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Abstract
Single-molecule Förster Resonance Energy Transfer
(smFRET) allows probing intermolecular interactions and
conformational changes in biomacromolecules, and rep-
resents an invaluable tool for studying cellular processes
at the molecular scale. smFRET experiments can detect
the distance between two �uorescent labels (donor and
acceptor) in the 3-10 nm range. In the commonly employed
confocal geometry, molecules are free to di�use in solution.
When a molecule traverses the excitation volume, it emits a
burst of photons, which can be detected by single-photon
avalanche diode (SPAD) detectors. �e intensities of donor
and acceptor �uorescence can then be related to the distance
between the two �uorophores.

While recent years have seen a growing number of con-
tributions proposing improvements or new techniques in
smFRET data analysis, rarely have those publications been
accompanied by so�ware implementation. In particular, de-
spite the widespread application of smFRET, no complete
so�ware package for smFRET burst analysis is freely avail-
able to date.

In this paper, we introduce FRETBursts, an open source
so�ware for analysis of freely-di�using smFRET data.
FRETBursts allows executing all the fundamental steps of
smFRET bursts analysis using state-of-the-art as well as
novel techniques, while providing an open, robust and well-
documented implementation. �erefore, FRETBursts repre-
sents an ideal platform for comparison and development of
new methods in burst analysis.

We employ modern so�ware engineering principles in or-
der to minimize bugs and facilitate long-term maintainabil-
ity. Furthermore, we place a strong focus on reproducibility
by relying on Jupyter notebooks for FRETBursts execution.
Notebooks are executable documents capturing all the steps
of the analysis (including data �les, input parameters, and re-
sults) and can be easily shared to replicate complete smFRET
analyzes. Notebooks allow beginners to execute complex
work�ows and advanced users to customize the analysis for
their own needs. By bundling analysis description, code and
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results in a single document, FRETBursts allows to seam-
less share analysis work�ows and results, encourages repro-
ducibility and facilitates collaboration among researchers in
the single-molecule community.
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1 Introduction

1.1 Open Science and Reproducibility
Over the past 20 years, single molecule FRET (smFRET) has
grown into one of the most useful techniques in single-
molecule spectroscopy [1, 2]. While it is possible to ex-
tract information on sub-populations using ensemble mea-
surements (e.g. [3, 4]), smFRET unique feature is its ability
to very straightforwardly resolve conformational changes of
biomolecules or measure binding-unbinding kinetics in het-
erogeneous samples [5–9]. smFRET measurements on freely
di�using molecules (the focus of this paper) have the ad-
ditional advantage, over measurements performed on im-
mobilized molecules, of allowing to probe molecules and
processes without perturbation from surface immobilization
or additional functionalization needed for surface a�ach-
ment [10, 11].

�e increasing amount of work using freely-di�using
smFRET has motivated a growing number of theoretical con-
tributions to the speci�c topic of data analysis [12–24]. De-
spite this profusion of publications, most research groups
still rely on their own implementation of a limited number
of methods, with very li�le collaboration or code sharing.
To clarify this statement, let us point that our own group’s
past smFRET papers merely mention the use of custom-made
so�ware without additional details [16, 17]. Even though
some of these so�ware tools are made available upon re-
quest, or sometimes shared publicly on websites, it remains
hard to reproduce and validate results from di�erent groups,
let alone build upon them. Additionally, as new methods
are proposed in literature, it is generally di�cult to quantify
their performance compared to other methods. An indepen-
dent quantitative assessment would require a complete reim-
plementation, an e�ort few groups can a�ord. As a result,
potentially useful analysis improvements are either rarely or
slowly adopted by the community. In contrast with other es-
tablished traditions such as sharing protocols and samples,
in the domain of scienti�c so�ware, we have relegated our-
selves to islands of non-communication.

