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De novo assembly of short RNA-Seq reads into transcripts is challenging due to sequence 
similarities in transcriptomes arising from gene duplications and alternative splicing of 
transcripts. We present Shannon, an RNA-Seq assembler with an optimality guarantee derived 
from principles of information theory: Shannon reconstructs nearly all information-theoretically 
reconstructable transcripts. Shannon is based on a theory we develop for de novo RNA-Seq 
assembly that reveals differing abundances among transcripts to be the key, rather than the 
barrier, to effective assembly. The assembly problem is formulated as a sparsest-flow problem on a 
transcript graph, and the heart of Shannon is a novel iterative flow-decomposition algorithm. This 
algorithm provably solves the information-theoretically reconstructable instances in linear-time 
even though the general sparsest-flow problem is NP-hard. Shannon also incorporates several 
additional new algorithmic advances: a new error-correction algorithm based on successive 
cancelation, a multi-bridging algorithm that carefully utilizes read information in the k-mer de 
Bruijn graph, and an approximate graph partitioning algorithm to split the transcriptome de 
Bruijn graph into smaller components. In tests on large RNA-Seq datasets, Shannon obtains 
significant increases in sensitivity along with improvements in specificity in comparison to state-of-
the-art assemblers. 

De novo RNA-Seq assembly, in the absence of a reference genome, is an important first step for 
transcriptomic analysis of non-model organisms as well as in cancer transcriptomics (where the genome may 
be significantly disrupted). There have been numerous efforts to design de novo transcriptome assemblers, 
including SOAPdenovo-Trans,1 Oases,2 Trinity,3 and TransAbyss4; however de novo transcriptome assembly 
from short reads still remains a challenging problem due to the numerous similar isoforms of genes, the 
ubiquity of paralogs, varying abundances of transcripts, and the large numbers of reads required for 
assembly. For these reasons, de novo transcriptome assembly is considered hard and studies of assemblers 
reveal discordance in the output of methods (for example5). 

In this letter, we describe Shannon, a new de novo RNA-Seq assembler designed using principles of in- 
formation theory. In order to demonstrate the performance of Shannon and to understand the relative merits 
of Shannon with respect to state-of-the-art assemblers, we compared the performance of Shannon with four 
other de novo short-read assemblers: SOAPdenovo-Trans, TransABySS, Oases and Trinity, on two recently 
sequenced RNA-Seq datasetsa. The datasets were specifically chosen because they include both “long” PacBio 
reads that can be used for validation, as well as deep (> 100 million) “short” Illumina reads which are input into 
the assemblers. 

The first dataset comprises of 135M Illumina single-end reads, each 50 bp long, generated from an RNA 
sample from human embryonic stem cells.6 In Figure 1(a), we show the number of transcripts reconstructed 
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Figure 1: (a),(b),(c),(d): Results on a human embryonic stem cell transcriptome with 135 M single-end Illumina reads 
(50 bp). The ”ground truth” used to evaluate sensitivity in (a) and (b) is obtained as follows. First, we take the 13,274 
transcripts, which are assembled by the hybrid assembler IDP6 from the 135M short reads together with 7.8 M long 
PacBio reads. These transcripts are used to augment the RefSeq annotation to 54233 transcripts, out of which the number 
reconstructed accurately are shown in (a). A subset of 2885 of these transcripts which are fully covered by 25 length kmers 
from short reads; this is taken to be our ”oracle set”3 and is used to evaluate recall rates of Shannon and other assemblers. 
We compare the fraction of transcripts recovered by different assemblers, segregated by coverage depths of the transcripts 
in (b), and segregated by splicing complexity of the transcripts in (c). We measure splicing complexity of a transcript by 
the size of the transcript family to which it belongs (two transcripts are in the same family if they share a kmer, of length 
25). To measure false positive rates, we compare the reconstructed transcripts to the error-corrected long PacBio reads. 
We see in (d) that Shannon also performs best in terms of the false positive rate.  
(e),(f),(g),(h): Results on a dataset of 110 M paired-end short reads (101 bp) from Lymphoblastoid cells. Short reads are 
combined with long PacBio reads line (700K CCS reads) in order to augment the Gencode annotation to have 207266 
transcripts.7 (e) Number of transcripts in enhanced Gencode reconstructed accurately. We select from the augmented 
Gencode annotation those transcripts which are fully covered by kmers (of length 25) in the Illumina reads to get the 
oracle set with 14186 transcripts used to measure sensitivity. (f) and (g) display the transcript reconstruction segregated 
by coverage depth and by splicing complexity respectively, and (h) displays the false positive rate measured against long 
reads. Shannon performs significantly better across both datasets across different categories. 

