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Abstract

Background: A number of large genomic datasets are being generated for
studies of human ancestry and diseases. The ADMIXTURE program is commonly
used to infer individual ancestry from genomic data.

Results: We describe two improvements to the ADMIXTURE software. The first
enables ADMIXTURE to infer ancestry for a new set of individuals using cluster
allele frequencies from a reference set of individuals. Using data from the 1000
Genomes Project, we show that this allows ADMIXTURE to infer ancestry for
10,920 individuals in a few hours (a 5x speedup). This mode also allows
ADMIXTURE to correctly estimate individual ancestry and allele frequencies
from a set of related individuals. The second modification allows ADMIXTURE
to correctly handle X-chromosome (and other haploid) data from both males and
females. We demonstrate increased power to detect sex-biased admixture in
African-American individuals from the 1000 Genomes project using this extension.

Conclusions: These modifications make ADMIXTURE more efficient and
versatile, allowing users to extract more information from large genomic datasets.

Keywords: supervised learning; reference panels; pedigrees; sex-chromosome; sex
bias; ancestry ineference; admixture

Todo list

Background
The ADMIXTURE program [1] estimates individual ancestry proportions for ad-

mixed individuals from genomic datasets. It uses a likelihood model [2] that assumes

the genotype nij for individual i at biallelic SNP j, which represents the number

of type “1” alleles observed, is generated by binomial sampling from a weighted

sum of ancestral allele frequencies. For each individual, the weights are given by the

proportions of ancestry derived from each ancestral population. Given K ancestral

populations, genotypes are sampled as nij ∼ Bin(2,
∑K

k=1 qikpkj) where qik the

fraction of individual i’s ancestry attributable to population k and pkj is the fre-

quency of the type 1 allele at SNP j in population k. ADMIXTURE maximizes the

resulting biconcave log-likelihood (Equation 1) using a block relaxation algorithm.

L(Q,P ) =
∑

i,j

{
nij log

(
K∑

k=1

qikpkj

)
+ (2− nij) log

(
1−

K∑

k=1

qikpkj

)}
(1)

We describe two extensions to the ADMIXTURE program that accelerate the

analysis of large datasets and enable ancestry estimation for sex chromosomes. The
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first extension (“projection”) allows ADMIXTURE to estimate ancestry for a new

set of individuals using ancestral populations from an earlier ADMIXTURE run.

It enables efficient inference of ancestry on large genomic datasets using ancestral

populations estimated from reference panels like the 1000 Genomes Project. It can

also be used to correctly infer individual ancestry in pedigrees. The second extension

allows ADMIXTURE to model the log-likelihood for haploid chromosomes. This can

be used to correctly estimate ancestry on sex chromosomes and therefore estimate

sex bias in ancestry between the autosomes and sex chromosomes. We demonstrate

the utility of these extensions using data from the 1000 Genomes Project [3] and

the HapMap Project [4].

Implementation
Projecting new samples on existing population structure

A number of large genome-wide datasets of human populations such as the HapMap

Project, 1000 Genomes Project etc. are now publicly available. Many studies (e.g.

[5]) use these datasets as reference panels in combination with the study sample to

estimate individual ancestry using ADMIXTURE since these large datasets summa-

rize worldwide human population structure. For study samples which do not include

a novel population, an efficient way of estimating individual ancestry is to “project”

the new samples on to the population structure learned from the reference panels.

This is intuitively similar to the projection operation used in principal components

analysis, though the mathematical details differ. We extended the ADMIXTURE

code to allow loading of trained models (the .P files with cluster allele frequencies).

For two datasets with the same set of SNPs, clusters can be learned using the un-

supervised mode of ADMIXTURE on the first dataset and ancestry proportions

can be inferred for the second dataset using these learned clusters. The same ap-

proach can be used to infer ancestry on a set of related individuals. First, we infer

the largest set of unrelated individuals in the dataset using pedigree information or

methods such as PLINK [6], KING [7] or PRIMUS [8]. Then, ADMIXTURE is run

on this set in unsupervised mode and the remaining individuals are projected on

the resulting population structure.

