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Abstract

Many approaches for inferring adaptive molecular evolution analyze the unfolded site frequency 

spectrum (SFS), a vector of counts of sites with different numbers of copies of derived alleles in a 

sample of alleles from a population. Accurate inference of the high copy number elements of the 

SFS is difficult, however, because of misassignment of alleles as derived versus ancestral. This is 

a known problem with parsimony using outgroup species. Here, we show that the problem is 

particularly serious if there is variation in the substitution rate among sites brought about by 

variation in selective constraint levels. We present a new method for inferring the SFS using one or

two outgroups, which attempts to overcome the problem of misassignment. We show that two 

outgroups are required for accurate estimation of the SFS if there is substantial variation in 

selective constraints, which is expected to be the case for nonsynonymous sites of protein-coding 

genes. We apply the method to estimate unfolded SFSs for synonymous and nonsynonymous 

sites from Phase 2 of the Drosophila Population Genomics Project. We use the unfolded spectra to

estimate the frequency and strength of advantageous and deleterious mutations, and estimate that

~50% of amino acid substitutions are positively selected, but that less than 0.5% of new amino 

acid mutations are beneficial, with a scaled selection strength of Nes ≈ 12.

Introduction

Most protein sequences are strongly conserved between species, which suggests that the majority 

of amino acid-changing mutations are selectively removed from populations (Graur and Li 2000). 

The nature of the selective forces acting on the mutations that become fixed between species is 

central for a variety of questions in population genetics. These include understanding the 

maintenance of variation within species, the causes of variation in nucleotide diversity across the 

genome and the nature of evolutionary adaptation. Evidence for pervasive selection in the genome

comes from observations of positive correlations between nucleotide diversity at putatively 

neutrally evolving sites and the rate of recombination (Begun and Aquadro 1992), and negative 

correlations between local genomic diversity and the presence of functional elements (such as 

protein-coding exons or conserved noncoding elements; Cai et al 2009; Hernandez et al 2011; 
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Lohmueller et al 2011; Halligan et al 2013; Enard et al 2014; Deinum et al 2015). These 

correlations are likely to be caused by natural selection acting on functional sites in the genome 

reducing diversity at linked sites, but the precise nature of the selective forces involved is 

unresolved, since both selective sweeps due to positive selection and background selection 

caused by purifying selection can contribute to these patterns.

One approach to discriminate between the contributions of neutral, deleterious and advantageous 

substitutions to molecular evolution is based on the McDonald-Kreitman test (McDonald and 

Kreitman 1991), which compares within-species polymorphism to between-species divergence. 

Initially conceived as a test of departure from neutrality in a specific gene, it was subsequently 

adapted to estimate the proportion of substitutions driven to fixation by positive selection between-

species for a class of sites in the genome (Fay et al. 2002; Smith and Eyre-Walker 2002). It does 

not, however, directly provide information on the rate of occurrence of advantageous mutations or 

on the magnitude of their selective effects. Furthermore, the approach is compromised if there has 

been a demographic change altering the fixation probability of selected alleles (either 

advantageous or disadvantageous), the signature of which is not captured by analysis of the 

polymorphism data (Eyre-Walker 2002).

Other ways of combining polymorphism and divergence data, or focusing on polymorphism data 

only to infer genome-wide selection may be more fruitful. Andolfatto (2007) and Macpherson et al. 

(2007) showed that there is a negative correlation between synonymous site polymorphism and 

nonsynonymous divergence in Drosophila, and used this information to estimate the strength of 

selection and frequency of adaptive protein evolution. Both studies concluded that there is 

widespread adaptive evolution, but estimates of the strength of selection and frequency of adaptive

substitution depended on the size of the genomic window considered in the analysis. A related 

approach fits a population genetic model to mean reductions in diversity observed around 

nonsynonymous sites that have experienced a substitution between related species (Sattath et al 

2011). This does not depend on assuming a specific window size. The best-fitting model suggests 

that there is substantial variation in the fitness effects of adaptive amino substitutions in 

Drosophila, potentially shedding light on the different results of Andolfatto (2007) and Macpherson 
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et al. (2007).

