple splits per
read and alignment gaps at the read ends or in the mid-
dle of the read which is an important property in view of
the high bacterial evolutionary rate and common micro-
homologies at breakpoint locations. The expected num-
ber of split-reads depends on the read coverage and the
evolutionary distance between the sequenced organism
and its putative acceptor and donor genomes used for
analysis. The default value of the user definable parame-
ter for the required number of split-reads is therefore set

to 3 (very sensitive but avoiding random split-reads).

Candidate identification. The single breakpoints
from the split-read mapping give possible start and end
positions, in both acceptor and donor, of an HGT event.
The combination of these start and end positions is sub-
ject to size constrains regarding the regions delimited in
the acceptor and donor genomes in order to sensibly re-
strict the number of candidate regions. Depending on
whether only single genes, operons, or complete bachte-
riophages are transferred, these regions can vary largely
in size and range from a few hundred to several thousand
base pairs. The delimited region in the acceptor genome
can also be equally large as the designated HGT region
if, e.g., another bacteriophage is occupying the destined
phage insertion site there. The values for minimal and
maximal HGT size are therefore parameterized and user
definable. Default values used in the benchmarks are
500 bp and 55,000 bp for minimal and maximal HGT size,
respectively. We also reduce duplicate entries. Once we
identified a valid candidate, we remove any further iden-
tified candidates within a base pair range of a specified
tolerance (default 20 bp) around acceptor and donor start
and end positions.

Coverage and read pair integration. Each candi-
date region is then examined for additional mapping sup-
port regarding mean coverage, number of pairs spanning
and within HGT boundaries (see ”Mapping Evidence”
in Figure 1). Coverage can vary due to extreme GC con-
tent, sequencing efficiency or rearrangement events such
as induced by a HGT.

Theoretically, the expected coverage of the acceptor
genome should be equally high and homogeneous as the
sequencing coverage of the HGT organism (depicted as
”High coverage” in Figure 1), except for the HGT inser-
tion site. The coverage in the HGT insertion site should
be either much lower because the sequence content is
unrelated to HGT organism and donor or much higher
because it is occupied by another related phage. The
coverage in the donor HGT region should, again theo-
retically, resemble the coverage of the acceptor whereas
the coverage of the remaining donor should be low (de-
picted as ”Low coverage” in Figure 1). Depending on
the evolutionary distance between HGT organism, donor
and acceptor, the observed coverage properties of the re-
gion can deviate. A direct statistical comparison, e.g.
using the framework proposed in Lindner et al. (2013),
may lead to insignificantly small values, even for the true
HGT regions. We therefore introduced a bootstrap like
resampling method where we test the candidate regions
compared to equally sized random regions in acceptor
and donor. The default sampling size is 100 random re-
gions. As stated above, the donor region coverage should
be higher than the coverage of the remaining donor. Per
default, we require the donor region mean coverage to be
higher than the coverage of the random donor regions in
at least 95% of the cases, i.e. to have a bootstrap result
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of ≥ 95. Again, the acceptor region should be unre-
lated (low coverage) or also have phage origin (high cov-
erage). Hence, we require the mean coverage to be either
higher (alternative phage) or lower (unrelated sequence)
than the random region coverages in at least 95%, i.e.
the bootstrap value has to be (≥ 95 or ≤ 5).

In addition to coverage evidence, we also incorporate
mapping evidence from read pairs that are spanning the
HGT boundaries (dark red reads in Figure 1) and those
that map completely within the HGT boundaries of the
donor (light blue reads). For the spanning pairs, one
mate is mapping on one site of the boundary outside the
HGT region in the acceptor whereas the other is map-
ping on the other site of the boundary inside the HGT
region in the donor. Both have to map within a range of
half the defined maximal HGT size from the boundary
(i.e. a total range of the maximal HGT size around the
boundary). For the pairs within, we compare the num-
ber of pairs within the boundaries to the number within
equally sized random regions where we expect the HGT
region to have more such pairs than the random regions.
We apply the same idea of a resampling method from
the coverage evidence (using the same random regions)
for the evidence from mapped read pairs spanning and
within the HGT boundaries. The required resampling
value is also 95.

