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Abstract  24 

Fluid intelligence is a general cognitive ability associated with problem solving in the absence of 25 

task-specific knowledge. Neuroscientific studies of fluid intelligence have studied both fluid 26 

intelligence tasks of varying difficulty and individual differences in fluid intelligence ability, but have 27 

failed to appropriately distinguish the two dimensions. Here we use task-based fMRI (N=34) to show 28 

that within and between subject dimensions show both partial overlap and widespread differences. 29 

Individuals with higher ability showed widespread increased activity including bilateral frontoparietal 30 

systems, whereas more difficult items were associated with more focal activity increases in middle 31 

frontal gyri, frontal poles and superior frontal poles. Finally, we show that when difficulty is equated 32 

across individuals, those with higher ability tend to show more fronto-parietal activity, whereas low 33 

fluid intelligence individuals tend to show greater activity in higher visual areas. The fMRI and 34 

behavioural data for our paper are freely available in online repositories.  35 
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Introduction  40 

Fluid intelligence is the ability to think logically and solve novel problems in the absence of task-41 

specific knowledge (Horn and Cattell, 1966). It is a central component of psychometric theories of 42 

intelligence (Carpenter et al., 1990; Carroll, 1993; Engle et al., 1999) and closely related to core 43 

cognitive abilities including working memory (Engle et al., 1999), processing speed (Fry and Hale, 44 

1996), attention (Engle, 2002), general intelligence (Blair, 2006) and executive functions (Salthouse et 45 

al., 2003). Individuals with higher fluid reasoning ability generally have better psychosocial outcomes 46 

(Strenze, 2007; Deary, 2012), lower instances of psychopathology (Gale et al., 2010) and lower 47 

morbidity and mortality (Deary et al., 2011). Moreover, fluid intelligence often declines rapidly in old 48 

age (Kievit et al., 2014; Aichele et al., 2015) with adverse consequences for the ability to live and 49 

function independently (Salthouse et al., 2003; Tucker-Drob, 2011). 50 

Cognitive neuroscience has contributed a variety of insights into the neural processes and 51 

properties associated with fluid reasoning, including individual differences in (fluid) intelligence (Choi 52 

et al., 2008; Deary et al., 2010; Cole et al., 2012; Kievit et al., 2012, 2014; Ritchie et al., 2015), neural 53 

responses during fluid reasoning tasks of varying complexity (e.g. Duncan, 2000; Gray et al., 2003; Lee 54 

et al., 2006) and the adverse effects of lesions (Duncan et al., 1995; Roca et al., 2010). Together, these 55 

findings converge on a distributed parietal and frontal network associated with fluid reasoning (Kane 56 

and Engle, 2002; Jung and Haier, 2007; Fedorenko et al., 2013). 57 

However, studies of fluid intelligence often implicitly conflate two sources of variation: 58 

Differences between subjects (i.e., differences in ability) and differences within subjects (i.e., 59 

differences in neural responses under varying task difficulty) (see also (Cronbach, 1957; Chabris, 60 

2007). For instance, the Parieto-Frontal integration model (Jung and Haier, 2007) is a process model 61 

of reasoning behaviour (p. 138). That is, it claims to describe the processes that happen within a 62 

subject during complex reasoning. However, it is largely based on neuroimaging studies concerning 63 

differences between individuals.  This is problematic, as it is well known that these dimensions can, 64 

and do, behave independently (Hamaker et al., 2005; Penke et al., 2011; Kievit et al., 2013). This 65 
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leaves a fundamental ambiguity in what is meant, exactly, by the ‘neural substrate’ of fluid reasoning 66 

(e.g. Prabhakaran et al., 1997). Does this term refer to the question which neural systems are 67 

differentially recruited depending on the complexity of the task, or to which neural systems are 68 

differentially active between people of differing fluid reasoning ability? By not addressing the two 69 

dimensions of difficulty and ability simultaneously, studies that focus on either dimension implicitly 70 

treat the other dimension of variation as a source of noise, affecting the findings to an unknown 71 

degree. Understanding this distinction in detail is crucial to our understanding of both the process of 72 

fluid reasoning and individual differences in fluid reasoning ability.  73 

In the present paper, we use Item Response Theory (IRT, Embretson and Reise, 2013) to 74 

decompose neural responses during a fluid reasoning task into an inter-individual dimension and an 75 

intra-individual dimension. An IRT model combines item difficulty estimates (intra-individual 76 

parameters) with ability estimates for each subject (an inter-individual parameter). Using this model, 77 

we can separate neural systems that underlie individual differences those that reflect differences in 78 

increasing task difficulty. We hypothesize that the neural networks that are differentially active within 79 

people with differing ability are not the same as neural networks that are differentially active within 80 

people across tasks of varying difficulty. Crucially, by taking into account both dimensions we can 81 

compare individual differences in a novel manner: By selecting a differing subset of items for each 82 

individual tailored to their ability level, we can compare individual differences in terms of neural 83 

activity patterns whilst keeping intra-individual differences in subjective difficulty constant. Doing so 84 

sheds new light on the controversial notion of neural efficiency, and illustrates the power of 85 

simultaneously modelling inter- and intra-individual differences in a GLM framework. 86 