 
 
accurately from an enhanced annotation. In Figure 1 (b) and (c), sensitivity of the various assemblers segre- 
gated by abundance and splicing complexity is shown, and in Figure 1(d), we show the specificity. We observe 
a uniform performance gain for Shannon over other assemblers. The second dataset7 comprises of 110 million 
Illumina 101-bp paired end reads from the Lymphoblastoid transcriptome in the GM12878 cell line. The 
performance is shown in Figures 1(d),(e), (f) and (g), and Shannon is seen to perform consistently better than 
other assemblers (Oases failed to run on this dataset). 

We hypothesized that the significantly improved performance of Shannon in comparison to existing pro- 
grams is due to the design of Shannon utilizing information theoretic principles rather than heuristics. Existing 
assemblers do not explicitly optimize performance metrics measuring reconstruction accuracy, and instead rely 
on ad-hoc heuristics that are guided by intuition. Specifically, we were unable to find any guarantees on re- 
construction accuracy for any of the previously published assemblers we investigated. This lack of theoretical 
guarantees may be due in part to previous computer science work showing that various formulations of assembly 
are NP-hard.8, 9 We take a different view of the problem based on information theory, which turns out to neatly 
sidestep the NP-hardness barrier. 

Information theory, originally invented in the context of communications,10 characterizes the minimum
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Figure 2: (a) The minimum read length and coverage depth required to reconstruct Human Chromosome 19. (b) How 
transcript abundances helps to disambiguate isoforms. The figure shows transcriptomes with isoforms sharing an exon s3 
whose length is longer than the read length L. On the left hand side, we show the scenario where the abundances of all 
isoforms are the same. There are three possible transcriptomes consistent with the reads: (I) two isoforms , (II) two isoforms 
alternatively spliced, and (III) all four isoforms. On the right hand side, we consider the (more typical) scenario when the 
abundances of the isoforms are unequal. Here, there is only one unique transcriptome consistent with the read coverage 
statistics. The other solution (shown crossed out) will lead to non-uniform read coverage along each transcript. (c) A 
scenario in which isoforms cannot be disambiguated even with abundance information. In this example, the isoforms all 
share an exon (yellow region) of length greater than the read length L. There are two transcriptiomes consistent with the read 
coverage statistics. The first transcriptome has three isoforms with abundances a > b > c. The second transcriptome has three 
alternatively spliced isoforms with abundances a − c, b + c, c. Even though the abundances of the isoforms are different in 
the two transcriptomes, the frequencies of the reads from each of the colored regions are the same. Reads cannot bridge the 
yellow region while statistics are indistinguishable. (d) Theoretical bounds on the fraction of the HESC transcriptome that 
can be reconstructed for a given read length in the idealistic setting of infinite coverage depth and error-free reads. Upper 
curve: information theoretic upper bound on the largest fraction of the transcriptome that can be recovered. Middle: 
performance achieved by the proposed algorithm. Much below: performance bound for assembly algorithms that do not use 
abundance information to resolve repeats. 
 
amount of data needed to solve an inference task. The theory was extended to DNA sequencing,11 where the 
minimum coverage depth and read length required to reconstruct a genome was calculated - see Figure 2 (a). 
An interesting conclusion from that paper is that, for any genome, there is a critical read length, called lcrit, 
below which unique reconstruction is impossible at any coverage depth. Yet when read length is greater than 
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lcrit, Lander-Waterman coverage12 is essentially sufficient to reconstruct the genome. This critical read length 
is explicitly characterized in terms of certain bottleneck repeats in the genome. In this letter, we prove an 
analogous result for RNA-Seq assembly, providing a map of the fundamental information barriers faced by any 
assembly algorithm, while revealing an approach that can optimize assembly with respect to the inherent limits. 