From a more general standpoint, the non-availability of
the code used to produce scienti�c results, hinders repro-
ducibility, makes it impossible to review and validate the
so�ware’s correctness and prevents improvements and ex-
tensions by other scientists. �is situation, common in many
disciplines, represents a real impediment to the scienti�c
progress. Since the pioneering work of the Donoho group
in the 90’s [25], it has become evident that developing and

maintaining open source scienti�c so�ware for reproducible
research is a critical requirement of the modern scienti�c en-
terprise [26, 27].

Other disciplines have started tackling this issue [28], and
even in the single-molecule �eld a few recent publications
have provided so�ware for analysis of surface-immobilized
experiments [29–33]. For freely-di�using smFRET exper-
iments, although it is common to �nd mention of “code
available from the authors upon reques” in publications,
there is a dearth of such open source code, with, to our
knowledge, the notable exception of a single example [34].
To address this issue, we have developed FRETBursts, an
open source Python so�ware for analysis of freely-di�using
single-molecule FRET measurements. FRETBursts can be
used, inspected and modi�ed by anyone interested in using
state-of-the art smFRET analysis methods or implementing
modi�cations or completely new techniques. FRETBursts
therefore represents an ideal platform for quantitative com-
parison of di�erent methods for smFRET burst analysis.
Technically, a strong emphasis has been given to the repro-
ducibility of complete analysis work�ows. FRETBursts uses
Jupyter Notebooks [35], an interactive and executable doc-
ument containing textual narrative, input parameters, code,
and computational results (tables, plots, etc.). A notebook
thus captures the various analysis steps in a document which
is easy to share and execute. To minimize the possibility of
bugs being introduced inadvertently [36], we employ mod-
ern so�ware engineering techniques such as unit testing
and continuous integration [28, 37]. FRETBursts is hosted
on GitHub [38, 39], where users can write comments, re-
port issues or contribute code. In a related e�ort, we re-
cently introduced Photon-HDF5 [40], an open �le format for
timestamp-based single-molecule �uorescence experiments.
An other related open source tool is PyBroMo [41], a freely-
di�using smFRET simulator which produces Photon-HDF5
�les that are directly analyzable with FRETBursts. Together
with all the aforementioned tools, FRETBursts contributes to
the growing ecosystem of open tools for reproducible science
in the single-molecule �eld.

1.2 Paper Overview

�is paper is wri�en as an introduction to smFRET burst
analysis and its implementation in FRETBursts. �e aim is
illustrating the speci�cities and trade-o�s involved in var-
ious approaches with su�cient details to enable readers to
customize the analysis for their own needs.

A�er a brief overview of FRETBursts features (sec-
tion 2), we introduce essential concepts and terminology for
smFRET burst analysis (section 3). In section 4, we illustrate
the steps involved in smFRET burst analysis: (i) data loading
(section 4.1), (ii) de�nition of the excitation alternation peri-
ods (section 4.2), (iii) background correction (section 4.3), (iv)
burst search (section 4.4), (v) burst selection (section 4.6) and
(vi) FRET histogram ��ing (section 4.7). We conclude the
section by surveying di�erent methods proposed in li�era-
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ture to study FRET dynamics (section 4.8). As an example of
implementation of an advanced data processing technique,
section 5 walks the reader through implementing Burst Vari-
ance Analysis (BVA) [23]. Finally, section 6 summarizes what
we believe to be the strengths of FRETBursts so�ware.

�roughout this paper, links to relevant sections of docu-
mentation and other web resources are displayed as “(link)”.
In order to make the text more legible, we have concen-
trated Python-speci�c details in paragraphs titled Python de-
tails. �ese subsections provide deeper insights for readers
already familiar with Python and can be initially skipped by
readers who are not. Finally, note that all commands and
�gures in this paper can be regenerated using the accompa-
nying notebooks (link).

2 FRETBursts Overview

2.1 Technical Features
FRETBursts can analyze smFRET measurements from one
or multiple excitation spots [42]. �e supported excita-
tion schemes include single laser, alternating laser exci-
tation (ALEX) with either CW lasers (µs-ALEX [43]) or
pulsed lasers (ns-ALEX [44] or pulsed-interleaved excitation
(PIE) [45]).