 87 

 88 

 89 

 90 

 91 
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Results 92 

Behavioural results 93 

To decompose the differential contributions of difficulty and ability in neural response, we fit a 94 

Rasch model to the response patterns of a set of Raven’s Matrices (see Figure 1 for an example, see 95 

materials and methods for more detail). 96 

 97 

 A Rasch model is one from a family of Item Response Theory models (IRT; Hambleton et al., 98 

1991; Embretson and Reise, 2013). Models such as the Rasch model can decompose two dimensions 99 

simultaneously, better deal with measurement error, explicitly test the assumption that only one 100 

ability is being tested, and (in certain cases) a properly specified measurement model can increase 101 

statistical power (e.g. Sluis et al., 2010). IRT models remain relatively rarely used in neuroimaging (but 102 

see Thomas et al., 2013). In the Rasch model, the difficulty of items is related to the ability of 103 

participants by means of a logistic function. The probability that person j with ability θ makes item i 104 

with difficulty β correctly can be described by equation (1). 105 

 106 

1) P�𝑋𝑗𝑖 = 1� = 𝜀𝜃𝑗−𝛽𝑖

1+𝜀𝜃𝑗−𝛽𝑖
 107 

Variants of Rasch models are widely used in fields such as educational testing (Bond and Fox, 108 

2006) and more specific skills such as chess ability (van der Maas and Wagenmakers, 2005). In the 109 

Rasch model we model M dichotomously scored items (1=correct, 0=incorrect) for N persons. Each 110 

item has a difficulty parameter β, and each person has an ability parameter θ. We fit a Rasch model in 111 

Figure 1. Stylized example an easy (left) and hard (right) Raven’s Matrix fluid reasoning task. 
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R (Team, 2014) using packages ltm (Rizopoulos, 2006) and eRm (Mair and Hatzinger, 2007). We 112 

considered both null-responses (no response within the 30 second time limit) and incorrect responses 113 

as incorrect, giving each participant a potential range of 0 to 72 correct. The 34 participants made an 114 

average of 39.6 items correct (range: min=19, max=53, SD=8.8). The mean reaction time across 115 

individuals was 15.90s, SD= 2.39s, with an item level RT ranging from 1.2 s to a maximum of 29.99 s. 116 

To best estimate the ability parameter (θ) of each participant, we fixed the difficulty parameters (β) of 117 

the 72 items based on the Ravens standardization sample (Raven, Court, & Raven, 1996). The 118 

difficulty parameters of the items ranged from -3.59 to 4.8, capturing a wide range of difficulties. The 119 

Andersen Likelihood-Ratio test (Andersen, 1973) indicated that the response pattern fit the Rasch 120 

model adequately: χ2(46, N=34)= 38.739, p=.767. Figure 2 (top) shows the Item Response Curves of 121 

the 72 items and a histogram of the distribution of the ability scores (θ) of the participants (bottom). 122 

To ensure that our sample of participants performed the test accurately, we next fit the 123 

model without the item-level constraints, to examine whether the difficulties estimated in our sample 124 

matched the difficulties based on the standardization sample. Despite a relatively small sample size, 125 

the betas showed a high degree of convergence with published standards (r (70) =.85, p<.0001). 126 

Further analyses showed that more difficult items (with higher betas) were associated with slower 127 

response times (Spearman’s r of reaction times with correct response: r (2446) =.55, p<.0001), were 128 

less likely to be made correctly (Spearman’s r difficulty with correct response= r (2446) =-.59, 129 

p<.0001) and were more likely to be null-responses (Spearman’s r difficulty with null response = r 130 

(2446) =.27, p<.0001) 131 
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 Together these behavioural analyses suggest that the behavioural manipulation of fluid 132 

intelligence was successful: Participants took longer to respond to more difficult items, were less 133 

likely to respond correctly and were more likely to fail to respond within the time limit. Moreover, the 134 

pattern of responses was well-described by a Rasch model. For all further neuroimaging analyses we 135 

use the estimates of difficulty (β, based on the standardization sample) and ability (θ) to study the 136 

neural systems underlying differences in item difficulty and ability. 137 

 138 

 139 

 140 

Figure 2: Item-characteristic curves for all 72 items (top). The 72 Raven’s matrices items represented as 
ranging from easy (green/left) to hard (red/right). Ability is modelled such that person parameter theta 
corresponds to the probability of person j making item i correctly. The difficulty of an item (beta) can be read 
off by looking up the position on the X-axis that corresponds to a probability of .5 of making that item correctly 
(example shown in blue). 
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Differences as a function of item difficulty 141 