We have previously described an approach that attempts to simultaneously infer the rate and 

strength of deleterious and beneficial mutations occurring in a class of sites in the genome , which 

exploits the shape of unfolded site frequency spectrum (uSFS) (Schneider et al 2011). The uSFS is

a vector of counts of sites that have j copies of the derived allele, where 0 ≤ j ≤ n, and n is the 

number of copies in the sample.  By using the uSFS, information for inferring the strength of 

selection comes mainly from current polymorphism within a focal species rather than divergence 

from an outgroup species. The first step is to infer demographic parameters using the SFS for 

quasi-neutrally evolving sites, such as synonymous sites. Conditioning on the estimates of the 

demographic parameters, selection parameters are estimated for a selected site class SFS (e.g., 

for nonsynonymous sites). These parameters describe the distribution of fitness effects (DFE) for 

deleterious mutations and the frequency of occurrence and strength of selection for one or more 

classes of advantageous mutations. Inferring adaptive evolution parameters requires that there is 

an excess of high frequency derived variants above and beyond that expected from demographic 

change and from negative selection acting on the bulk of mutations.

Applying the method of Schneider et al (2011), or any method that uses the frequencies of high 

frequency derived variants, therefore depends on accurate inference of the uSFS. Inference of the 

uSFS is potentially compromised, however, by misassignment of the ancestral state, and this tends

to affect high frequency elements of the SFS disproportionately (Fay and Wu 2000; Baudry and 

Depaulis 2003; Hernandez et al 2007; De Maio et al. 2013; Glémin et al. 2015). Current methods 

to infer the uSFS rely on a single outgroup (Hernandez et al 2007) or require genome-wide 

polymorphism data from multiple species (De Maio et al. 2013). Schneider et al (2011) also 

described a method for inferring the uSFS, but we have recently determined that this tends to over-

estimate the frequency of high frequency derived variants (Halligan et al 2013). Here, we present a

new method for inferring the uSFS, using information from one or two outgroup species that aims 

to address this problem, which we thoroughly test by simulations. We apply this method to a 

recent, whole-genome polymorphism data set for protein-coding genes from a sample of 

Drosophila melanogaster genomes originating from a Rwanda population close to their ancestral 
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range. From the inferred uSFS, we estimate the frequencies and effects of deleterious and 

advantageous amino acid-changing mutations.

Methods

Inferring the uSFS - basic assumptions. A focal species is sequenced at multiple sites in a cohort of

individuals sampled from a population. The possibility of more than two alleles segregating at a site

in the focal species is disregarded. To infer the uSFS, we need to compute probabilities for the 

possible states of the allele ancestral to the observed alleles in the focal species (Figure 1a).  We 

compute these probabilities using information from a single gene copy, assumed to be randomly 

sampled at each site, from either one or two outgroup species. Polymorphism in the common 

ancestor of the outgroup(s) and the focal species is disregarded; bias introduced by violating this 

assumption is investigated using simulations.  Initially, we assume that all types of base 

substitution are equally frequent. Distinct transition and transversion rates are subsequently 

incorporated. The consequences of violating the equal mutation rates assumption in the basic 

method are explored by simulations.

Single outgroup, single mutation rate parameter. Here, we illustrate the approach for inferring the 

uSFS assuming a single outgroup and a single evolutionary divergence parameter (K). This is the 

divergence between the allele ancestral to the observed allele(s) in the focal species and a single 

outgroup (Figure 1a). We do not need to consider mutations from the ancestral allele to the 

observed segregating alleles in the focal species. In this and the methods that follow (i.e., which 

allow different transition and transversion rates and two outgroups), a two-stage approach is 

implemented. First, the evolutionary divergence parameter(s) is estimated by maximum likelihood 

(ML). Second, assuming perfect knowledge of divergence parameter(s), the elements of the uSFS 

are estimated one-by-one by ML.

Single outgroup stage 1 – ML estimation of K. Assume that the data consist of counts of numbers 

of different alleles observed in a sample of n copies in the focal species (n = 4 gene copies in 

Figure 1 and Table 1, for example) and a single copy from an outgroup species. Let K be the 
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expected number of mutations distinguishing the allele ancestral to these 4 gene copies and the 

outgroup. Defining xi as the allelic configuration observed at site i in the focal species and the 

outgroup, and assuming independence among sites, the likelihood of the data for all sites 

combined is:

L=∏
i=1

sites

p(x i∣K ) . (1)

If the focal species is monomorphic there are two possible configurations of alleles (y1 and y2; 

Table 1) and there are three configurations if the focal species is polymorphic (y3 , y4 and y5; Table 

1). Noting the symmetry of configurations y3 and y4, equation (1) can therefore be rewritten as:

L∝p(y 1∣K )
z1,0 p (y 2∣K )

z 2,0∏
j=1

n/2

[p (y 3∣K )
z3, j+z 4, j p(y 5∣K )

z5, j ] , (2)

where zx,j is the number of sites showing the configuration with subscript x, given that there are j 

minor allele copies in the focal species.