In the DNA assembly problem, long repeats within a genome are the barriers to reconstruction. In the 
RNA-Seq assembly problem, in addition to repeats inside transcripts, repeats across transcripts create a 
fundamental information barrier, which is typically the bottleneck. These inter-transcript repeats are 
common in higher Eukaryotes that are subject to alternative splicing; for example there may be multiple 
shared exons be- tween different isoforms of genes. The left hand side of Figure 2(b) shows a case where 
multiple isoforms can give rise to the same reads and hence unique reconstruction is impossible. However, this 
example is problematic only in the special case when the transcripts have the exact same abundances. In generic 
cases, where transcripts have different abundances, it becomes possible to disambiguate between the two 
possible transcriptomes. Thus differing abundances is a key rather than a hurdle to unique transcriptome 
reconstruction - especially in resolving complex isoforms and paralogues. However, even with different 
abundances, certain complicated repeat structures in transcriptomes are impossible to reconstruct, see Figure 
2(c) (more details in Supplementary Materials Section 3). By identifying these bottleneck repeat structures, we 
derived a transcriptome-dependent upper bound on the fraction of transcripts that can be reconstructed at any 
given read length; Figure 2(d) shows the limits for the HESC transcriptome, where no more than 95% of the 
transcripts can be reconstructed at read length 100 (upper curve). The middle curve shows that a new 
algorithm utilizing abundance information can result in performance close to the theoretical bound, achieving 
nearly 95% at the same read length. However, methods that do not appropriately leverage abundance 
information cannot reconstruct more than 80% of the transcripts accurately at read-length 100 (lower curve). 
See Online Methods for more details on the general theory for the derivation of these curves. 

In the context of communications, information theory not only imposes a limit on how fast one can 
communicate but also leads to the design of efficient algorithms and codes to reach that limit. Analogously, 
the information theoretic analysis of the RNA-Seq assembly problem leads to key algorithmic insights that 
allowed us to develop Shannon. At a high level, the algorithm has three steps, shown in Figure 3(a): 
transcript graph construction, copy count estimation and finally estimating transcripts from the graph. 

The standard method used by de novo RNA-Seq assemblers is to construct a de Bruijn graph using k-mers 
of a certain size, and we follow the same first step. However, intra-transcript repeats of length larger than size 
k but smaller than read length L, which have the potential to be resolved, are left unresolved by the de Bruijn 
graph. In order to resolve all these repeats in an information-optimal way, we utilize an algorithm called multi- 
bridging, which is shown to resolve nearly all information-theoretically resolvable intra-sequence repeats.11 
This algorithm iteratively uses reads to resolve larger and larger repeats, by dynamically and locally increasing 
the k-value based on the coverage of each node (see Algorithm 3 in Supplementary Methods). Therefore, higher 
values of k are used in higher coverage regions to assist in resolving repeats, whereas in lower coverage regions 
small values of k are used so that graph connectivity is maintained. This method is particularly helpful for 
RNA-Seq assembly where varying abundances among transcripts implies that no single k value may be optimal 
for the entire transcript graph. In the graph, the copy counts of the various nodes are also stored, using either 
the average k-mer counts or using the number of reads covering the node (two options in the assembler). 

Optionally, the copy-count values can be smoothed using a network flow algorithm to ensure that they 
constitute a flow (see Supplementary Methods, Section 5), i.e., the sum of copy-counts of all edges into a node 
is equal to the sum of copy counts of edge going out of the node.13, 14 In our implementation we did not find 
significant gains due to this smoothing and therefore it is turned off by default. 
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Figure 3: (a) The various steps of the proposed algorithm. (b) Architecture for scaling the proposed algorithm 
computationally. (c) Structure of error correction algorithm (d) A two-transcript example, where without abundance 
it is unclear which two paths to reconstruct. (e) A four-transcript example, where the utility of abundance needs 
well-designed algo- rithm to find the sparsest flow. In particular, a greedy algorithm will make a mistake and 
reconstruct a 5-transcript output. (f) A sample run of the algorithm for selecting transcripts from the transcript 
graph based on sparsest flow using local moves. (g) Example of a real splicing graph from RefSeq PPIP5K1 
(Kinase) Gene having 4 isoforms: NM 001190214.1 at abundance a, NM 001130859.2 at abundance b, NM 
001130858.2 at abundance c and NM 014659.5 at abundance d. Here nodes Xi correspond to exons, whereas edges 
and edge-weights correspond to junctions and expected copy counts. 

 
 

Multi-bridging resolves intra-transcript repeats but inter-transcript repeats, comprising of shared exons or 
duplicated gene segments, remain largely unresolved. From our information-theoretic analysis, it is evident that 
an information-optimal algorithm should use abundance information carefully. Therefore, we ask for the fewest 
number of transcripts that best explain the transcript graph and the copy-counts on the graph; this problem 
can be related to the sparsest flow decomposition problem in graph theory. Indeed, if we do not utilize the 
copy-count information in our formulation, it may lead to incorrect answers. One such example is shown in 
Figure 3(d), where there are two possible transcriptomes, which both give rise to the same graph (note that this 