First, we examined which regions showed more activity for more difficult items when including all 142 

individuals and all difficulty levels. To do so, we take the beta estimates of the difficulty of the 72 143 

items as shown in Figure 2, and used them to predict differential brain activity for each individual, 144 

controlling for individual differences in mean activity, with a FLAME random effects analysis. We 145 

include both correct and incorrect items, as the cognitive processes that ultimately lead to incorrect 146 

answers are as much part of fluid reasoning as the cognitive processes that lead to correct responses. 147 

Figure 3 shows five clusters that show increased activity as a function of increasing difficulty. These 148 

clusters include the bilateral precunei, the bilateral superior parietal cortices, the superior frontal 149 

gyrus (L) and the precuneus bordering on the posterior cingulate. A large parietal cluster was formed 150 

by the right and left angular gyri in the parietal lobes (Brodmann areas 39), in line with work showing 151 

that activity in as varying parametrically in activity with an increase in complexity (Kroger et al., 2002). 152 

Together, this activity pattern is broadly in line with  a broad, parieto-frontal network often associated 153 

with complex tasks (Jung and Haier, 2007; Duncan, 2010).  154 

Difficulty Positive 
     Cluster 

Index Voxels P Z-MAX 
X (mm) 

Z-MAX 
Y (mm) 

Z-MAX 
Z (mm) Region 

1 795 0.00171 26 -44 12 Precuneus, posterior 
cingulate 

2 753 0.00251 -44 -68 34 Lateral occipital cortex, L 
3 604 0.0103 -18 32 38 Superior frontal gyrus, L 
4 561 0.0158 50 -68 46 Lateral occipital cortex, R 
5 487 0.0336 -6 -56 34 Precuneus 

Figure 3/Table 1: Spatial activity maps associated with an increase in item-difficulty (top), with peak activations of each 
of the five clusters shown below. No regions showed less activity for more difficult items. 
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Individual differences in neural networks during fluid reasoning 155 

Second, we examined individual differences in neural responses during the fluid reasoning 156 

task. The ability estimates theta, one for each participant (shown in Figure 2, bottom), were entered 157 

into a FLAME random effects analysis to account for individual differences in ability. The results in 158 

Figure 4 show that individuals with higher estimated ability showed greater activity in a widespread, 159 

bilateral set of regions. The regions of greater activity include bilateral inferior and superior parietal 160 

cortices, a large portion of the paracingulate gyrus, bilateral (but greater on the left) Brodmann areas 161 

10, and bilateral middle frontal gyri. These regions have been associated with a wide variety of 162 

executive functioning tasks. The large parietal network, consisting of Brodmann areas 7, 39 and 40 163 

(inferior and superior parts of the parietal cortex) have been reported in a variety of imaging studies 164 

associated with individual differences in intelligence (e.g. Lee et al., 2006; Choi et al., 2008). The 165 

regions of greater activity in individuals with higher ability show overlap with what is known as the 166 

Multiple Demand System (Duncan, 2010; Fedorenko et al., 2013). The multiple demand system is a 167 

distributed set of regions throughout the cortex known to be differentially active in a wide range of 168 

complex tasks such as working memory, interference monitoring, and mathematical problem solving 169 

(Fedorenko et al., 2013) both in humans and in single cell recordings in non-human primates 170 

(Kusunoki et al., 2009). Lesions to regions within the MDS lead to disproportionate problems in tasks 171 

of executive functioning compared to other cognitive abilities (Duncan et al., 1995; Woolgar et al., 172 

2010). Conversely, a set of three regions (shown in Table 2 and Figure 4, yellow) showed more activity 173 

in people with lower ability, most notably in bilateral lateral occipital cortex.174 

 175 
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Ability Positive 
     Cluster 

Index Voxels P 
Z-MAX 
X (mm) 

Z-MAX 
Y (mm) 

Z-MAX 
Z (mm) Region 

1 2349 1.98E-08 -46 26 46 Middle Frontal gyrus, L 
2 2168 5.96E-08 28 60 -10 Frontal pole, R 
3 1288 2.92E-05 12 -60 42 Precuneus, R 
4 1106 0.000122 -36 -72 36 Lateral occipital cortex, L 
5 1031 0.000225 -18 70 -4 Frontal pole, L 
6 938 0.00049 40 -62 34 Lateral occipital cortex, R 
7 864 0.000929 38 22 38 Middle Frontal gyrus, R 
8 674 0.00523 56 -10 -24 Middle Temporal gyrus, R 

       
       Ability Negative 

     Cluster 
Index Voxels P 

Z-MAX 
X (mm) 

Z-MAX 
Y (mm) 

Z-MAX 
Z (mm) Region 

1 1091 0.000138 -26 -74 8 Occipital Pole, L 
2 454 0.0475 -64 4 4 Precentral Gyrus, L 
3 451 0.049 -36 4 10 Central Opercular/Insular cortex L 

Conjunction and disjunction of intra- and inter- individual dimensions:  176 

Next, we formally examine the (dis)similarities between the inter- and intra-individual 177 

dimensions. This is of interest for both methodological and intrinsic reasons. First, the extent to which 178 

these dimensions differ will illustrate the methodological perils of conflating the inter- and intra-179 

individual dimensions. To examine to what extent these two dimensions differed, we examine where 180 

in the brain the activity associated with differences in item difficulty was greater than the activity 181 

Figure 4/Table 2: Spatial activity maps showing clusters of greater activity in individuals of higher fluid reasoning ability 
(blue)  and clusters with significantly less activity in individuals with higher ability (yellow). Peak activations of each of 
the clusters are shown in the table. 