Bacteriophage screening. If the HGT was phage
mediated and HGT organism and acceptor contain, and
maybe share, several similar phages, the results obtained
via split-read mapping can be ambiguous (see Figure 2).
After filtering the HGT candidates, we therefore screen
the EBI phage database (Brooksbank et al. (2014)) from
the European Nucleotide Archive (ENA) (Leinonen et al.,
2011) for evidence of the candidates’ donor HGT regions.
We first map all reads against the phage references and
during the screening, we evaluate if the reads mapping
within or across the donor HGT region also map to any
database entry and report this percentage in the TSV
output file (see below). This step is not a filter step but
intended as an additional flag for each candidate.
The filtered candidates are written to a VCF output file
(Danecek et al., 2011), all candidates with bootstrap in-
formation are written to a TSV file.

3 Experimental Setup

Datasets

We tested our method on one simulated and two real
data sets, each containing an HGT event with distinct
challenges.

H. pylori. The Helicobacter pylori data set is a simu-
lated set. Here, we chose Escherichia coli K12 as the ac-
ceptor and H. pylori strain HPML01 (Wang et al., 2015)
as the donor. We introduced SNPs, small and large indels
using the simulator Mason2 (Holtgrewe, 2010, 2014) into

E. coli K12 and into the phage-like sequence of H. pylori.
We simulated 150 bp paired-end reads with Illumina error
profile and 100x coverage with Mason2.

KO11FL. The first real data set includes E. coli W
as the acceptor and Zymomonas mobilis as the donor
genome as well as the cloning vector pBEN77 as a sec-
ond donor, the resulting genome is the transgenic E. coli
KO11FL (Turner et al., 2012). The KO11FL is a lab-
oratory version of the original transgenic KO11 (Ohta
et al., 1991). E. coli W is the parent strain of KO11FL
which contains a cloned operon pcl including the genes
pdc and adhB from Z.mobilis, and a cat gene not present
in Z.mobilis. We therefore chose pBEN77 as a donor
genome for the cat gene. This transgenic biotechnology
scenario resembles a natural HGT event and gives the
necessary ground truth on real data.

Figure 3 depicts the composition of E. coli KO11FL
with the transferred genes pdc (green), adhB (red) and
cat, the target site of the acceptor genome E. coli W (in-
sertion breakpoint framed purple), and excerpts of the
donor genomes Z.mobilis and cloning vector pBEN77 in-
dicating the positions of the transferred genes. The pur-
ple framed HGT region in E. coli KO11FL has 20 con-
secutive copies. The exact order, orientation and posi-
tions of the segments enumerated with I-IX has been de-
termined with BLAST (megablast, default parameters).
The adjacency of segments I and II defines the first HGT
boundary and the adjacency of V and VI defines the sec-
ond boundary number. The important and challenging
part is that II and VI belong to two different donors, i.e.
we have a transition within the HGT region and can-
not define a single candidate region by pairing up single
boundaries as we did for the H. pylori data. However,
since the transfer was very recent and the boundaries are
still clear enough, we will aim to detect all HGT related
boundaries via split-read mapping alone.

The read types numbered 1-5 in Figure 3 are the ex-
pected split reads relevant for or related to HGT detec-
tion. Reads 3-5 have multiple splits indicated by two
dashes, i.e. the split read mapper must be able to handle
multiple split reads. For read 4, the middle part of the
read, 137 bp, is covered by neither acceptor nor donor
genomes, i.e. the split-read mapper has to also handle
such scenarios. Reads 3-5 are multiply split and read 4
spans a gap of over 130 bp, which shows the necessity
of a sensitive and versatile split-read mapper. Adjacen-
cies II-III and IV-V reflect intra-chromosomal rearrange-
ments in Z.mobilis (II-III) and pBEN77 (IV-V) and are
not part of this evaluation. KO11FL has been originally
assembled from Roche 454 reads (Turner et al., 2012).
Contig gaps have been filled by PCR and Sanger sequenc-
ing, and then resequenced Illumina short read paired-end
data has been assembled using the Roche 454 assembly
as a template. However, only the Roche 454 reads are
available via the SRA (SRX022824) and have been used
in our benchmark.
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Figure 3: KO11FL composition of HGT region. (A) HGT organism E. coli KO11FL: The transgenic KO11FL has 20 copies of the transferred HGT region enclosed
by the purple rectangle. (B) HGT region composition of KO11FL: Shown are positions of the transgenic genes pdc (green), adhB (red) and cat (blue) and adjacent
segments (I-IX) within E. coli KO11FL. Reads enumerated 1-5 span HGT related adjacencies of segments I-IX, two dashes on a read imply multiple adjacencies or
gaps, resulting in multiple splits of the read. (C) Acceptor & donor HGT region composition: Shown are positions of pdc, adhB, and cat in the donor references
Z.mobilis and pBEN77, and the HGT insertion site in acceptor reference E. coli W. Note the different order and orientation of some of the segments I-IX compared
to (B). All positions in (A)-(C) were determined with BLAST.