Assuming that the number of mutations (m) is Poisson distributed with probability P(m|K), the 

probability of configuration yx, given divergence K is:

p(y x∣K )=∑
m=0

∞

q x , m P (m∣K ) , (3)

where qx,m is the conditional probability  for allelic configuration yx, given that there are m mutations 

(Table 1).  In practice, we considered only up to two mutations in the summation in equation (3). 

Simulations with K up to 20% suggested that allowing more that two mutations had a negligible 

effect on estimates of K or the SFS elements.

For example, the probability (q1,0) of observing configuration y1 if there have been no mutations is 

equal to 1; it is not possible to observe configuration y1 if there has been one mutation (i.e., q1,1 = 

0); q1,2 = 1/3 because if there had been two mutations, nucleotide A could have mutated to any 

other nucleotide and then must have mutated back to A. The natural log likelihood with respect to 

K, i.e., log(equation 2), was maximized by the Golden Search algorithm (Press et al. 1992). 

Single outgroup stage 2 – ML estimation of the uSFS elements, given K. The approach is to find 

the ML estimate of the proportion of probability density, πj, attributable to the major allele being 
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ancestral versus the minor allele being ancestral for each element of the SFS, while assuming the 

fixed ML estimate of K from stage 1. There are therefore n/2 + 1 ML estimates to be made. To 

compute the likelihood of πj, we need to consider sites for which there are j copies of one allele 

and n – j copies of a different allele in the sample of n copies. For invariant sites (j = 0), there are 

z1,0 and z2,0 sites that have allelic configurations y1 and y2, respectively (Table 1). For variant sites (j 

≠ 0), there are three possible allelic configurations (y3 , y4 and y5; Table 1), but sites where the 

outgroup allele is different from the copies observed in the focal species (configuration y5) provide 

no information about the uSFS, and so can be disregarded. Note that these sites do contribute to 

the estimate of K. We therefore have z3,j and z4,j sites with the two informative configurations. The 

likelihood for variant sites that have j minor alleles in the focal species is:

L( j )∝[∑
m=0

∞

(q3,m
maj P (m∣K ))π j+∑

m=0

∞

(q3,m
min P (m∣K ))(1−π j )]

z 3, j

[∑
m=0

∞

(q4,m
maj P (m∣K ))π j+∑

m=0

∞

(q4,m
min P (m∣K ))(1−π j)]

z4, j

,
(4)

where superscript maj (min) on q implies that the ancestral allele is the major (minor) allele (Table 

1). The likelihood for invariant sites in the focal species is:

L(0)∝[∑
m=0

∞

(q1,m
maj P (m∣K ))π0 ]

z1,0

[∑
m=0

∞

(q2,m
min P (m∣K ))(1−π0)]

z 2,0

(5)

We considered only up to two mutations in the summations in (4) and (5). Log likelihood with 

respect to each πj was maximized by the Golden Search algorithm.

This method can be adapted to infer uSFS elements where there are different transition and 

transversion rates estimated (see Supplementary Information; Table S1), and where there are two 

outgroups (see Supplementary Information; Table S2).

Simulations. We assessed the performance of the uSFS inference procedures using Monte Carlo 

simulations incorporating ancestral polymorphism and unequal transition/transversion rates. We 

analysed data sets containing large numbers of sites specifying the allelic states for n copies 

sampled from the population of a focal species and single copies sampled from populations of one 

or two outgroup species. The simulated populations were diploid and of constant population size N 

= 100. We generally assumed that the neutral diversity θ is equal to 0.01 by setting the mutation 
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rate per site per generation to μ = θ/4N. We simulated unlinked nucleotide sites that could be in of 

one four states (A, T, C, G). An ancestral population was initiated with equal frequencies of the four

nucleotides, and allowed to evolve to mutation-drift equilibrium for 20N burn-in generations. A site 

of an individual was mutated with probability μ each generation by randomly altering its current 

nucleotide state. In general, the probability of a transition mutation was equal to
1

1+2/β
, where 

β > 1 implies there is transition:transversion mutation bias. In the case of a single outgroup, two 

separate populations were evolved for t1 generations after the burn-in to produce a focal population

and an outgroup population (Fig 1a). When simulating two outgroups, an outgroup 2 population 

was evolved for (t1 + t2)/2 generations and a second population was evolved for (t2 – t1)/2 

generations up to node x (see Fig 1b). Two populations were then evolved from the node x 

population for t1 generations to produce a focal population and an outgroup 1 population.