Figure 5: Regions showing greater activity as a function of individual differences in ability than as a 
function of difficulty. This contrast clearly illustrates the necessity of separating the two sources of 
variation. 
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associated with differences in ability, and vice versa. The former contrast yielded no significant 182 

regions of interest, suggesting there are no regions of the brain that are more active for more difficult 183 

trials that aren’t also more active in people with higher ability. However, the converse contrast 184 

(where in the brain are individual differences in ability greater than differences due to item difficulty) 185 

showed widespread bilateral regions where the differences as a function of ability where greater than 186 

the differences associated with difficulty (Figure 5). These analyses suggest that neural patterns as a 187 

function of individual differences seem to be more spatially distributed than intra-individual 188 

differences as a function of task difficulty. This is the case despite the fact that the items ranged from 189 

extremely easy (made correctly by every person) to extremely hard (not being made correctly by any 190 

participant).  191 

The second question we can ask is not where these two dimensions differ, but where they 192 

overlap. It has long been known, although often ignored, that only in highly specific circumstances can 193 

we infer intra-individual processes from inter-individual differences (or vice versa). This inference is 194 

only valid when a process is ergodic (Molenaar, 2004). Ergodicity implies that the statistical 195 

characterization of within-subject variation is (asymptotically) identical to the variation at the level of 196 

the group (Molenaar, 2004; Molenaar and Campbell, 2009), which is very unlikely for most 197 

psychological constructs (Kievit et al., 2013). Although ergodicity is usually framed within the context 198 

of (natural) variation over time, it can be equally useful to describe intra-individual differences in task 199 

complexity (in which case it is closely related to inter-individual measurement invariance, e.g. see 200 

Adolf et al., 2014). Although some neuroimaging techniques have been developed that can test for 201 

ergodicity in neuroimaging for specific designs, e.g. in event-related connectivity (Gates et al., 2011), 202 

it is still a relatively neglected topic. Generally, these techniques examine ‘global ‘ergodicity, that is, 203 

are the observed patterns as a whole identical for inter and intra-individual comparisons. We here 204 

propose a more lenient, but conceptually useful, form of ergodicity for neuroimaging: Where in the 205 

brain does intra-individual manipulation yield the same differential activity as that which characterizes 206 
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inter-individual differences on that task (e.g. Sliwinski et al., 2010; Raz and Lindenberger, 2011; 207 

Voelkle et al., 2014)? We refer to this pattern as local ergodicity.  208 

Such an analysis is useful for a variety of reasons. First, it forces us to make explicit the distinction 209 

between intra- and inter-individual differences, an issue often neglected in cognitive neuroscience. 210 

Second, and more importantly, regions that are relevant in explaining both dimensions are more likely 211 

to be fundamental to the cognitive phenomenon of interest. As the convergence of inter- and intra-212 

individual this patterns is a non-trivial requirement, cases where it does apply they are likely to tell us 213 

something about the mechanics underlying the phenomenon of interest. Conversely, the lack of 214 

overlap between the two domains may be informative in terms of the cognitive insight gained into 215 

the phenomenon. If the neural systems underlying inter- and intra-individual differences are clearly 216 

separable, then explanatory accounts of the two dimensions should differ accordingly. Much like the 217 

relationship between speed and accuracy can be explained by qualitatively different mechanisms 218 

within people (a negative relationship, due to a speed accuracy trade-off) and between people (a 219 

positive relationship, due to the positive manifold), violations of ergodicity in neuroimaging may lead 220 

to more refined proposed neural mechanisms that capture each dimension separately.  221 

To test for neural ergodicity, we performed a conjunction analysis (Nichols et al., 2005) based on 222 