Mathematically, this requires solving the likelihood maximization problem of

Equation 1 with respect to Q for a fixed P . This a convex problem and can be

solved efficiently using the optimization described by Alexander et al. [1].

Analyzing haploid sex-chromosomes

Admixture between populations is often sex-biased, i.e., different proportions of

males and females from the source populations contribute to the admixed popula-

tions. In human populations, sex-biased admixture has been observed in African-

Americans and Latinos, often using evidence from Y-chromosome or mitochondrial

DNA [9, 10, 11]. An alternative way to study sex-biased admixture is to exam-

ine individual ancestry estimates on the autosomes vs the sex chromsomes [5, 12].

Therefore, we are interested in inferring individual ancestry using ADMIXTURE

on the sex chromosomes, in particular on the haploid X-chromosome in males.

For a haploid sex-chromosome SNP, we assume that hemizygous genotypes are

coded as homozygotes for the observed allele. Then, the log-likelihood for a haploid
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sex-chromosome SNP in an individual is half of that for a homozygous autosomal

diploid SNP in Equation 1. We account for this in ADMIXTURE by keeping track

of the sex of each individual and the chromosome each SNP belongs to and adjusting

the log-likelihood accordingly.

To enable correct handling of haploid sex-chromosomes in multiple species, we

implemented the --haploid option, which takes a single colon-separated argument

describing the haploid sexes and the haploid chromosomes. For instance, for hu-

man data, sex-chromsomes can be supplied as an argument for ADMIXTURE as

--haploid=“male:23,24” with 23 and 24 representing the X and Y chromosomes

respectively.

Results
We demonstrate the utility of the newly implemented options using experiments on

human genomic datasets.

Using reference panels for inferring ancestry proportions with projection

We duplicated data from Phase 1 of the 1000 Genomes Project to create a dataset

with 10,920 individuals. The data was filtered to include only SNPs with minor

allele frequency (MAF) ≥ 5% and thinned for linkage disequilibrium (LD) to have

pairwise r2 ≤ 0.1 in 50 kb windows. We compared the running time and accuracy

of two analyses, with the number of clusters (K) ranging from 2 to 10:

• Unsupervised: Unsupervised ADMIXTURE was run on the entire dataset

of 10,920 individuals.

• Projection: Unsupervised ADMIXTURE was first run on the original 1,092

individuals from the 1000 Genomes Project and the remaining 9,828 individ-

uals were projected on to the learned population structure.

Each analysis was performed with 5 random starts, with running time limited to

72 hours. All experiments were run on a single core of a server with Xeon E5-2660

processors, using 3.7 GB memory.

Figure 1 shows the comparison of running times for ADMIXTURE on the 10,920

individuals using the two approaches. The projection approach is much faster than

unsupervised ADMIXTURE, with speed gains increasing with K, the number of

clusters. We find that the ancestry proportions inferred using both approaches are

identical.

Comparison with iAdmix

The projection step we describe has been recently independently implemented by

Bansal et al. [13] in the software iAdmix, using a different optimization algorithm.

We compared our ADMIXTURE projection implementation to the iAdmix pro-

jection implementation by running unsupervised ADMIXTURE on the first 1,092

individuals from the previous analysis and using the learned allele frequencies to in-

fer ancestry for the remaining 9,828 (copied) individuals by projection using either

ADMIXTURE or iAdmix. Figure 2 shows that projection using ADMIXTURE is

approximately 4 times faster than using iAdmix[1].