In many simulations we assumed that all sites evolve neutrally. We also simulated variation in the 

rate of substitution among sites caused by variation in the strength of purifying selection. A fraction 

C of sites was designated as selectively constrained sites. Any allele different in state from the wild

type allele that arose at such sites was designated as mutant and had a selective disadvantage 

s/2. Effects on fitness were multiplicative. Fertility selection was carried out by sampling individuals

for reproduction with replacement in proportion to their relative fitness.

We quantified bias (in %) affecting estimates of elements of the SFS as the percentage deviation 

from the true value of that element. We also estimated the scaled root mean squared error (RMSE 

in %) for elements of the SFS. RMSE incorporates variance among estimates (since one method 

might produce less variable estimates of SFS elements about the true values than another) and is 

also influenced by bias:

RMSE=100×
√ 1

r
∑(Ŷ i−Y i)

2

∑Y i /r
,

(6)
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where Ŷ i is the estimate for an SFS element from simulation replicate i and Yi is the 

corresponding true value of that element, and r is the number of simulation replicates.

D. melanogaster polymorphism data.

We obtained polymorphism data from an African population of Drosophila melanogaster 

comprising 17 Rwandan haploid genomes (RG18N, RG19, RG2, RG22, RG24, RG25, RG28, 

RG3, RG32N, RG33, RG34, RG36, RG38N, RG4N, RG5, RG7 and RG9), which have been 

estimated to have the lowest levels of admixture with European populations (less than 3%, see 

Figure 3b of Pool et al., 2012). We downloaded FASTQ files from the Drosophila Population 

Genomics Project (http://www.dpgp.org/dpgp2/candidate/). We further masked any regions of the 

African samples with evidence of admixture from European populations, using the admixture 

coordinates reported by Pool et al. (2012). Following Pool et al. (2012), sites with a BWA quality 

score below Q = 31 (equivalent to a PHRED score of 48, and approximately equivalent to one error

per 100 kb) were also masked. This produced the Q31 data set, which is the focus of most of the 

analysis. We also analysed a more stringently filtered Q41 data set. From the FASTQ files, we 

extracted protein-coding regions, using gene annotations from FlyBase release version 5.33 

(www.flybase.org) and made FASTA files containing all samples (17 copies), we excluded genes 

within non-crossing over regions (see Campos et al. 2012). For each D. melanogaster gene with 

multiple transcripts, we chose one transcript at random. We included as outgroups the orthologous 

genes of D. simulans (r2.01) and D. yakuba (r1.3), obtained from the D. melanogaster–D. 

simulans–D. yakuba gene alignments of Hu et al. (2013), from which we selected the coding 

regions corresponding to our selected transcripts.

Estimating the DFE and the rate and strength of adaptive mutations along with the frequency of 

adaptive substitutions. Using the inferred unfolded uSFSs for two outgroups and with no 

transition/transversion bias assumed, we estimated parameters of the DFE and adaptive mutations

by the ML method described by Schneider et al (2011), which is incorporated into the software 

DFE-alpha (Keightley and Eyre-Walker 2009), with the following modifications. We first fitted a 

three-epoch demographic model to the neutral (i.e., synonymous) uSFS, allowing two changes of 

population size, first from N1 to N2, then from N2 to N3 at times t2 and t3, respectively, while also 
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fitting parameters specifying the fractions of unmutated sites (f0) and sites fixed by drift (f2N). By 

fitting this model to the DPGP synonymous uSFS, we found that high frequency elements were 

under-predicted. The estimated uSFS for synonymous sites contains a small uplift in the last 

element, which cannot be explained under the demographic and mutational model fitted. This uplift

could reflect hitchhiking with selected amino acid variants or positive selection on synonymous 

variants. Alternatively, it could be caused by residual misassignment of low frequency variants. We 

assumed that such processes also affected the nonsynonymous uSFS, and would lead to 

upwardly biased estimates of positive selection parameters if not corrected. In a similar manner to 

that described by Glémin et al (2015), which follows the approach of Eyre-Walker et al (2006), we 

therefore corrected elements of the nonsynonymous uSFS (Nj) using the deviations of the 

observed (Sj) from the fitted (Ej) elements of the synonymous uSFS:

N j
'
=

N j

1+(S j−E j)/E j

, for j=0..n . (7)

We assessed goodness of fit by comparing fitted uSFSs to observed uSFSs using a χ2 statistic, but

because the numbers of sites in derived class j and ancestral class n - j are non-independent, we 

do not perform formal significance tests.