Figure 6: Locations that show evidence of neural ergodicity. These three clusters (bilateral angular gyri, 
bilateral precuneus and left superior frontal gyrus) showed increased activity both for more difficult items 
and for individuals of greater ability. 
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the statistical maps of the first two analyses (intra-individual differences in difficulty shown in Figure 3 223 

and inter-individual differences in ability shown in Figure 4). Figure 6 shows the parietofrontal regions 224 

that are more active both as a function of increasing item difficulty and increased ability, and can be 225 

said to display local neural ergodicity. These regions can be described broadly as three clusters: The 226 

bilateral angular gyri in the superior parietal cortices, the bilateral precunei and the right middle and 227 

superior frontal gyri. Most notably the left lateral frontal region shows a striking convergence with a 228 

recent finding that greater connectivity of the LPFC predicts better fluid reasoning performance (Cole 229 

et al., 2012). In our final analysis we use IRT analysis to reexamine the ongoing debate on neural 230 

efficiency.  231 

Correcting for individual differences: Neural (in)efficiency 232 

Finally, we examine how we may use the parameters estimated in our IRT model to get a better 233 

grasp of possible mechanisms differentiating individuals. Appropriately taking into account both intra- 234 

and inter-individual variation is important for a particular, hotly contested, hypothesis, namely that of 235 

neural efficiency (Haier et al., 1988; Neubauer et al., 2002; Neubauer and Fink, 2009; Poldrack, 2014). 236 

In its most common form, neural efficiency is the claim that individuals of higher ability show less 237 

activity during cognitive tasks because they ’display a more focused cortical activation during 238 

cognitive performance resulting in lower total brain activation than in less intelligent individual’ 239 

(Neubauer et al., 2002, p. 515). However, this concept has been challenged recently for being little 240 

more than a tautological redescription of the data (cf. Poldrack, 2014, p. 2) such that  ‘those of higher 241 

ability’ finding the same task ‘less hard work’.  A more relevant question, we argue, is to compare 242 

individuals of different abilities when they are forced to ‘work equally hard’ (We note that Neubauer 243 

and Fink, 2009, do mention task complexity as a possible moderator of neural efficiency, e.g. pp. 244 

1013). In other words, to meaningfully study differences in the processes that occur when individuals 245 

are being challenged cognitively (high difficulty), we must control for baseline differences in ability. 246 

Doing so, we can study the more relevant question of whether differences between individuals in 247 

fluid reasoning ability are associated with different cognitive patterns that would be suggestive of 248 
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different cognitive strategies when performing items of equal difficulty. Item response theory allows 249 

for an easy way to separate difficulty and ability in precisely this manner. 250 

For this analysis, we must ensure we select a subset of items that are equally difficult for all 251 

individuals. To do so we can simply subtract individual ability scores (theta) from the difficulty of each 252 

item (beta), to get a corrected difficulty score for each item, for each person. Next, we select a subset 253 

of all 72 items for each individual, such that that the range of items is equal in difficulty across all 254 

individuals. If after controlling for individual differences we find different patterns of activation, this 255 

would suggest that people who score more highly on Raven’s matrices don’t simply make more items 256 

correctly: They recruit different neural networks than those with lower ability, even when making 257 

items of equal (subjective) difficulty. 258 

We selected a subset of 30 items for every individual such that the mean corrected difficulty 259 

(defined as the difficulty of the items minus the ability of the participants) of those items was equal 260 

for every individual. We compared these subsets across every pair of individuals and found no 261 

significant differences in corrected item difficulties (all p’s>0.069). However, significance tests are 262 

poorly equipped to quantify the absence of effects (Wagenmakers, 2007), so we reran this 263 

comparison using default Bayesian t-tests (Morey and Rouder, 2013). This analysis showed no 264 

evidence for significant differences and considerable evidence for an absence of such differences 265 

(mean BF01= 2.95, max BF01= .92). Next, we repeated the analysis shown in Figure 3 by first; 266 

calculating per subject, a dummy contrast for the trials that where equated for difficulty (e.g. equally 267 

difficult given the capacity of the subject) and using these in a FLAME analysis in which we entered 268 

ability estimates (theta) to answer the follow question: Which regions (if any) are more active in 269 

individuals with higher ability, and which regions (if any) are more active in individuals of low ability, 270 

given that we have equated the subjective difficulty of the items included in the analysis? Figure 7 271 

shows both results: In cyan, we can see five main clusters that are more active in individuals who have 272 
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greater fluid reasoning ability1. These clusters include the Anterior Cingulate Cortex, a small posterior 273 

cluster bordering on the right supramarginal gyrus and a most pronounced frontal set of clusters in 274 

the orbitofrontal cortex and the dorsolateral prefrontal cortex, extending to the left frontal pole. 275 

Moreover, it shows that, contrary theories of neural efficiency, in our sample individuals with greater 276 

ability generally show greater frontal and prefrontal activity when performing items of the same 277 

subjective difficulty. Second, we examine whether there are any regions that are more active in 278 

individuals with lower fluid reasoning ability. This analysis yielded a single, left-lateralized cluster, 279 

shown in yellow/red, bordering the extrastriate cortex in the superior occipital lobe, on the 280 

intersection between Brodmann area 18 and 19.  281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

1 Note that due to a smaller subset of available items we did not model the intercept for the dummy 
variables at subject levels, so the t-values at the individual level are higher than the t-values in the analysis 
presented in Figure 2.  
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 292 