4"6$

4"7$

a$

b$
3

5

1

2

a$

b+c$ c$

3"4"6$

3"5$

a$

c$

1

3"4"7$
b$

2

4

6

7

a+b$
a$

b$
3

5

1

2

a$

b+c$ c$

4

6

7

a+b$
a$

b$3

5

1

2

a$

b+c$ c$

4"6$

4"7$

a$

b$
3

5

1

2

a$

b+c$ c$

1"3"4"6$

2"3"5$

1"3"4"7$

a$

b$

c$

X6#

b+d 

c 

a 

b 

a+c 

d 
X1# X2# X3# X4# X5# X6# X7# X8# X9#

b+c+d 

a a c c 

b+d 

a 

b 

a+c+d 

a+c 

d 

a+b+c 
a+c+d 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2016. ; https://doi.org/10.1101/039230doi: bioRxiv preprint 

https://doi.org/10.1101/039230


6  

figure is analogous to Figure 2(b)). By exploiting abundance information, Shannon can uniquely 
determine the transcriptome. For this simple example, one can exploit the fact that the abundance in the 
incoming and outgoing edge are the same; we term this the continuity-of-abundance heuristic. General 
instances of this problem, however, are not solvable by this heuristic; for example, consider Figure 3(e) 
where there are three incoming and outgoing edges created by four transcripts. The simple greedy 
approach of matching up the edge-weights does not work in this setting. However, our algorithm still 
solves this problem correctly. 

In general, the sparsest-flow problem has been shown to be NP-Hard (i.e., there is likely no polynomial 
time algorithm which solves every single instance of this problem), and this has been observed in other 
reference-based RNA-Seq papers,13, 14 thus necessitating heuristics such as greedy removal of heaviest 
paths. This heuris- tic has also been used in the recent reference-aided assembler Stringtie.15 Other ideas 
for path-selection in reference-aided assembly include minimal path-set incorporating a continuity-of-
abundnace heuristic in Cufflinks16 and a l1 minimization algorithm proposed in Isolasso (which also has 
computational disadvantages, since there can be exponentially many paths, in addition to the fact that it 
has no informational optimality). Similar heuristics are also employed in de novo assemblers TransAbyss4 

and Oases.2 

We propose a novel iterative algorithm that can find a sparse solution to the flow decomposition problem in 
linear-time (see Supplementary Methods, Algorithm 5 for a description). This iterative algorithm is guaranteed 
to give the sparsest solution if the abundances are generic (i.e., they are diverse) and a certain technical condition 
on the graph is met, which is similar to requiring that there are no information bottlenecks (see Figure 2c for 
an example bottleneck, and Supplementary Materials, Section 4 for more details). Thus, the instances that do 
not have an information bottleneck are also computationally-efficiently solvable - revealing how information 
theory overcomes the NP-hardness of the computational problem by focusing only on the relevant instances of 
the problem. This iterative algorithm, forms the backbone of the transcript-path-selection algorithm in Shannon 
(see Figure 3(f)). In fact, even for toy examples of multi-isoform genes, existing algorithms fail to tease apart 
the correct isoforms, whereas Shannon succeeds (see Figure 3(e)). A real example of a kinase gene is shown in 
Figure 3(g), where Shannon succeeds but existing algorithms fail. 

While we described the architecture till now in the absence of errors, we can employ a read error-correction 
software package before running our assembler to deal with errors. Standard algorithms for DNA read error- 
correction, for example Quake,17 discard kmers that do not have sufficient copy-count and therefore do not work 
well for RNA-Seq data, which has widely varying abundances. There have been some approaches to read error 
correction for varying coverage data.18, 19 We found Quorum20 worked best as the pre-error correction stage in 
our pipeline. This architecture, with a pre-error correction step, works well for small problem instances, however 
when dealing with large datasets, some modifications are needed to make it efficient in practice (see Figure 3(b)). 
In order to make Shannon robust in the presence of read errors, we developed a novel error correction algorithm 
based on another principle from information theory, called successive cancellation (see Online Methods). We 
first reconstruct representatives of higher abundance isoforms and then remove erroneous contigs that look 
similar to these higher abundance isoforms, thus eliminating errors that arise from highly abundant isoforms 
(see Figure 3(c).) Shannon then clusters these contigs into similar groups based on an approximate graph-
partitioning algorithm, so that each cluster can be solved independently. The reads and corrected kmers are 
then assigned to these clusters, so that each cluster now has a smaller set of reads and corrected kmers and the 
assembly problem corresponding to each cluster can be solved by a separate instance of Shannon in parallel. 
This error correction and clustering step enables Shannon to run efficiently on large RNA-Seq datasets. 