Conditioning on the values of the parameters fitted to the synonymous SFS, parameters specifying

the effects and relative frequencies of deleterious and advantageous mutations were fitted by ML 

to the corrected nonsynonymous uSFS. We either assumed that the fitness effects of deleterious 

mutations were drawn from a gamma distribution (which is specified by a shape and a scale 

parameter) or, following Kousathanas and Keightley (2013), that there were nd fixed classes of 

deleterious mutations, where the fitness effect and frequency of class i are sd,i. and pd,i, 

respectively. We fitted na classes of advantageous mutations, where the fitness effect and 

frequency of class j are sa,j. and pa,j, respectively, such that ∑
i

nd

pd , i+∑
j

na

pa , j=1.  The gamma 

DFE represents a single, continuously variable class of deleterious mutations.
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To find maximum likelihood estimates (MLEs) we carried out runs with large numbers of 

combinations of random starting values. We estimated 95% confidence limits for the proportion of 

adaptive mutations and their selective strength from profile likelihoods on the basis of drops in log 

likelihood of 2 units from their respective MLs. For each point in each profile likelihood we used the

highest likelihood obtained from 20 runs using different starting values sampled around the MLEs. 

Estimates of α, the proportion of adaptive substitutions, and ωa, the rate of adaptive substitution 

relative to the rate of neutral substitution, were obtained as described by Schneider et al (2011).

Results

Simulations – single outgroup. To investigate the performance of the uSFS inference procedure 

under circumstances where the data closely conform to the assumptions of the model, we 

simulated a focal population and a single outgroup with nucleotide divergence K = 0.1, no 

transition/transversion bias (β = 1) and no selection. We assumed that θ = 4Neμ = 0.01, so that θ 

<< K and few polymorphic sites in the focal species are also polymorphic in the ancestral 

population prior to the split between the focal species and the outgroup. Figure 2 shows the true 

uSFS (calculated using knowledge of the ancestral state for each site) and the uSFSs inferred 

using the single outgroup method described here and the method of Schneider et al. (2011). The 

new approach is therefore capable of estimating the uSFS with little bias on average, including 

high frequency elements of the SFS. The method of Schneider et al. (2011) tends to overestimate 

high frequency SFS elements, presumably because polymorphic sites having an outgroup allele 

inconsistent with either allele present in the focal species are mis-assigned. Our new approach 

appears to give nearly unbiased estimates of the uSFS elements as long as the divergence to the 

outgroup is K < 0.3 (Figure S1).

We extended the method to include the estimation of separate transition and transversion rate 

parameters (Supplementary Information; Table S1). This was tested by simulations of neutrally 

evolving sites, and also produces close to unbiased estimates of the uSFS in the presence of 

transition:transversion mutational bias (Figure S2a). The single rate parameter method also 
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produces reasonably unbiased estimates of the uSFS unless there is substantial bias towards 

transition mutations, or the divergence is 0.2 or greater (Figure S2b).

Simulations – two outgroups, neutrally evolving sites. We then compared the performances of the 

uSFS inference procedures allowing one or two outgroups. The results suggest that there is a clear

benefit from using a second outgroup in terms of lower variance among replicates (lower RMSE) 

(Figure 3), but potentially a cost in terms of higher bias (i.e., there is a tendency for 

underestimation of the high frequency SFS elements), especially if the divergence from the second

outgroup is small (Figure 3).

Simulations – variable strength of purifying selection among sites. We then investigated the 

performance of the uSFS inference procedures in the presence of variation in the substitution rate 

and diversity among sites caused by purifying selection. We simulated this variation by assuming 

that a fraction C of sites are subject to negative selection (with selective disadvantage s = 0.1; see 

Materials and Methods), the remainder evolving neutrally. We found that with C ≈ 0.85 and Ns = 10

(so that mutant alleles rarely become fixed), divergence, diversity and the shape of the SFS 

simulated are similar to what we observe in the D. melanogaster polymorphism data for 

nonsynonymous sites, although in this case we assume a constant population size.