�e so�ware implements both standard and novel algo-
rithms for smFRET data analysis including background esti-
mation as a function of time (including background accuracy
metrics), sliding-window burst search [10], dual-channel
burst search (DCBS) [17] and modular burst selection meth-
ods based on user-de�ned criteria (including a large set of
pre-de�ned selection rules). Novel features include burst
size selection with γ-corrected burst sizes, burst weighting,
burst search with background-dependent threshold (in or-
der to guarantee a minimal signal-to-background ratio [46]).
Moreover, FRETBursts provides a large set of ��ing options
to characterize FRET subpopulations. In particular, distribu-
tions of burst quantities (such as E or S) can be assessed
through (1) histogram ��ing (with arbitrary model func-
tions), (2) non-parametric weighted kernel density estima-
tion (KDE), (3) weighted expectation-maximization (EM), (4)
maximum likelihood ��ing using Gaussian models or Pois-
son statistic. Finally FRETBursts includes a large number of
prede�ned and customizable plot functions which (thanks to
thematplotlib graphic library [47]) produce publication qual-
ity plots in a wide range of formats.

Additionally, implementations of population dynamics
analysis such as Burst Variance Analysis (BVA) [23] and two-
channel kernel density distribution estimator (2CDE) [24]
are available as FRETBursts notebooks (BVA link, 2CDE
link).

2.2 So�ware Availability
FRETBursts is hosted and openly developed on GitHub.
FRETBursts homepage (link) contains links to the various re-

Photon selection code
All-photons Ph_sel(’all’)

D-emission Ph_sel(Dex=’Dem’)

A-emission Ph_sel(Dex=’Aem’)

Table 1: Photon selection syntax (non-ALEX)

sources. Pre-built packages are provided for Windows, OS X
and Linux. Installation instructions can be found in the Ref-
erence Documentation (link). A description of FRETBursts
execution using Jupyter notebooks is reported in SI S1. De-
tailed information on development style, testing strategies
and contributions guidelines are reported in SI S2. Finally, to
facilitate evaluation and comparison with other so�ware, we
set up an on-line services allowing to execute FRETBursts
without requiring any installation on the user’s computer
(link).

3 Architecture and Concepts
In this section, we introduce some general burst analysis
concepts and notations used in FRETBursts.

3.1 Photon Streams
�e raw data collected during a smFRET experiment consists
in one or more arrays of photon timestamps, whose tempo-
ral resolution is set by the acquisition hardware, typically be-
tween 10 and 50 ns. In single-spot measurements, all times-
tamps are stored in a single array. In multispot measure-
ments [42], there are as many timestamps arrays as excita-
tion spots. Each array contains timestamps from both donor
(D) and acceptor (A) channels. When alternating excitation
lasers are used (ALEX measurements) [16], a further distinc-
tion between photons emi�ed during the D or A excitation
periods can be made.

In FRETBursts, the corresponding sets of photons are
called “photon streams” and are speci�ed with a Ph_sel ob-
ject (link). In non-ALEX smFRET data, there are 3 photon
streams (table 1), while in two-color ALEX data, there are 5
streams (table 2).

�e Ph_sel class (link) allows the speci�cation of any com-
bination of photon streams. For example, in ALEX measure-
ments, the D-emission during A-excitation stream is usually
ignored because it does not contain any useful signal [16]. To
indicate all but photons in this photon stream, the syntax is
Ph_sel(Dex=’DAem’, Aex=’Aem’), which indicates selection
of donor and acceptor photons (DAem) during donor excita-
tion (Dex) and only acceptor photons (Aem) during acceptor
excitation (Aex).