EHEC. The second real data set comprises the E. coli
O157:H7 Sakai strain as an HGT organism. The E. coli
O157:H7 serotype is associated with diseases most often
and the Sakai strain has been sequenced from an out-
break in Japan (Zhang et al., 2007). E. coli O157:H7
arose from the enteropathogenic E. coli O55:H7, the ac-
ceptor, acquiring Shiga-Toxins (Stx) via HGT of a lam-
doid phage in the sequential evolution from its progenitor
(Kyle et al., 2012). E. coli strains that have both Stx1
and Stx2 have been shown to carry them in two separate
and distinct (Herold et al., 2004) lambdoid phages (Alli-
son et al., 2003). The Shigella dysenteriae, the assumed
donor, is the only Shigella serotype carrying Stx (Yang,
2005). Stx1 is almost identical to the Shigella dysenteriae
toxin (Shaikh and Tarr, 2003), whereas Stx2 only shares
up to 60% with Stx1. Stx in S. dysenteriae at positions
1283705-1285203 is carried by the lambdoid stx-phage
P27 (all Stx phages are lambdoid bacteriophages (Smith
et al., 2012)).

In E. coli O157:H7 Sakai, the Stx1 phage Sp15 occupies
the insertion site yehV , Stx2 phage Sp5 insertion site
wrbA (Kyle et al., 2012). In E. coli O55:H7, yehV is
occupied by another lambdoid phage (Cp10, see Table S1
in Kyle et al. (2012)), whereas wrbA is still intact (i.e.,
there is no phage at this insertion site, and the wrbA
protein coding gene is intact (Shaikh and Tarr, 2003)).

Assembly Approach

A comparable approach for HGT detection is de novo
assembly with subsequent whole-genome analysis. We
chose SOAPdenovo2 (Luo et al., 2012b) as a suitable
assembler, in particular for short-read Illumina data
(GAGE, Salzberg et al. (2012)). We assembled the reads
of all data sets with parameters SOAPdenovo-127mer all
-R -F -u -K 31 -m 91.

To further evaluate the assembly results, we applied
BWA-MEM (Li and Durbin, 2009) in order to de-
tect possible HGT breakpoints directly on the scaffolds,
and Alien Hunter (Vernikos and Parkhill, 2006) as an
composition-based HGT detection tool to detect possible
GIs. Since Alien Hunter is designed for fully sequenced
and annotated genomes, we also applied Alien Hunter to
the HGT organism reference genomes (i.e., the simulated
H. pylori genome, E. coli O157:H7, and E. coli KO11FL)
for evaluation purposes, although in our general use case,
we assume that the HGT organism has not been se-
quenced yet or is unknown.

The detected regions from Alien Hunter have a score
and are ranked in descending order. The higher the score,
the more likely the region matches a foreign genomic is-
land. Daisy and BWA-MEM candidate regions are not
scored and therefore not ranked. For Daisy, we consider
valid HGT candidates passing the 95% sampling thresh-
old. For BWA-MEM, we consider all regions conforming
the same size constraints as for Daisy.
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Table 1: Daisys KO11FL results: References are colored according to Figure 3.
Column TP (true positives) states which of the adjacencies between segments
I-IX in Figure 3 the boundary covers, if any. Column FP (false positives) states
possible adjacencies when considering alternative repeat region compositions
within the 20 copies in E. coli KO11FL, empty entries are unrelated FPs. The
column Reads states the number of split-reads supporting the translocation.