De novo RNA-Seq transcriptome assembly is an important problem with application to both basic biology 
and biomedicine. As single-cell RNA-Seq assays are improved, higher throughput will allow for assembly 
of individual cellular transcriptomes,21 a task for which Shannon will be well suited. Similarly, while just in 
its infancy, de novo assembly of cancer transcriptomes will allow for the accurate identification of tumors22 

and Shannon’s ability to resolve transcripts with overlapping sequence should help to distinguish genes from 
their fusions. In addition, Shannon should be useful for transcriptome assemblies of non-model organisms 
whose genomes and transcriptomes are frequently highly repetitive due to whole genome duplication as well as 
transposon activity. 
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In addition to its practical value for RNA-Seq assembly due to improved accuracy over previous methods, 
the information theoretic approach should be useful in solving related problems, e.g. metagenome and meta- 
transcriptome assembly. Combinatorial optimization formulations of many such problems are NP-hard, but 
just like in the RNA-Seq assembly problem, information theory can be used to identify problem instances that 
are both meaningful to solve and efficiently solvable. Detailed exploration of such applications is beyond the 
scope of this letter, but all our software is freely available and methods are fully described in the Supplementary 
Materials. 
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1 Methods 
 
1.1 Performance evaluation 

 
To evaluate the performance of various assemblers, we consider datasets that have both short reads and long 
Pacbio reads and follow the methodology described as follows (see Supplementary Figure 1). The short reads 
are assembled by all the competing assemblers (note: the assemblers do not have access to the long PacBio 
reads). In both the datasets of interest, the PacBio reads have been used by prior work, potentially in conjunction 
with the short reads to enhance / augment a standard transcript annotation like RefSeq or Gencode. The number 
of transcripts reconstructed at more than 90% from this list is shown in Figure 1(a) and Figure 1(e). 

The short reads are then used to find transcripts in the enhanced annotation, which are fully covered by 
kmers in the short reads to get the oracle set. This oracle set is then quantified using abundance estimation 
software, (we used eXpress23) to get the estimated coverage levels of various transcripts. A transcript is said 
to be reconstructed by an assembler if it has greater than 90% similarity to a reconstructed transcript as 
measured by BLAT score.24 The sensitivity of the reconstruction is then plotted as a function of the coverage 
levels in Figure 1(b) and Figure 1(f). 

The complexity of repeat structures either due to alternative splicing or due to paralogous genes influences 
the ability of an assembler to reconstruct transcripts. In the simplest case, if a particular transcript shares no kmer 
with any other transcript in the ground truth, then that transcript should be easy to reconstruct. In order to capture 
this effect, we define an equivalence class of transcripts, where two transcripts are in the same equivalence class 
if they share a kmer- and thus potentially confusable by short read assemblers. We call two transcripts in the 
same equivalence class as quasi-forms (similar to isoforms), and segregate the reconstruction performance by 
the number of quasi-forms in the equivalence class of the transcript in Figure 1(c) and Figure 1(g). 

Since the oracle set (or the enhanced annotation) transcripts may not represent an exhaustive set of transcripts 
in the sample, we cannot assess false positive rates relative to this set. Therefore we utilize the long reads to 
calculate the false positive rate. A transcript is said to be not false positive, if it is contained inside or contains 
at least one long read (with 90% similarity score as measured by BLAT). The latter condition is necessary since 
some of the longer transcripts may not be covered fully by a long read. The fraction of output transcripts which 
are false-positives is plotted for each software in Figure 1(d) and Figure 1(h). 

The plots for the second dataset have two changes: Oases is not included since it crashed every time we ran 
the software; the memory was seen to climb steadily (utilizing over 90% of the 384GB RAM in the system). 
The second change is in the methodology to find false positives: We first found that the false positive rate 
was high for all assemblers - even in this case, Shannon performs the best among all assemblers. The reason 
for the high false positive rate is the process used to generate Pacbio reads biases against short transcripts (of 
length lesser than 1000). To quote,7 “however, genes with a CSMM only very rarely represented genes smaller 
than 1 kb, which is likely due to the use of magnetic beads in the loading procedure, which disfavor short 
fragments.” Therefore to get a fair representation of performance, we only measure false positive rates among 
reconstructed transcripts of length greater than 1000 in this dataset. To see evaluation on a simulated dataset, 
see Supplementary Figure 2. 