3.2 Background De�nitions
An estimation of the background rates is needed to both se-
lect a proper threshold for burst search, and to correct the
raw burst counts by subtracting background counts.
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Photon selection code
All-photons Ph_sel(’all’)

D-emission during D-excitation Ph_sel(Dex=’Dem’)

A-emission during D-excitation Ph_sel(Dex=’Aem’)

D-emission during A-excitation Ph_sel(Aex=’Dem’)

A-emission during A-excitation Ph_sel(Aex=’Aem’)

Table 2: Photon selection syntax (ALEX)

�e recorded stream of timestamps is the result of two
processes: one characterized by a high count rate, due to
�uorescence photons of single molecules crossing the exci-
tation volume, and another characterized by a lower count
rate, due to “background counts” originating from detector
dark counts, a�erpulsing, out-of-focus molecules and sam-
ple sca�ering and/or impurities [20, 48]. �e signature of
these two types of processes can be observed in the inter-
photon delays distribution (i.e. the waiting times between
two subsequent timestamps) as illustrated in �gure 1(a). �e
“tail” of the distribution (a straight line in semi-log scale)
corresponds to exponentially-distributed time-delays, indi-
cating that those counts are generated by a Poisson process.
At short timescales, the distribution departs from an expo-
nential due to the contribution of the higher rate process of
single molecules traversing the excitation volume. To esti-
mate the background rate (i.e. the inverse of the exponential
time constant), it is necessary to de�ne a time-delay thresh-
old above which the distribution can be considered exponen-
tial. Finally, a parameter estimation method needs to be spec-
i�ed, such as Maximum Likelihood Estimation (MLE) or non-
linear least squares curve ��ing of the time-delay histogram
(both supported in FRETBursts).

It is advisable to monitor the background as a function of
time throughout the measurement, in order to account for
possible variations. Experimentally, we found that when the
background is not constant, it usually varies on time scales of
tens of seconds (see �gure 2). FRETBursts divides the acqui-
sition in constant-duration time windows called background
periods and computes the background rates for each of these
windows (see section 4.3). Note that FRETBursts uses these
local background rates also during burst search, in order to
compute time-dependent burst detection thresholds and for
background correction of burst data (see section 4.4).

3.3 �e Data Class
�e Data class (link) is the fundamental data container in
FRETBursts. It contains the measurement data and parame-
ters (a�ributes) as well as several methods for data analysis
(background estimation, burst search, etc…). All analysis re-
sults (bursts data, estimated parameters) are also stored as
Data a�ributes.

�ere are 3 important “burst counts” a�ributes which con-
tain the number of photons detected in the donor or the ac-
ceptor channel during donor or acceptor excitation periods
(table 3). �e a�ributes in table 3 are background-corrected

Name Description
nd number of photons detected by the donor chan-

nel (during donor excitation period in ALEX
case)

na number of photons detected by the accep-
tor channel (during donor excitation period in
ALEX case)

naa number of photons detected by the accep-
tor channel during acceptor excitation period
(present only in ALEX measurements)

Table 3: Data a�ributes names and descriptions for burst
photon counts in di�erent photon streams.

by default. Furthermore, na is corrected for leakage and
direct excitation (section 4.5) if the relative coe�cients are
speci�ed (by default they are set to 0). �ere is also a closely
related a�ribute named nda for donor photons detected dur-
ing acceptor excitation. nda is normally neglected as it only
contains background.

Python details Many Data a�ributes are lists of arrays (or
scalars) with the length of the lists equal to the number of ex-
citation spots. �is means that in single-spot measurements,
an array of burst-data is accessed by specifying the index
as 0, for example Data.nd[0]. Data implements a shortcut
syntax to access the �rst element of a list with an under-
score, so that an equivalently syntax is Data.nd_ instead of
Data.nd[0].

3.4 Introduction to Burst Search
Identifying single-molecule �uorescence bursts in the stream
of photons is one of the most crucial steps in the analysis
of freely-di�using single-molecule FRET data. �e widely
used “sliding window” algorithm, introduced by the Seidel
group in 1998 [10, 12], involves searching for m consecu-
tive photons detected during a period shorter than ∆t. In
other words, bursts are regions of the photon stream where
the local rate (computed using m photons) is above a mini-
mum threshold rate. Since a universal criterion to choose the
rate threshold and the number of photons m is, as of today,
lacking, it has become a common practice to manually adjust
those parameters for each speci�c measurement. Commonly
employed values for m are between 5 and 15 photons.