Single Boundaries TP FP Reads

E. coli W 1,058,889 Z. mobilis 1,996,084 I-II 3294

pBEN77 520 E. coli W 1,061,186 VII-VIII 872

pBEN77 597 E. coli W 1,058,886 V-VI 836

pBEN77 459 E. coli W 1,056,308 VI-VII 737

pBEN77 3,795 Z. mobilis 1,749,333 III-IV 170

Z. mobilis 1,996,090 E. coli W 1,059,365 II-VI 57

Z. mobilis 1,996,090 pBEN77 1,410 II-V 46

E. coli W 1,060,453 Z. mobilis 1,750,071 III-IX 35

pBEN77 1,643 E. coli W 1,058,666 V-VI 33

pBEN77 828 Z. mobilis 1,750,690 III-V 32

E. coli W 2,206,429 Z. mobilis 1,996,084 30

Z. mobilis 1,750,302 pBEN77 1,127 III-V 25

E. coli W 1,056,310 Z. mobilis 1,996,992 II-VI 24

E. coli W 1,059,006 Z. mobilis 1,996,681 24

Z. mobilis 1,996,090 E. coli W 1,059,283 II-VI 22

E. coli W 1,060,926 Z. mobilis 1,996,277 20

4 Results

H. pylori

Daisy finds one true positive (TP) HGT candidate with
base pair precision without any false positives (FPs)
(see Table 2 (A) H. pylori). Of the spanning read pairs
and pairs within, 53% are mapping to the bacteriophage
database. This indicates a phage-natured origin of the
donor-region which conforms with the ground truth of
the inserted Helicobacter phage 1961P-like sequence.

Assembly Assembly of the simulated reads resulted in
23,936 contigs, 6,484 of them covered by one of the 17,452
scaffolds (N50 of 89,444). BWA-MEM also only reports
the correct breakpoints with base pair precision and with-
out FPs. Alien Hunter detects the region on both the
complete genome and the respective assembly scaffold
but finds another 63 alternative hits on the assembly
and 62 on the complete genome. The regions depicted
by Alien Hunter deviate over 2,200 and up to 5,108 bp
regarding the true start and end positions. All three
tools detect the HGT region as the best (Alien Hunter)
or only candidate but only Daisy and BWA-MEM with
base pair precision.

KO11FL

The transgenic E. coli KO11FL is a case study with a
very recent artificial transfer and, due to the transgenic
origin, two donor references. The composition of the
HGT region is shown and explained in Figure 3. The
read types labeled 1-5 in Figure 3 cover the HGT related
boundaries which leaves adjacencies I-II, III-IV, V-VI,
VI-VII, and VII-VIII as ground truth. We applied the
manual mode of Daisy to investigate the HGT related
boundaries.

A summary of the reported breakpoints is listed in
Table 1 with references colored according to Figure 3 for
easier reference. The five highest ranked TPs cover all ad-
jacencies stated above, and, likely due to the 20 copies,
have distinct high support of over 170 up to 3,294 reads
whereas the FPs attain support values only up to 59,
allowing perfect separation by a simple cutoff. Further-
more, most FPs can be assigned to an adjacency not
expected based on the ground truth shown in Figure 3.
We cannot assess whether some of these additional adja-
cencies reflect alternative compositions of the respective
components in some of the 20 copies.

Table 2 (B) states the total number of breakpoints
(16) as the number of hits with a total of five true posi-
tives. As breakpoint distances on donor and acceptor, we
calculated the mean distance of all true positive break-
points involving acceptor-donor boundaries (adjacencies
I-II and V-VI) since these enclose the region and can
therefore be compared with Alien Hunter.

We could successfully detect all of the five possible
split-read types including the multiple split ones (reads
3-5 in Figure 3) and the one read type covering a gap
of over 130 bp (read 4). However, we could not verify
the results with the HGT filter due to the two-donor sce-
nario. Still, this case study shows that, given sequencing
data of recent HGTs, it is possible to determine the right
boundaries with accurate base pair resolution and high
confidence even by split-read mapping alone.

Assembly. Assembly of the 454 reads from the
KO11FL data set with SOAPdenovo2 resulted in 455,419
contigs (singletons) of up to 1,011 bp. No scaffold was
constructed, likely due to the repetitive nature of the
genome. Turner et al. (2012) also pointed out the long
gaps between contigs in their assembly of this data set
which they had to fill with PCR and additional Sanger
sequencing. Due to the failed assembly, we did not apply
Alien Hunter or BWA-MEM to the contigs.