[1]We only show results for one replicate since iAdmix produces 130GB of output

files for one replicate of such a large dataset.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2016. ; https://doi.org/10.1101/039347doi: bioRxiv preprint 

https://doi.org/10.1101/039347
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shringarpure et al. Page 4 of 9

Ancestry estimation for related individuals using projection

ADMIXTURE infers individual ancestry proportion and ancestral population al-

lele frequencies simultaneously in an alternating optimization [1]. Inferring allele

frequencies (AF) from related individuals without suitable correction for related-

ness can lead to high variance in estimates [14]. We demonstrate that relatedness

can affect the inferred population clusters when ADMIXTURE is run on related

individuals using the CEPH (Utah residents with ancestry from northern and west-

ern Europe, CEU) and Yoruba in Ibadan, Nigeria (YRI) individuals from HapMap

Phase 3. We also show how projection can be used to obtain more accurate AF

estimates.

We used 165 CEU individuals (112 unrelated and 53 related) and 113 unrelated

YRI indviduals to construct a dataset with 278 individuals. After filtering for LD

(r2 < 0.2) and MAF > 0.05, the dataset had 180,591 SNPs. The dataset then was

then analyzed using ADMIXTURE with K = 2 population clusters in two ways:

• All individuals: ADMIXTURE was run on the entire dataset.

• Unrelated individuals: The dataset was divided into two sets - one contain-

ing only the 225 unrelated CEU and YRI individuals and another containing

the 53 related CEU individuals. ADMIXTURE was run on the unrelated set.

The related individuals were then projected on the allele frequencies inferred

from the unrelated set.

For both analyses, we then compared the inferred allele freqencies for the Eu-

ropean components to AF estimates from the Exome Aggregation Consortium

(ExAC [15]) data at a common set of 939 SNPs (with frequency between 5% and

95% in ExaAC). We find that European component AF estimates are closer to

ExAC allele frequencies for the unrelated analysis (root mean square error=0.040)

than for the analysis using all individuals (root mean square error=0.041), with

p=0.005 for a one-tailed paired t-test when the squared errors are compared for

each SNP. However, this error includes (1) the variance of the estimate due to

the sample size from which the AF is estimated and (2) the variance of the esti-

mate due to the relatedness of the samples. Assuming the Exac AF f to be the

true underlying frequency, a normal approximation for the sample AF fn estimated

from n unrelated diploid samples is given by fn ∼ N
(
f, f(1−f)

2n

)
[16]. Therefore,

we can construct a z-score that accounts for sampling variance as z =
√
2n(fn−f)√
f(1−f)

.

Comparing z-scores, we find that the z-score for the analysis using only unrelated

individuals (mean |z|=-0.19) is smaller than the z-score for the analysis using all

individuals (mean |z|=-0.25), with p < 2.2e–16 for a one-tailed paired t-test. The

z-score using only unrelated individuals also has a smaller variance (var(z)=1.80)

than that for the z-score using all individuals (var(z)=2.74). This suggests that the

allele frequency estimates from the analysis using unrelated individuals are more

accurate than those using all individuals. An alternative way of evaluating the ac-

curacy of estimated allele frequencies is discussed in Supplementary Text Section

S1.

Inference of sex bias from autosomal and X-chromosome ancestry

To demonstrate the utility of ancestry inference on haploid sex chromosomes, we

examine sex-biased admixture in the African-American population in the south-

western United States (ASW). We used 1092 individuals from Phase 1 of the 1000
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Genomes project including the ASW with populations from Europe, Africa, Asia

and the Americas. SNPs were filtered to include only those with MAF ≥ 5% and

then thinned for LD to have pairwise r2 ≤ 0.1 in 50 kb windows.

Sex bias was analyzed by running ADMIXTURE on the 1092 individuals with

K = 3 clusters on the autosomes and X-chromosome separately and comparing

ancestry proportions for each individual on the two chromosome subsets. If there was

no sex-bias during admixture, then the ancestry proportions on the two chromosome

sets should be (nearly) equal.

We compared two ways of analyzing sex bias:

• Females only: Since ADMIXTURE (without the new --haploid option)

requires diploid data, we subset the dataset to 522 females and ran ADMIX-

TURE on the autosomes and X-chromosome separately.