 293 

Ability positive Matched 
    Cluster 

Index Voxels P 
Z-MAX 
X (mm) 

Z-MAX 
Y (mm) 

Z-MAX 
Z (mm) Region 

1 1866 
1.19E-

08 -30 50 2 Frontal pole, L 

2 1735 
5.96E-

08 -54 -40 30 Supramarginal Gyrus, L 

3 1108 
9.89E-

06 -10 22 38 Paracingulate Gyrus, L 
4 377 0.0386 34 -38 24 White matter bordering Angular Gyrus, R 
5 360 0.0488 10 -40 78 Postcentral Gyrus, R 

       Ability negative matched 
    Cluster 

Index Voxels P 
Z-MAX 
X (mm) 

Z-MAX 
Y (mm) 

Z-MAX 
Z (mm) Region 

1 0.0104 476 40 -82 34 Lateral Occipital Complex, superior division, R 
 294 

This analysis shows there are differences in neural activity between individuals of higher and 295 

lower fluid reasoning ability even when they perform equally challenging tasks. Next we may ask what 296 

these differences reveal about the cognitive processes underlying these differences. Inferring mental 297 

states and styles from neuroimaging patterns is notoriously complex (Henson, 2005; Poldrack, 2006). 298 

However, we can use Neurosynth (http://neurosynth.org/, Yarkoni et al., 2011), an automated meta-299 

analysis tool using automated analysis of neuroimaging data and keyword frequency across more 300 

Figure 7/Table 3: Greater activity in people with higher fluid intelligence (cyan) and lower fluid intelligence (yellow/orange) 
once item difficulty has been equated across individuals. This pattern suggests that, beyond the unidimensionality of the 
behavioural variables, there exist individual differences in neural responses during fluid reasoning items. Using Neurosynth 
suggests these differences are compatible with a more memory- and rule maintenance based strategy for individuals with 
high fluid intelligence compared to a more visual, object-oriented strategy by individuals with lower ability. 
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than 11,000 studies. This database makes it possible to provide a descriptive heuristic of cognitive 301 

states possibly associated with activity patterns, based on what has been reported in previous studies. 302 

Specifically, we can use the peak activations as shown above for both difficulty and ability to compute 303 

the posterior probability of a certain keyword being mentioned with high frequency (>1 in 1000) in 304 

any of the articles included in the database that also report activity in that cluster. Performing this 305 

analysis for the peak cluster above shows that the peak activation of the cluster that is more active in 306 

people with lower gf (X= 40mm, Y=-82mm, Z=34mm) has a posterior probability of .79 with the 307 

keyword  ‘objects’. This is in line, tentatively, with the hypothesis that individuals with lower fluid 308 

intelligence, on average, rely on more purely visual strategies when performing fluid reasoning tasks. 309 

In contrast, the peak cluster for individuals with higher fluid intelligence (X= -30mm, Y=52mm, 310 

Z=2mm) is instead associated with keywords such as ‘memory’ (posterior probability=.7), ‘retrieval’ 311 

(posterior probability=.74) and ‘maintaining’ (posterior probability=.83). This is compatible with the 312 

hypothesis that individuals with higher fluid intelligence rely more on more frontal and prefrontal 313 

regions associated with memory and rule based strategies to solve fluid reasoning items. However, 314 

specific paradigms (e.g. selective disruption of via TMS of frontal versus occipital regions) would be 315 

necessary to support this hypothesis, as Neurosynth in isolation can only provide part of the picture 316 

(cf. Yarkoni, 2015a, 2015b). If our inference above is correct, higher gf individuals would be more 317 

adversely affected by lateral frontal stimulation whereas lower gf individuals would be more affected 318 

by high visual disruption.  319 

Together, these results suggest that when individuals who vary in ability have been matched to 320 

perform tasks that are equally difficult, there are noticeable differences in neural patterns, such that 321 

people of higher ability show relatively more left lateralized prefrontal activity, whereas individuals 322 

with lower ability show more right lateralized higher visual activity. These findings do not support the 323 

general neural efficiency hypothesis, instead suggesting more complex qualitative differences 324 

between high and low ability individuals. Our analysis shows how we can refine this question using 325 

psychometric techniques such that neuroimaging can reveal individual differences beyond a well-326 
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fitting unidimensional of purely behavioural data. We agree with Poldrack (2014) that neural 327 

efficiency as it is often operationalized will rarely be the question we are interested in, and suggest 328 

that psychometric techniques are more commonly used to refine the question at hand. 329 

Discussion  330 

In this study we decompose two distinct but equally important dimensions of fluid intelligence: 331 

Intra-individual differences in neural responses to items of varying difficulty and inter-individual 332 

differences in neural activity for individuals of differing fluid reasoning ability. We use a parametric IRT 333 

model to show that greater ability in fluid intelligence is associated with broad, bilateral increases in 334 

activation of fronto-parietal regions, whereas increases in activity within individuals as a function of 335 

difficulty are associated with a more focal set of regions including the angular gyri and the precunei.  336 