When applied to the finished full KO11FL genome in-
stead of the assembly, Alien Hunter finds a total of 109
potential GIs where 15 of them overlap with 15 of the
20 copies of the transferred genes pdc, adhB, and cat in
KO11FL (see also Figure 3 A - HGT organism and B -
HGT region). The mean distance for start and end posi-
tion of this 4,442 bp region, however, is 1,732 (start) and
1,174 (end). This is much higher than the mean distances
for Daisy. Since we assume that the full genome is not
available, Daisy outperforms the assembly approach even
for the longer 454 single-end reads.

EHEC

For the EHEC data set, the true transfer according to
literature (Kyle et al., 2012) and BLAST hit examina-
tion is 2,643,556-2,694,691 in E. coli O55:H7, where the
λ phage Cp10 occupies the phage insertion site yehV,
to positions 1,283,705-1,285,203 in S. dysenteriae Sd197
where a defective prophage carries the Stx genes.
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Table 2: Results for Daisy compared to Alien Hunter and BWA-MEM: For evaluation purposes, Alien Hunter has been applied to both the assembly and the full
reference genome. Column true region detected states if the method was able to find the correct HGT region. Column number of alternative hits reports the total
number of candidates detected. For the KO11FL, we additionally state the number of true positives (TP). In the last three columns, we state the precision of the
correct candidate in terms of breakpoint distance. Note that Alien Hunter reports candidate regions with regard to the reference HGT organism whereas Daisy and
BWA-MEM report breakpoints on acceptor and donor. For Alien Hunter, we calculate the base pair distance of the correct candidate region to the ground truth on
the HGT organisms reference (column distance true region), for Daisy and BWA-MEM, we calculate the base pair distance on acceptor and donor (columns breakpoint
distance acceptor and donor) (in the form start distance/end distance). Due to the ambiguous positioning of the HGT genes within the phage(s), columns with *
state zero distance if breakpoints lie within phage region. (A) For the simulated H. pylori data set, all three methods are able to detect the HGT region as the best
(Alien Hunter ) or only candidate but only Daisy and BWA-MEM with base pair precision. (B) For KO11FL, an assembly using SOAPdenovo2 did not produce any
scaffolds, and Alien Hunter was applied to the KO11FL genome. Both Daisy and Alien Hunter then detect the region. (C) For the EHEC data set, finds the true
candidate. Alien Hunter finds 382 candidate regions when applied to the assembly but non is matching the scaffold with the HGT region. With BWA-MEM, we find
177 candidate regions, the closest is overlapping the true HGT region but without breakpoint precision.

Tool & Data
True Region

Detected
Number

Hits
Distance to True

Region (start/end)
Breakpoint Distance
Acceptor (start/end)

Breakpoint Distance
Donor (start/end)

(A) H. pylori
Daisy (reads) yes 1 n/a 0/0 0/0
Alien Hunter (genome) yes 63 2,289/2,215 n/a n/a
Alien Hunter (assembly) yes 64 5,108/2,888 n/a n/a
BWA-MEM (assembly) yes 1 n/a 0/0 0/0

(B) KO11FL
Daisy (reads) yes 16 (5 TP) n/a 39/14 22/8
Alien Hunter (genome) yes 109 (15 TP) 1,732/1,174 n/a n/a
Alien Hunter (assembly) assembly failed
BWA-MEM (assembly) assembly failed

(C) EHEC
Daisy (reads) yes 6 n/a 0/0 * 32/2,876
Alien Hunter (genome) yes (Stx2) 93 0/0 * n/a n/a

yes (Stx1) 93 0/0 * n/a n/a
Alien Hunter (assembly) no 382 — — —
BWA-MEM (assembly) yes 177 n/a 0/0 * 1,864/39,049

Applying Daisy, we created 145 candidates of which six
passed the resampling filter. The true acceptor positions
from E. coli O55:H7 stated above are not among them,
and only one pair of donor positions matches the stated
S. dysenteriae positions. The true acceptor positions are
among the remaining filtered out candidates but have
very low bootstrap values. So at first glance, it seems
as if Daisy created the correct candidates but then too
strictly filtered them out while keeping unrelated hits.