• Males and Females: Using the --haploid option (the X chromosome was

denoted haploid in males with --haploid=“male:23”), we ran ADMIXTURE

separately on the autosomes and X-chromosome on the entire set of 1092

individuals.

Table 1 shows the results of the analysis. From both analyses, we can see that au-

tosomes have an excess of European ancestry and X-chromsomes have an excess of

African and Native American ancestry. To evaluate the significance of the results for

each ancestry component (European/African/Native American), we used a paired

difference test to compare the means of the X-chromosome and autosomal ancestry

proportions. The test statistic is the mean difference in European (for example)

ancestry proportion for the X chromosome and the European ancestry proportion

for the autosomes for an individual. We estimated p-values using a permutation test

with 100,000 permutations (see Supplementary Text Section S2 for details of the

permutation procedure). We see that the analysis using both males and females can

reject the null hypothesis of identical means (no sex bias) at the 0.05 significance

level, while the females-only analysis fails to reject the null hypothesis. From previ-

ous work, there is evidence for sex-biased admixture in African-Americans [9, 12, 17].

Thus, including male samples in the analysis of X-chromosome ancestry with the

--haploid option improves power to detect sex bias in admixture.

Discussion
We have described two extensions to the ADMIXTURE program. The projection ex-

tension allows ADMIXTURE to estimate ancestry for a new set of individuals using

pre-defined ancestral population frequencies (usually from an earlier ADMIXTURE

run). This functionality is similar to that implemented in iAdmix [13], which uses a

different optimization method, and that implemented by Sikora et al. [18] for ances-

try inference for ancient individuals using an expectation-maximization algorithm.

This extension enables efficient inference of ancestry on large genomic datasets us-

ing ancestral populations estimated from reference panels like the 1000 Genomes

Project. The allele frequencies inferred by ADMIXTURE have been used previ-

ously to simulate individual genotypes [19, 20]. The resulting individual genomes

have been used in subsequent ADMIXTURE [19] or other [20] analyses to enable a

“supervised” analysis [21]. Our extension provides an efficient and principled frame-

work for this approach.
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The projection approach is useful when a new dataset is strongly unbalanced in

its distribution of populations, since an unbalanced dataset can affect the accuracy

of ancestry inference [22]. Another advantage of the projection approach is that

individual ancestry can be inferred in parallel for each individual. Thus, if a user

has access to multiple computers (or a computing cluster), then ancestry can be

estimated for hundreds of thousands of individuals in a few hours. Our results on a

dataset of 10,920 individuals constructed using the 1000 Genomes project show how

projection improves the efficiency of ADMIXTURE. The projection approach can

also be used to infer the ancestry of ancient DNA samples, as in Sikora et al [18]

and other work. A limitation of the projection approach is that if the projected

data contains a novel population which was not present in the initial (training)

set, the projection results may not be identical to those obtained from running

ADMIXTURE on the combined dataset.

Through experiments on HapMap CEU and YRI individuals, we showed that the

projection approach is also useful for accurate ancestry inference on related indi-

viduals. This approach allows us to infer allele frequencies for ancestral populations

with reduced error. A limitation of this approach is that if the number of founders

in a pedigree is small, then the error in allele frequencies estimated from running

ADMIXTURE only on the unrelated individuals may be large due to a larger sam-

pling variance. In such cases, the method may not produce more accurate estimates

than those obtained by running ADMIXTURE on the entire dataset.

The second extension we have developed correctly models the log-likelihood for

haploid chromosomes. This can be used to estimate ancestry on sex chromosomes

and thus estimate sex bias in ancestry. Our analysis of sex bias in the ASW African-

American population shows that accurate ancestry inference on the haploid X-

chromosome in males can improve power of tests for sex bias that use ancestry

proportions as a test statistic. While the test we described based on a difference

in mean ancestry has a number of limitations (correlated tests, no correction for

multiple testing, etc.), it is only intended to demonstrate the advantage of ances-

try inference on haploid chromosomes for more power in tests for sex bias and is

applicable to other tests of sex bias.