A more general approach consists in taking into account
the background rate of the speci�c measurements and in
choosing a rate threshold that is F times larger than the
background rate (typical values for F are between 4 and 9).
�is approach ensures that all resulting bursts have a signal-
to-background ratio (SBR) larger than (F−1) [46]. A consis-
tent criterion for choosing the threshold is particularly im-
portant when comparing di�erent measurements with dif-
ferent background rates, when the background signi�cantly
varies during measurements or in multi-spot measurements
where each spot has a di�erent background rate.
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Figure 1: Inter-photon delays �ttedwith and exponential function. Experimental distributions of inter-photon delays
(dots) and corresponding �ts of the exponential tail (solid lines). (Panel a) An example of inter-photon delays distribution
(red dots) and an exponential �t of the tail of the distribution (black line). (Panel b) Inter-photon delays distribution and
exponential �t for di�erent photon streams as obtained with dplot(d, hist bg). �e dots represent the experimental
histogram for the di�erent photon streams. �e solid lines represent the corresponding exponential �t of the tail of the
distributions. �e legend shows abbreviations of the photon streams and the ��ed background rates.

Figure 2: Background rates as a function of time. Estimated background rate as a function of time for two µs-ALEX
measurements. Di�erent colors represent di�erent photon streams. (Panel a) A measurement performed with a sealed
sample chamber exhibiting constant a background as a function of time. (Panel b) A measurement performed on an unsealed
sample exhibiting signi�cant background variations due to sample evaporation and/or photobleaching (likely impurities on
the cover-glass). �ese plots are produced by the command dplot(d, timetrace bg) a�er estimation of background.
Each data point in these �gures is computed for a 30 s time window.
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A second important aspect of burst search is the choice of
photon stream used to perform the search. In most cases, for
instance when identifying FRET sub-populations, the burst
search should use all photons, the so called all-photon burst
search (APBS) [10, 12, 17]. In other cases, for example when
focusing on donor-only or acceptor-only populations, it is
be�er to perform the search using only donor or acceptor
signal. In order to handle the general case and to provide
�exibility, FRETBursts allows performing the burst search on
arbitrary selections of photons (see section 3.1 for more in-
formation on photon stream de�nitions).

Additionally, Nir et al. [17] proposed a dual-channel burst
search (DCBS) which can help mitigating artifacts due to
photophysics e�ects such as blinking. During DCBS, a
search is performed on two photon streams and bursts are
de�ned as periods during which both photon streams ex-
hibit a rate higher than the threshold, implementing the
equivalent of an AND logic operation. Conventionally,
the term DCBS refers to a burst search where the two
photon streams are (1) all photons during donor excita-
tion (Ph_sel(Dex=’DAem’)) and (2) acceptor channel pho-
tons during acceptor excitation (Ph_sel(Aex=’Aem’)). In
FRETBursts, the user can choose arbitrary photon streams as
input, an in general this kind of search is called a “AND-gate
burst search”. For additional details on burst search refer to
the documentation (link).

A�er burst search, it is necessary to further select bursts,
for instance by specifying a minimum number of photons
(or burst size). In the most basic form, this selection can be
performed during burst search by discarding bursts with size
smaller than a threshold L (typically 30 or higher), as origi-
nally proposed by Eggeling et al. [10]. �is method, however,
neglects the e�ect of background and γ factor on the burst
size and can lead to a selection bias for some channels and/or
sub-populations. For this reason, we suggest performing a
burst size selection a�er background correction, taking into
account the γ factor, as discussed in sections 3.5 and 4.6.
In special cases, users may choose to replace (or combine)
the burst selection based on burst size with another criterion
such as burst duration or brightness (see section 4.6).