In addition to these differences, we find a subset of three cortical systems, namely bilateral parietal, 337 

bilateral middle frontal and bilateral prefrontal gyri, which show increases both as a function of 338 

difficulty and as a function of increased ability. We propose to describe this convergence of intra- and 339 

inter individual neural responses as neural ergodicity. The importance of the question of ergodicity for 340 

neuroscience is increasingly being realized, as recent work suggests that even within a relatively well-341 

controlled network analysis, ergodicity is violated (i.e. differences in network connectivity within and 342 

between subjects do not converge, Medaglia et al., 2011). Moreover, this subset of regions may 343 

reflect key processes emphasised by cognitive theories that link inter- and intra-individual processes  344 

in intelligence (e.g. Van Der Maas et al., 2006; Kovacs and Conway, 2016). 345 

Crucially, we show that IRT can be used to equate item difficulty across a sample of individuals 346 

that differ in ability, thus making the neural comparisons more psychologically meaningful and 347 

comparable. Doing so suggests that high ability individuals show more frontal activity whereas 348 

individuals of lower ability show more occipital activity. These findings are compatible with, although 349 

certainly not conclusive of, strategy differences in reasoning style for individuals of higher and lower 350 

ability. Crucially, our approach can be extended to related cognitive domains that study both ability 351 
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and difficulty levels, such as working memory (e.g. Pessoa et al., 2002 versus (Osaka et al., 2003) 352 

cognitive control (e.g. Botvinick et al., 2001 and Hester et al., 2004) and many more. 353 

Applying IRT in this context provides not only a cautionary note in conflating the two dimensions, 354 

but illustrates how neuroimaging data may allow us to better understand the mechanisms of 355 

individual differences: Although the fit of the Rasch model to the behavioural responses was good 356 

(suggesting unidimensionality of the behavioural responses), a more detailed investigation of the 357 

neural responses showed residual differences between individuals of high and low ability informative 358 

of the underlying cognitive processes. Practically, the dissociation of intra- and inter-individual 359 

dimensions suggest that many study designs may not be tailored to answer the question of interest in 360 

the most efficient, or even most accurate, way – Findings of individual differences will depend, in 361 

part, on the range of item difficulties presented, and findings of parametric difficulty will depend on 362 

the mean ability and range of the population being studied.   363 

Although the current approach represents a step forward in modelling the con- and divergence of 364 

two psychologically relevant dimensions, we are aware that we implicitly assume homogeneity in 365 

several other potentially dimensions. For instance, our study focuses on an age range (18-30) within 366 

which fluid intelligence is relatively stable. This means that in a sample with a larger age range, there 367 

is possibility that the neural systems underlying individual differences in fluid intelligence will be 368 

distinct from individual differences (of the same magnitude) seen in our sample. Future research may 369 

extend these findings by the better integration of the temporal dynamics of the cognitive processes 370 

underlying fluid reasoning. Recently developed psychometric models have combined intra-individual 371 

processes as an information-accumulation process with inter-individual differences in ability (van der 372 

Maas et al., 2011). Such models could be fruitfully combined with similar integrative developments in 373 

neuroimaging methods that combine the high spatial resolution of fMRI with more time-sensitive 374 

methods, leading to (combined) M/EEG or fMRI/EEG.  375 

The central role of fluid reasoning in human cognition means that the potential payoffs of a better 376 

(mechanistic) understanding are considerable. A better mechanistic understanding of fluid reasoning 377 
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is essential for the promise of targeted behavioural or neurological training delaying deterioration of 378 

fluid reasoning during old age (e.g. Salthouse, 2009) or recovery of fluid reasoning associated 379 

difficulties after strokes or lesions (Duncan et al., 1995; Woolgar et al., 2010; Barbey et al., 2014) and 380 

the promise of clinical assessment of cognitive faculties by means of standardized neuroimaging tests 381 

(Allen and Fong, 2008). However, before we can get close to a mechanistic level of understanding 382 

require to achieve these ambitious goals, careful study of two fundamentally different dimensions of 383 

psychological variation is crucial: The inter-individual domain and the intra-individual domain. Over 50 384 

years ago, Cronbach (1957) referred to these domains as ‘the two disciplines of scientific psychology’ 385 

and it has been questioned to which extent these two domains have been brought closer together 386 

since (Borsboom et al., 2009; Voelkle et al., 2014). By using formal models to best capture inter- and 387 

intra-individual phenomena in neuroimaging studies, the two sub-disciplines of cognitive 388 

neuroscience may more quickly, and more fruitfully, converge. 389 

  390 
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 391 

Materials and Methods 392 

Participants: 37 participants (19 female) with normal or corrected-to-normal vision participated. 393 

The participants were tested in accordance with the ethical guidelines of the American Psychological 394 