Conclusions
ADMIXTURE is widely used for analysis of ancestry in genomic datasets. The ex-

tensions we have described increase the efficiency of ADMIXTURE and increase its

versatility. The projection operation allows more efficient analysis of large datasets

by using available reference panels. It also allows analysis of ancestry in pedigrees.

Ancestry analysis of haploid sex-chromosomes improves power to detect sex bias in

populations using autosomal and X-chromosome ancestry. We expect that with the

growing number of populations being sequenced and large amounts of individual-

level genotype data being generated, these extensions will make ADMIXTURE more

useful to researchers.

Availability and requirements
Lists the following:

Project name: ADMIXTURE
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Project home page: http://www.genetics.ucla.edu/software/admixture

Operating system(s): Linux, Mac OS X

Programming language: C++

Other requirements: None

License: Binaries freely available; source code proprietary

Any restrictions to use by non-academics: None
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Figures

Figure 1 Running time comparison. Running times for ADMIXTURE on a dataset of 10,920
individuals constructed from the 1000 Genomes project.
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Figure 2 Running time comparison with iAdmix. Running times for the projection step using
ADMIXTURE and iAdmix on a dataset of 10,920 individuals constructed from the 1000 Genomes
project. Allele frequencies were inferred from the first 1,092 individuals using ADMIXTURE.

Ancestry component Females only (n=36) Males and Females (n=60)
European 0.038 (0.140) 0.051 (0.031)
African -0.025 (0.317) -0.032 (0.178)

Native American/Asian -0.013 (0.069) -0.019 (0.003)
Table 1 Comparing ancestry proportions for African-Americans on the autosomes and the
X-chromosome: Differences in individual autosomal and X-chromosome ancestry proportions are
represented by the mean of the difference over all individuals. In parentheses are the raw p-values
calculated using 100,000 permutations for a paired difference test comparing the autosomal and
X-chromosome ancestry proportions. P-values < 0.05 are shown in bold.
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Kenneth Lange, David H. Alexander

S1 Evaluating the accuracy of estimated allele
frequencies

Another way of measuring the discrepancy between the estimated allele fre-
quencies and the ExAC allele frequencies that takes into account the effect
of frequency is to use the binomial deviance, defined for n SNPs as D =∑n

i=1 f
i
true log

(
fi
true

fi
estimated

)
+(1−f i

true) log
(

1−fi
true

1−fi
estimated

)
where f i

true and f i
estimated

are the true (ExAC) and estimated allele frequencies for the ith SNP. We find
that the binomial deviance for the allele frequency estimates using the unrelated
individuals only (7.22) is less than the binomial deviance for the allele frequency
estimates using all individuals (7.60), in agreement with our hypothesis that al-
lele frequency estimates from the analysis using unrelated individuals are more
accurate than those using all individuals.

S2 Details of permutation procedure for detect-
ing sex bias in admixture

The test statistic for detecting sex bias in admixture is the mean difference in
European (for example) ancestry proportion for the X chromosome and the Eu-
ropean ancestry proportion for the autosomes for an individual. Due to the het-
eroscedasticity of the data, the test statistic does not have a t-distribution. Au-
tosomal ancestry proportion estimates have lower variance than X-chromsome
ancestry proportion estimates since they are estimated from a larger number of
SNPs. Within the X-chromosome ancestry proportion estimates, estimates for
females (with diploid genotypes) have lower variance than estimates for males
(with haploid genotypes at the same set of SNPs).

We therefore estimated p-values using a permutation test with 100,000 per-
mutations. For the null distribution of the test statistic, the X and autosome
labels were permuted for the ancestries for a single individual. This is equivalent
to randomly flipping the sign of the difference in ancestry proportion on the X
and autosome for each individual and then recomputing the mean difference.

1
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