We compared the accuracy of the inferred uSFS using one or two outgroups, focusing on the high 

copy number elements of the SFS, which are hardest to estimate accurately. We assumed a 

neutral divergence between the focal species and the first outgroup of K1 = 0.1 (which is similar to 

the D. melanogaster – simulans divergence) and a neutral divergence between the internal node 

and the second outgroup of K2 = 0.15. The results suggest that there is a clear benefit, both in 

terms of reduced bias and reduced RMSE from using the information from a second outgroup 

(Figure 4). We see a only a small amount bias and reduced RMSE for a range of C values. Using 

information from a single outgroup, however, can lead to serious over-estimation of the high copy 

number SFS elements (as much as 15% in the cases shown). Presumably, the benefit of using a 

second outgroup applies when there are other sources of variation in the substitution rate among 

sites, such as variation in the mutation rate. 
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Inference of uSFSs and frequency and strength of adaptive molecular evolution in the D. 

melanogaster proteome. We applied the uSFS inference procedure to the polymorphism data set 

of protein-coding genes of the D. melanogaster DPGP Phase 2. Using two outgroups (D. simulans 

and D. yakuba), we inferred uSFSs for 4-fold and 0-fold sites (Figure 5). As expected, nucleotide 

diversity at 0-fold sites is substantially lower than that at 4-fold sites, and there is an enrichment of 

0-fold singletons, consistent with negative selection acting on many nonsynonymous sites.

We then applied the approach of Schneider et al (2011) to estimate the rate of occurrence and 

selective strength of adaptive amino acid mutations. We fitted parameters of a three-epoch 

demographic model to the synonymous site data (Table S3; Figure S3); this model fitted much 

better than a two-epoch model (log likelihood difference = 221), and suggests that there was a 

population size bottleneck followed by a population expansion. There is, however, an appreciable 

deviation between the observed and fitted synonymous uSFS, particularly affecting the last 

element (Figure S3; χ2(16) = 138). We assumed that misinference would also affect the 

nonsynonymous uSFS, potentially leading to spurious estimates of adaptive molecular evolution. 

We therefore corrected the nonsynonymous uSFS using the deviation between the observed and 

fitted synonymous uSFS, as described in Methods. Uncorrected and corrected nonsynonymous 

uSFSs are shown in Figure S4.

Given the demographic parameter estimates from the synonymous site data, we then estimated 

parameters of the distribution of fitness effects (DFE) for deleterious mutations and the proportion 

(pa) and scaled selection strength acting on one or more classes of adaptive mutations (Nesa). 

Several models had similar levels of statistical support (Table 2). The best-fitting model gives an 

excellent fit to the data (Figure S4; χ2(16) = 16.9), and consisted of four classes of mutational 

effects: two classes of deleterious mutations, a class of neutral mutations, and a single class of 

advantageous mutations. There is substantial support for models with adaptive mutations (ΔlogL = 

93 between the best fitting model and the same model excluding adaptive mutations). Assuming 

the four-class model, ML estimates of the proportion of advantageous mutations and the scaled 

strength of selection acting on them are pa = 0.0045 (approx. upper 95% CI = 0.012) and Nesa = 
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11.5 (approx. lower 95% CI = 5), respectively. Note that pa and sa are hard to estimate separately, 

but their product is well estimated. Other models that explain the data almost as well (gamma DFE,

three classes of mutational effects) give somewhat different ML estimates of pa and Nesa, but the 

products of pa x Nesa are of similar magnitude (Table 2). Fitting additional classes of mutations 

(advantageous or deleterious) did not lead to a further increase in log likelihood. We then 

estimated the frequency of adaptive substitutions (α) and the rate of adaptive substitution relative 

to that of neutral substitution (ωa) from the proportions and fixation probabilities of the 

advantageous, neutral and deleterious mutation classes. The estimates are α = 0.57 and ωa = 

0.096 for the 4-class model, but these are sensitive to the model assumed (Table 2).

Discussion

There were three main motivations for this study. First, we had determined that a previously 

described method to infer the uSFS (Schneider et al 2011) tends to overestimate high frequency 

SFS elements. Second, using parsimony for inferring ancestral states of high frequency elements 

of the SFS is problematical, because the corresponding low frequency elements usually involve a 

far greater number of sites, and these tend to be misassigned as high frequency elements, 

potentially leading to an over-estimation of the frequency of alleles under positive selection. Third, 

large, genome-wide polymorphism data sets offer the opportunity to investigate the frequency and 

strength of ongoing adaptive molecular evolution, using a method also described by Schneider et 

al (2011), but this requires accurate inference of the uSFS. The development of this approach was 

motivated by inconsistent results emerging from the application of variants of the McDonald-

Kreitman (MK) test, such as the methods of Welch (2006), DFE-alpha (Eyre-Walker and Keightley 

2009) and DoFE (built on Eyre-Walker et al 2006).