However, O55:H7 contains other λ phages (Kyle et al.,
2012), two of them (Cp7 and Cp9) have high similarity
(up to 99% BLAST identity) to Sp15 (Stx1) at the yehV
phage insertion site in EHEC O157:H7. When we look
more closely at the six identified candidates, we observe
that all of them have acceptor positions matching an al-
ternative phage insertion site (see Table S1 in Kyle et al.
(2012) for details on the phage insertion sites). Among
these six candidates, there is the one true candidate re-
garding the donor positions (1,283,673-1,288,079). The
acceptor coordinates (1,741,535-1,744,926) belong to the
λ phage Cp7.

The candidate with the true donor positions encloses
a region that is 2,876 bp larger than the actual Stx part.
A BLAST search of this additional part yields hits on
shiga toxin genes and ORFs, and Stx phage and prophage
genes, as well as four further hits to S. dysenteriae Sd197
(CP000034.1) that match the donor regions of the re-
maining five candidates. These hits suggest a phage-
origin of this additional 2,876 bp (1,285,203-1,288,079) as
well as these donor regions. This is supported by the high
percentage of donor region read pairs matching an entry

in the bacteriophage database (up to 97%). The percent-
age of phage database hits of the one remaining candidate
is also around 97%, suggesting another alternative phage-
site in S. dysenteriae Sd197 as well. The donor positions
of all of the filtered out candidates with matching accep-
tor positions also all fall within the phage-region ranging
from position 1,288,585 to 1,329,490 (data not shown).

So the true challenge in this case study is the fact that
the HGT was phage mediated, and that both acceptor
and donor have several alternative and occupied phage
insertion sites. According to Asadulghani et al. (2009),
the same set of bacteriophages can also occupy differ-
ent phage insertion sites between individuals of the same
bacterial strain, making it possible that our candidate
(1,741,535-1,744,926 to 1,283,673-1,288,079) actually is
the true or most likely candidate in this case. Given the
currently available information, we cannot verify that the
six phage-related candidates are correct, but there is also
sufficient evidence to consider them as such.

Assembly. SOAPdenovo2 assembled 100,601 contigs,
14,897 of them covered by one of the 93,905 scaffolds
(N50 of 150). E. coli O157:H7 carries Stx1 and Stx2 at
distinct locations. However, assembly examination with
BLAST suggests that both toxins have been assembled
on the same scaffold.

Both toxin HGT region lie within a phage so it is diffi-
cult to ascertain the specific positions of the genes carried
by the phage. For Alien Hunter this is difficult because
the tool already (correctly) recognizes the phage sequence
itself as a GI. We therefore count true region found as yes,
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if the candidate region is overlapping the phage carrying
the toxins. Alien Hunter finds both Stx regions when ap-
plied to the HGT organism, but one is the region with
the lowest rank (see Table 2, (B) EHEC). The tool finds
382 candidate regions when applied to the assembly but
non is matching the scaffold with the HGT region. With
BWA-MEM, we find 177 candidate regions. One region
is overlapping the true HGT region but without break-
point precision on the donor. The region is reaching into
the repetitive genome part following the shiga-toxin re-
gion in S. dysenteriae Sd197. The results acquired via
BWA-MEM also support our hypothesis of an alterna-
tive phage insertion site: The acceptor region of this hit
is 1,741,843-1,742,439. For all three tools, the true HGT
candidate is integrated into a phage and, hence, we assign
breakpoint distance zero (0/0).

5 Discussion

To the best of our knowledge, Daisy is the first ap-
proach that allows HGT detection directly from NGS
data without requiring a de novo assembled genome. It
rather relies on detecting HGT boundaries via a split-
read mapping approach from SV detection methods. It
uses the acceptor and donor genomes of the HGT as ref-
erence, and integrates coverage and read pair informa-
tion for HGT candidate evaluation. Daisy facilitates ap-
plications related to outbreak scenarios of HGT related
pathogens like, e.g., detection of novel bacterial strains
evolved through HGT or the distinction of a single infec-
tion with such a strain from a parallel infection by two
different strains.