 
1.2 Information Theory 

 

In this paper, we extend the theory of DNA assembly11 to the problem of RNA assembly. Compared to DNA 
assembly, there are two aspects specific to RNA assembly. First, while each transcript can have repeats like a 
genome does, repeats across transcripts, in the form of shared exons between alternately spliced isoforms, are 
typically much longer and causes the information bottleneck for RNA assembly. Second, unlike the repeats in 
the DNA assembly problem, these inter-transcript repeats can be resolved even when the reads are shorter than 
the shared exon length. This is achieved by exploiting the fact that different transcripts typically have widely 
varying abundances. An example of such a resolvable repeat pattern is shown in Figure 2(b). Thus, varying 
abundances, which seem to complicate the RNA assembly problem, can actually be beneficial. To establish the 
limits to RNA assembly, our theory characterizes all the bottleneck intra-transcript repeat patterns that cannot
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be resolved even with the help of varying transcript abundances, and gives an algorithm that can resolve most 
other repeat patterns (Supplementary Materials). An example of an unresolvable repeat pattern is shown in 
Figure 2 (c). 

By characterizing the bottleneck repeat patterns, our theory computes tight upper and lower bounds on the 
critical read length lcrit needed to reconstruct a transcriptome. The theorem for information-theoretic recon- 
struction is given below. 

 
Theorem 1. (Information theoretic condition) The following condition is necessary for unique 
reconstruction of a transcriptome T from reads of length L by any algorithm: 

 

L > max{l< Z> , lIntra-Transcript Interleaved Repeat, lIntra-Transcript Triple Repeat}(T).           (1) 
 
The proposed iterative algorithm reconstructs the transcriptome uniquely, assuming generic abundances, if 

 

L > max{l< Z , lIntra-Transcript Repeat, lCircle}(T ).             (2)  

 

Here the various quantities on the RHS correspond to the maximum size of repeats with certain structures, 
either inside transcripts or across transcripts (we refer the interested reader to the Supplementary Material, 
Section 3, for definitions of these quantities). Among all the bounds on the read-length, the biting-condition in 
biological samples we have tested on, comes from the l< Z in the necessary condition and l< Z> in the sufficient 
condition; and these two numbers evaluate to the same quantity, implying that the two bound match, yielding 
the critical read length. For example in a reference mouse-transcriptome, lcrit = 4077. This long critical read 
length is due to the existence of a few complex isoforms in the transcriptome. Giving up on recovering these 
few complex isoforms, the rest of the transcriptome can be reconstructed with potentially smaller read length. 
More generally, our characterization of the bottleneck repeat patterns leads to information theoretic bounds on 
the fraction of a given transcriptome that can be reconstructed (under the idealistic setting of infinite coverage 
depth and error-free reads). Figure 2(d) shows these bounds for the HESC transcriptome. Assembly algorithms 
that do not use abundance information cannot resolve repeat patterns like the ones shown in Figure 2(b) and 
thus cannot recover as many transcripts as the information theoretic bounds suggest. Our theory can calculate 
a bound on the maximum fraction of transcripts these algorithms can reconstruct; this bound is shown as the 
lower curve in Figure 2(d) for the HESC transcriptome. The large gap between this bound and the information 
theoretic bound is the theoretical basis for the success of Shannon on real data as shown earlier. 

 

 
1.3 Assembler Design 

 
The key algorithmic insights underlying the assembler arise from the information theoretic analysis of the RNA- 
Seq assembly problem. At a high level, the algorithm has three steps, shown in Figure 3a: transcript graph 
construction, copy count estimation and finally estimating transcripts from the graph. In this description, we 
will first describe the algorithm in the error-free case and then describe the methods to deal with errors and 
how to scale the algorithm. 

We have key innovations in all three steps, which we sketch below. 
• Constructing the transcript graph: A typical first step required in de novo transcriptome assembly from 