These methods all estimate the frequency of adaptive substitutions in a set of loci by contrasting 

polymorphism data in a focal species with divergence from an outgroup species. For example, 

many estimates of the proportion of adaptive amino acid substitutions (α) in plants are negative, 

some significantly, at face value implying that there is little adaptive protein evolution (Gossmann et

al 2010). The true value of α cannot be negative, however, and this result may reflect the presence 
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of widespread population structure in plant species, which distorts the SFS and could bias 

estimates of α downwards. Some estimates of α in great apes are also negative (Good et al 2013).

A clear example of inconsistency comes from a reciprocal analysis of genome-wide polymorphism 

data in murid rodents, where an estimate of α in wild house mice using divergence from the rat is 

strongly and significantly positive, i.e., α ≈ 0.3 (Halligan et al 2013), whereas an estimate using 

polymorphism within wild brown rats and divergence from the mouse is strongly and significantly 

negative, i.e., α ≈ -0.3 (Deinum et al 2015). The negative estimate presumably reflects a recent 

population bottleneck in the brown rat, leading to over-prediction of the number of fixed slightly 

deleterious mutations. 

In contrast to McDonald-Kreitman-based methods, the method of Schneider et al (2011) uses 

information on polymorphism data within a species to infer ongoing adaptive molecular evolution. It

can be set up to use no information from sites fixed for the derived allele, but we did not do that 

here. By simulations, we investigated the circumstances under which accurate inference of the 

uSFS is possible. The most important potential source of misinference we identified is variation in 

the substitution rate, affecting the joint spectrum of polymorphism in the focal species and 

divergence(s) from the outgroup(s). This could either be due to variation in the mutation rate 

between different kinds of sites or variation between sites in selective constraints or adaptive 

potential. In principle, it is possible to account for some components of variation in the mutation 

rate by explicit modeling (e.g., transition-transversion bias). Selection that varies among sites 

appears to be a more important issue, however, and is more difficult to model. Our simulations 

show that with a single outgroup only, high copy number uSFS elements are potentially seriously 

over-estimated if there is variation in selective constraints among sites. This is because the 

divergence between the ancestral allele and the outgroup is computed as an average across sites, 

but this will be lower than the divergence at the subset of unconstrained sites, so multiple hits are 

under-corrected at these sites. Our simulation results suggest that incorporating a second outgroup

substantially corrects this problem, allowing accurate estimation of the uSFS. It should be feasible 

to extend our approach to include multiple outgroups, although there are presumably diminishing 

returns and potential biases from adding more distant outgroups.
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We applied our new uSFS inference approach to the D. melanogaster DPGP Phase 2 data for 

protein-coding genes, and several aspects of the results are noteworthy. The inferred uSFS for 

synonymous sites contains a small, but appreciable uplift in the last element (Figure S3). With the 

demographic and mutational models fitted by DFE-alpha, however, it is not possible to obtain an 

uplift in the fitted uSFS. The apparent increase in the frequency of high copy number derived 

synonymous alleles could be genuine, and explained, for example, by hitchhiking with selected 

amino acid variants or selection on synonymous variants (Zeng 2010; Clemente and Vogl, 2012; 

Lawrie et al 2013). Alternatively, it could be caused by residual misassignment of low frequency 

variants. We investigated whether this might be due to sequencing errors by analyzing a more 

stringent set of SNPs (Q41). The inferred uSFSs are extremely similar to the uSFSs analysed 

(Q31; Figure S5), suggesting that sequencing errors in DPGP are not an important source of 

misinference. We corrected the nonsynonymous uSFS based on the deviation from the fitted and 

observed synonymous uSFS.

Fitting the demographic parameters estimated from synonymous sites, then estimating selection 

parameters by ML, resulted in a close fit to the corrected nonsynonymous uSFS (Figure S4), but 

several alternative models also give excellent fits (Table 2). Taking the best-fitting model at face 

value, the results therefore imply that there is a major contribution from adaptive amino acid 

substitutions to protein evolution in D. melanogaster, i.e., α ≈ 0.5. This figure is consistent with 

several studies employing variants of the McDonald-Kreitman test to estimate the frequency of 

adaptive protein evolution (Fay et al 2002; Smith and Eyre-Walker 2002; Welch 2006; Andolfatto 