We critically evaluated Daisy on three data sets. It
has been often noticed that SV detection methods are
hard to evaluate since the existence and exact positions
of breakpoints are often not known. This is particularly
true also for HGT events. In this study, we therefore fo-
cused on one simulated and two real data sets for which
we also provide partial ground truth for future compari-
son. The data sets were chosen to both show the power
of the approach but also to explore the limitations and
provide guidance for other experiments. On the simu-
lated H.Pylori data, Daisy produced the correct true
positive candidate without false positives. For the real
KO11FL data, the five single boundaries with the high-
est total split-read support already cover all five HGT
related boundaries and have a distinctly higher support
than the first false positive hit. For the real EHEC data,
we called six candidates which all fall into alternative
phage insertion sites in both acceptor and donor. The
alternative assembly only produced meaningful assem-
blies for H. pylori and EHEC. On the H. pylori data set,
Alien Hunter and BWA-MEM both found the HGT re-
gion as the best candidate, but Alien Hunter with low
breakpoint precision and many alternative hits. On the
EHEC data set, only BWA-MEM found the true candi-
date on the assembly data but with more FPs than Daisy.
An approach of mapping based HGT detection integrat-

ing several SV detection methods is therefore a highly
useful strategy. The EHEC example, where we reduced
the 145 pure split-based candidates to a few candidates
with required HGT signatures, shows how our candidate
evaluation successfully filters out false positive hits. Al-
though these use cases were overall successful, the results
also show some challenges and need for future develop-
ment, which we outline below.

One prerequisite of the current approach is acceptor
and donor genomes that are involved in the HGT event
are known. Selecting these candidate genomes given a
set of reads from the HGT carrier genome is a challeng-
ing task of its own. It is closely related to the metage-
nomics problem of finding all occurring species contained
in a sample given a set of reads, and is a crucial pre-step
for applications in diagnostics. Thus, tools such as Mi-
crobeGPS (Lindner and Renard, 2015) or Kraken (Wood
and Salzberg, 2014) can serve to identify candidates for
follow-up analysis with our tool.

In this first version of Daisy, we focused on the idea
of using mapping-based evidence such as coverage and
read pair signatures. Existing parametric HGT detec-
tion methods use genome signatures such as differing
GC content (Daubin et al., 2003), atypical codon usage
(Lawrence and Ochman, 2002) or k-mer frequencies (like
Alien Hunter) for identification. In a more comprehen-
sive future version, and in cases when the HGT organism
reference genomes are available, these genome signatures
are possible further filtering options of candidate regions.

Currently, automated filtering and HGT candidate
evaluation is only available for a single donor genome.
More complex, decomposite HGT regions, consisting of
multiple genes from various donor genomes such as in
the KO11FL example, require more sophisticated combi-
nation and evaluation of candidates and paired support
across the donors. An automated extension could bene-
fit the application also in the context of, e.g., genetically
modified organisms. While the detection is possible with
our approach, as seen in the KO11FL, more manual in-
vestigation is required.

It should be noted that Daisy relies on a mapping
approach to known reference genomes. In recent HGT
events or artificial gene transfers, the mapping to refer-
ence genomes is easier than for longer evolutionary time
spans. As a result, HGT boundaries are more obvious
and identifiable with higher confidence without strong
influences of evolution. The example on the EHEC
data shows that the ongoing fast evolution of bacteria
makes HGT boundaries fuzzy, parallel HGT events ob-
scure boundaries, and HGTs mediated by phages make
the area around the target gene ambiguous and evalua-
tion difficult. In general, our approach should be seen a
step towards a more comprehensive analysis pipeline of
sequencing data where multiple complementary methods
are integrated. The goal of such a pipeline would be a
full investigation of a complete bacterial genome with,
e.g., genome annotation and classification, SNP and SV
characterization, HGT detection and more.
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6 Conclusion

With our tool Daisy, we present the first mapping-based
HGT detection approach known so far. Our approach
shows sound results with base pair precision for simulated
and real data sets. Alternative assembly give supportive
results but was not successful for all data sets. Daisy
was built for and evaluated on bacteria, but should in
principle also be applicable for HGT detection in other
organisms such as plants. Daisy is written in Python
as a ready to use tool building on NGS standard input
and output formats and is freely available from http:

//github.com/ktrappe/daisy.
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