short reads is the construction of a k-mer (DeBruijn) graph: a fixed length k is chosen and reads are 
chopped into subsequences of size k, called k-mers. To count k-mers we use a fast parallel k-mer counting 
software package called Jellyfish.25 A graph is constructed in which the nodes are k − 1-mers and two 
nodes are connected if the k − 1 mer corresponding to the nodes overlap head-to-tail by k − 2 and the  
(k + 1)-mer formed by appropriate concatenation is present in the reads. This graph is condensed by 
collapsing simple chains of nodes. 
The problem of choosing an appropriate value of k is not an easy one, since, in the context of RNA-seq 
assembly (as opposed to say DNA assembly), the abundances take values in a large range. If k is chosen 
too small, then transcripts which share larger common sequences can be confused; whereas if k is too 
large, then the graph will become disconnected for low-abundance transcripts. Thus no particular value
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of k may be optimal uniformly throughout the graph and different values of k may need to be chosen for 
different nodes in the graph. A key innovation in this direction came in an earlier work on information- 
theoretic DNA assembly,11 where an algorithm called multi-bridging was proposed. In Multi-bridging, 
the K-mer size is chosen dynamically based on the quantity and sequence of reads supporting the differ- 
ent portions of the graph. For computational efficiency, the algorithm starts with a certain k-value and 
increases it dynamically in the different portions of the graph. The algorithm also brings back the reads 
supporting each node in a careful manner in order to maximize reconstruction probability. While main- 
taining the DeBruijn graph, the copy-counts of the nodes and edges are also maintained. For details of 
the multi-bridging algorithm, we refer the reader to Algorithm 3 in Supplementary Material. 
In the presence of errors, standard techniques for DeBruijn graph trimming in the presence of errors are 
used. In particular, iteratively, the algorithm searches for pairs of nodes that are connected by two possible 
paths of length 1, i.e., having exactly one intermediate node in each path. If the sequences generated by the 
two paths are similar, then the path with lower abundance is rejected. Another iterative error-correction 
algorithm is applied, which rejects nodes that have copy count lesser than a threshold or size lesser than 
a threshold or if a node is a hanging node (has no outgoing or incoming edge) or if a node is dispensable 
(a node is said to be dispensable if each of its out-nodes has in-degree strictly larger than 1 and each 
of its in-nodes has out-degree strictly larger than 1. Notice that nodes created by typical errors will be 
dispensable). Once a node is rejected, the algorithm locally recondenses the graph - so that potentially 
larger nodes can be created by collapsing new simple chains induced by error correction. 
Once the reads are brought back into the graph via multi-bridging, they are used to resolve certain patterns 
of repeats. However, some of them may not be fully exploited by multi-bridging; in our algorithm, we 
write out such nodes into a file of known-paths, i.e., these are paths in the graph that are supported by 
reads. In the presence of paired-end reads, after multi-bridging, the algorithm searches for paths of length 
shorter than the insert-size within which paired-end reads are placed on the graph. If the path between the 
paired-end read is unique, then the algorithm treats this as a longer read of size equal to the fragment size. 
Thus, in Shannon-RNA, paired-end reads provide an advantage over single-end reads in terms of repeat 
resolution. 
 

• The copy count of the k-mers associated with each node yields an estimate of the aggregate abundance of 
all the transcripts containing that exon. An alternative mode in our assembler uses the reads placed back 
on the graph in order to estimate the node / edge copy-counts more accurately. 
However, in either mode, these estimates are noisy due to the finite coverage and varying abundance of 
the transcripts. An innovation in the current algorithm is the utilization of a smoothing step that takes 
the estimated coverage and calculates the smoothed coverage using either a maximum likelihood or an 
l1 regularizer. This mode is currently optional and can be enabled as required. (We refer the reader to 
Supplementary Material Section 5 for details.) 
 

• In the final step, the algorithm needs to return a subset of paths through the graph in order to reconstruct 
the transcripts. This corresponds to the mathematical problem of finding the sparsest flow through the 
network that explain the smoothed copy counts. The sequences of these paths are output as transcripts 
and their flow values correspond to the transcript abundances. However, prior work14 has noted that the 
network sparsest flow problem is NP-hard, and therefore resort to heuristics. The main idea in our work 
is to derive a novel linear time algorithm, which can solve a family of instances of the problem efficiently, 
which includes most biologically relevant instances. The algorithm proceeds by first 1) decomposing the 
global problem into many local sparsest flow problems, one for each node and then 2) solving each local 
sparsest flow problem efficiently using ideas from sparse-signal recovery theory, using a randomized l1- 
relaxation. This algorithm is not only computationally efficient, but also is able to reconstruct provably 
correctly beyond the minimal information threshold. We refer the reader to the Supplementary Material 
(Algorithm-5 and Section 4). 
An example of a two-transcript system, where abundance is needed for successful reconstruction is shown 
in Figure 3d. Another example of a four-transcript system, where abundance is needed for successful 
reconstruction and furthermore, greedy algorithms for abundance based reconstruction13, 14,15 cannot re-
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construct accurately. Finally, an example run of the algorithm is shown in Figure 3f, where the algorithm 
starts to decompose node 3, is unable to find a unique sparsest path locally and therefore moves on to 
node 4 which it successfully resolves before returning to resolve node 3 successfully. 