2007; Eyre-Walker and Keightley 2009; Campos et al 2014). The estimated selective effects of 

adaptive mutations are also consistent with estimates for the more common, weakly selected of the

two classes inferred by Sattath et al (2011), based on changes in diversity around substituted 

nonsynonymous sites. However, Sattath et al estimated that only about 13% of amino acid 

substitutions cause selective sweeps, arguing that this low value could reflect a prevalence of 

partial sweeps. On the other hand, Schneider et al (2011) used information from high frequency 

polymorphisms, which is most relevant for inferring the ongoing strength of selection and the 

frequency of relatively weakly selected variants. This is because strongly selected mutations are 

expected to be relatively rare and sweep rapidly to fixation, leaving little detectable footprint in the 
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uSFS. 
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Table 1. Five possible configurations (y1...y5) of numbers of copies of alleles at a site observed in 

the focal species and the outgroup for the case of four copies sampled in the focal species. There 

is either no or one copy of a minor allele present in the focal species (T in this case). Assuming that

there are from m = 0 to 2 mutations between the ancestral allele of the alleles present in the focal 

species and the outgroup (Figure 1), the conditional probabilities qx ,m
maj and qx ,m

min of observing 

configuration x, given that the ancestral allele is the major or the minor allele, respectively, are 

shown.

Observed state Conditional probability

Configuration
Focal

species
Outgroup

m = no.

mutations
qx ,m

maj qx ,m
min qx ,m=qx , m

maj
+qx , m

min

y1 AAAA A 0 1 0 1

1 0 0 0

2 1/3 0 1/3

y2 AAAA T 0 0 0 0

1 0 1 1

2 0 2/3 2/3

y3 AAAT A 0 1 0 1

1 0 1/3 1/3

2 1/3 2/9 5/9

y4 AAAT T 0 0 1 1

1 1/3 0 1/3

2 2/9 1/3 5/9

y5 AAAT C 0 0 0 0

1 2/3 2/3 4/3

2 4/9 4/9 8/9
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Table 2. ML estimates of parameters from DFE-alpha for three different models involving different 

numbers of classes of mutational effects and a gamma DFE and the change in log likelihood 

(ΔlogL) from the best-fitting model.

ML estimates

Parameter 4 class 3 class Gamma

β - - 0.35

pd1 0.88 0.89 1

Nesd1 -177 -167 -2120

pd2 0.076 0.10 -

Nesd2 -2.8 -1.4 -

pd3 0.039 - -

Nesd3 0 - -

pa 0.0045 0.0093 0.0031

Nesa 11.5 6.7 17

α 0.57 0.89 0.68

ωa 0.096 0.14 0.091

ΔlogL 0 -0.6 -2.1
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Figure 1. Example of a site at which four copies are sequenced in the focal species, where A is the

major allele and the ancestral allele and T is the minor allele. (a) A single outgroup has the same 

state as the ancestral allele. (b) There are two outgroups and an internal node x. Time t2 is the total

number of generations from x to outgroup 2.
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Figure 2. True uSFS (from simulation) and estimated uSFSs computed by the present method and

by the method of Schneider et al. (2011), both using a single outgroup. 20 copies were sampled at 

each site of the focal species. Diversity θ = 4Nμ = 0.01, and divergence between the focal species 

and the outgroup was K = 0.1. There were 8 replicate simulations, each with 106 sites, resulting in 

a negligible sampling variance for elements of the estimated uSFSs.
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Figure 3. Estimated bias (%) (a) and RMSE (b) for estimates of uSFS elements 17, 18 and 19 

plotted against divergence (K2) between node x and outgroup 2 (see Figure 1) for the case of 20 

copies sampled at each site of the focal species. The solid and dotted lines show inferences using 

one or two outgroups, respectively. The divergence between the focal species and outgroup 1 was 

K1 = 0.1, and diversity in the focal species was θ = 0.01. There was no transition:transversion bias. 

105 sites were simulated in each of 160 replicates.
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Figure 4. One versus two outgroup comparison in the presence of variation among sites in 

selective constraints. The panels show bias (a) and RMSE (b) in the last three elements of the 

uSFS. For example, the label 17,1 refers to the bias/RMSE affecting element 17 with one 

outgroup. A fraction C of sites were simulated with scaled selection coefficient Ns = 10 and the 

remainder evolve neutrally. 105 sites were simulated per replication and 240 replicates. The 

divergence parameters for neutral alleles were K1 = 0.1 and K2 = 0.15. 
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Figure 5. Unfolded SFSs for 0-fold and 4-fold sites of D. melanogaster protein-coding genes 

inferred using two outgroups (D. simulans and D. yakuba).
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