Association, and the study was approved by the University of Amsterdam Ethics Committee, and 395 

received a financial reward for their participation. Prior to analysis, three subjects were excluded 396 

because of excessive motion (N=1) or scanner malfunction (N=2), leaving 34 subjects (17 female). The 397 

final sample ranged in age from 18 to 30 (M=23.4, SD=2.8). 398 

In the scanner, subjects performed a total of 72 Raven's matrix items, drawn from the Standard 399 

Progressive Matrices (36 items from sets C, D and E, Raven 1960) and Raven’s Advanced Progressive 400 

Matrices items (Raven, Court, & Raven, 1996). Figure 1 shows a stylized example of an easy item and 401 

a difficult item. The eight-option items were adapted for use in the scanner. Ravens matrices are 402 

considered good measurements of fluid reasoning ability  and figure centrally in psychometric 403 

analyses of general intelligence (Carpenter et al., 1990). The experiment was programmed using 404 

Presentation® (Neurobs, 2011). Participants viewed the screen (61 cm x 36 cm) on which the stimuli 405 

were presented via a mirror mounted on the head coil. Participants had a four-button box in each 406 

hand to respond to the eight clearly marked answer options. Prior to the first scan subjects were able 407 

to practice pressing the buttons with visual feedback to ensure correct response mapping. 408 

All raw behavioural data and an analysis script written in R (Team, 2014) are freely available on 409 

Figshare (both behavioural data and basic demographics 410 

https://figshare.com/articles/Raw_datafiles/2077552 as well as the R code 411 

https://figshare.com/articles/Analysis_code_written_in_R/2077555). The neuroimaging first level 412 

data and key contrasts are freely available on Neurovault (Gorgolewski et al., 2015) at 413 

http://neurovault.org/collections/1160/. 414 

 415 

 416 
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Procedure 417 

Prior to the scanning session, subjects read instructions and performed 12 practice trials (not 418 

used in the study) to ensure they understood the task. After ensuring the instructions were clear, 419 

participants were placed in the scanner. Each block consisted of 12 Raven’s matrices, interspersed by 420 

a 16 second inter-trial interval, with a maximum 30 second response window for each item. The 421 

blocks were pseudo-randomized such that each of the six blocks contained 12 fixed items spanning 422 

the complete range of difficulty (from easy to difficult), but were randomized within each block. This 423 

ensured that subjects did not ‘give up’ because trials became increasingly complex within or across 424 

blocks.  425 

 426 

Image acquisition and pre-processing 427 

Imaging data were obtained at the University of Amsterdam Spinoza Centre for Functional 428 

Magnetic Resonance Imaging using a 3-T Philips Achieva TX scanner using an 8-channel head coil. 429 

During the presentation of the Raven tasks we recorded BOLD-MRI (GE-EPI, TR=2346 ms, TE=30 ms, 430 

FA=90⁰, transversal recording, FOV=200^2 mm, matrix size=80^2, 39 slices, slice thickness=3, slice 431 

gap=0.3, ascending acquisition). We also acquired a high-resolution anatomical recording (3DT1, 432 

TR=8.1 ms, TE=3.74, FA=8⁰, FOV=240*220*188 mm, voxel size=1 mm^3) for normalization purposes. 433 

Foldable foam pads were used to minimize head motion. Data were analysed using FSL (FMRIB's 434 

Software Library, www.fmrib.ox.ac.uk/fsl, MATLAB (Version 7.10.0, The Mathworks, Inc., Natick, MA, 435 

USA), and R (Team, 2014). Functional data were analysed using FEAT (FMRI Expert Analysis Tool 436 

Version 5.98), in which we performed motion correction, slice time correction, spatial smoothing 437 

(5mm) and low pass filtering (100 s). We generated explanatory variables for each individual 438 

presented item of the Raven’s progressive matrices using the double gamma model of the 439 

hemodynamic response function. This yielded 12 explanatory variables (EV’s) per run. These EVs were 440 

subsequently combined using a model in which we specified both the mean activation level and the 441 

item difficulty for each item. This yielded an estimate, per subject, of the extent to which activity of 442 

22 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 10, 2016. ; https://doi.org/10.1101/039412doi: bioRxiv preprint 

https://doi.org/10.1101/039412
http://creativecommons.org/licenses/by/4.0/


voxels differed across items varying in item difficulty. At the between-subject level we specified a 443 

model in which the average activity of the covariate fit from the fixed effects pooling stage was 444 

entered and in which the ability of the individual subjects was included as a predictor, so we could the 445 

estimate the effects of item difficulty independently of subject ability. Higher-level analysis was 446 

carried out using FLAME (FMRIB's Local Analysis of Mixed Effects) stage 1 and stage 2 with automatic 447 

outlier detection (Woolrich et al., 2004; Woolrich, 2008). Statistics were thresholded using cluster-448 

based correction at z=2.3 and a corrected cluster significance threshold of 0.05 (Worsley, 2001) 449 

 450 

451 
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