 

 
1.3.1 Dealing with errors 

 
To deal with errors, we have a pre-error correction stage where reads are fed to error correction package Quo- 
rum20 - this package uses quality scores in addition to kmer contiguity to correct errors. We also have an ad- 
ditional in-house error-correction step to ensure that the deBruijn graph algorithm that follows, runs smoothly. 
Popular methods for k-mer error correction in DNA sequence, such as Quake,17 utilize thresholds on k-mer 
copy counts (or their appropriately quality-weighted analogues) in order to determine which k-mers are true 
and which are erroneous. However, the large-range of abundance values present in RNA-Seq data preclude the 
utility of such methods - since no appropriate threshold can be found. Therefore, we propose a new contig-based 
error correction algorithm. While this algorithm is inspired by the algorithm for constructing contigs in Trin- 
ity, there is a critical distinction - our algorithm is based on a method in information theory called successive 
cancellation. 

We propose the following algorithm, shown pictorially in Figure 3c. We first sort the list of k-mers according 
to abundance and then start with the heaviest k-mer, find the heaviest k-mer that overlaps for k − 1 bases with 
the present k-mer and use that to extend the contig, till no further extension is possible. This process is repeated 
to build a list of contigs, while removing the k-mers once used from further consideration. For each contig, 
we also maintain the average k-mer weight. The contigs thus constructed have good representative contigs as 
well as erroneous contigs. We remove contigs, which are very similar to another contig of higher weight. This 
process is called successive cancelation, and traces back to ideas in multi-user communication in information 
theory.26 After successive cancellation, we further reduce the number of contigs by keeping only contigs whose 
average weight and length are large enough to satisfy a certain relationship between them. At the end, from the 
contigs that are accepted, we list down the k-mers and these k-mers are returned as the accepted k-mers, to be 
used for constructing the initial De-Bruijn graph for the multi-bridging algorithm. 

 
 
1.3.2 Scaling the Algorithm 

 
Having done error correction, it is possible to run the proposed algorithm for the error-free case. However, 
in order to parallelize the remainder of the steps, we propose to perform an additional step to decompose the 
problem into smaller sub-problems that can then be solved independently and parallely. In order to accomplish 
this, we have to partition the list of k-mers into groups, and furthermore, we have to assign reads into these 
groups as well. Our method for decomposing the problem comprises of decomposing the set of contigs into 
groups. First we construct a graph, where contigs are nodes and edges between contigs mention the number of 
k-mers shared between the two contigs. We would like to partition the graph into clusters such that the weight of 
the edges cut by the k-mers is minimized. This problem is called approximate graph partitioning, and while the 
problem is NP-hard in the worst case, there are excellent implementations of algorithms available that work very 
well in practice. We propose to use METIS,27 which is a software package for approximate graph partitioning. 
The output of METIS is a clustering of contigs. The k-mers in the contigs are naturally partitioned into various 
clusters. In order to partition the reads, we look at how many k-mers are shared with any particular cluster and 
assign the read to the cluster to which it shares the maximum number of k-mers. At the end of this process, we 
have a set of smaller problems, each comprising of a list of cleaned-up k-mers and a list of reads. Now each 
of these problems can be solved independently and parallely using the algorithm in Figure 3a. We use GNU 
parallel28 in order to solve this trivially parallelizable problem. While most of the transcripts are resolved by 
this method, transcripts that have straddled between distinct clusters and that got cut off due to the approximate 
graph partitioning will be missed in the output. Therefore, we do another partitioning step, where the parameters 
are adjusted so that edges cut in the first partitioning are weighted higher, so that they are less likely to be cut 
again. The algorithm is then run parallely on all the instances, including the repartitioned instances. This gives
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rise to an increased sensitivity of the algorithm. It is to be noted that this process does not give rise to false 
positives - since paths that arise in the repartitioning are likely to be subpaths of the true paths (which may have 
been decoded in the first run) - and if needed, they can be discarded using a post-processing step. 
 
Code availability: Shannon is available as a open-source software that can be downloaded from 
http://sreeramkannan.github.io/Shannon/  
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25 Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient parallel counting of occurrences of 

k-mers. Bioinformatics, 27(6):764–770, 2011. 
 

26 Sergio Verdu. Multiuser detection. Cambridge university press, 1998. 
 

27 George Karypis and Vipin Kumar. Metis – unstructured graph partitioning and sparse matrix ordering system, version 
2.0. Technical report, 1995. 

 
28 Ole Tange et al. Gnu parallel-the command-line power tool. The USENIX Magazine, 36(1):42–47, 2011. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2016. ; https://doi.org/10.1101/039230doi: bioRxiv preprint 

https://doi.org/10.1101/039230