3.5 Corrected Burst Sizes and Weights
�e number of photons detected during a burst –the “burst
size”– is computed using either all photons, or photons de-
tected during donor excitation period. To compute the burst
size, FRETBursts uses one of the following formulas:

ndex = na + γ nd (1)

nt = na + γ nd + naa (2)

where nd, na and naa are, similarly to the a�ributes in ta-
ble 3, the background-corrected burst counts in di�erent
channels and excitation periods. �e factor γ takes into ac-
count di�erent �uorescence quantum yields of donor and ac-
ceptor �uorophores and di�erent photon detection e�cien-

cies between donor and acceptor detection channels [16,49].
Eq. 1 includes counts collected during donor excitation peri-
ods only, while eq. 2 includes all counts. Burst sizes com-
puted according to eq. 1 or 2 are called γ-corrected burst
sizes.

�e burst search algorithm yields a set of bursts whose
sizes approximately follow an exponential distribution.
Compared to bursts with smaller sizes, bursts with large sizes
are less frequent, but contain more information per-burst
(having higher SNR). �erefore, selecting bursts by size is an
important step (see section 4.6). A threshold set too low may
result in unresolvable sub-populations because of broaden-
ing of FRET peaks and appearance of shot-noise artifacts in
the FRET (and S) distribution (i.e. spurious narrow peaks
due to E and S being computed as the ratio of small inte-
gers). Conversely, too large a threshold may result in too
low a number of bursts therefore poor representation of the
FRET distribution. Additionally, especially when computing
fractions of sub-populations (e.g. ratio of number of bursts
in each sub-population), it is important to use γ-corrected
burst sizes as selection criterion, in order to avoid under-
representing some FRET sub-populations due to di�erent
quantum yields of donor and acceptor dyes and/or di�erent
photon detection e�ciencies of donor and acceptor channels.

An alternative method to apply γ correction consist in
discarding a constant fraction of photons chosen randomly
from either the Dem or Aem photon stream [17]. �is simple
method transforms the measurement data in order to achieve
γ = 1, overcoming the issue of selection bias between popu-
lations. �is approach has also the advantage of preserving
the binomial distribution of D and A photons in each burst,
so that peaks of FRET populations are easier to model statis-
tically. �e only drawback is that, by discarding a fraction of
photons, this method leads to information loss and therefore
to a potential decrease in sensitivity and/or accuracy.

A simple way to mitigate the dependence of the FRET dis-
tribution on the burst size selection threshold is weighting
bursts proportionally to their size so that the bursts with
largest sizes will have the largest weights. Using size as
weights (instead of any other monotonically increasing func-
tion of size) can be justi�ed noticing that the variance of
bursts proximity ratio (PR) is inversely proportional to the
burst size (see SI S6 for details).

In general, a weighting scheme is used for building e�-
cient estimators for a population parameter (e.g. the popula-
tion FRET e�ciency Ep). But, it can also be used to build
weighted histograms or Kernel Density Estimation (KDE)
plots which emphasize FRET subpopulations peaks without
excluding small size bursts. Traditionally, for optimal results
when not using weights, the FRET histogram is manually
adjusted by �nding an ad-hoc (high) size-threshold which
selects only bursts with the highest size (and thus lowest
variance). Building size-weighted FRET histograms is a sim-
ple method to balance the need of reducing the peaks width
with the need of including as much bursts as possible to re-
duce statistical noise. As a practical example, by �xing the
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burst size threshold to a low value (e.g. 10-20 photons) and
using weights, is possible to build a FRET histogram with
well-de�ned FRET sub-populations peaks without the need
of searching an optimal burst-size threshold (SI S6).

Python details FRETBursts has the option to weight
bursts using γ-corrected burst sizes which optionally in-
clude acceptor excitation photons naa. A weight propor-
tional to the burst size is applied by passing the argument
weights=’size’ to histogram or KDE plot functions. �e
weights keyword can be also passed to ��ing functions in
order to �t the weighted E or S distributions (see section 4.7).
Other weighting functions (for example depending quadrat-
ically on the size) are listed in the fret_fit.get_weights

documentation (link). However, using weights di�erent from
the size is not recommended due to their less e�cient use of
burst information (SI S6).

4 smFRET Burst Analysis

4.1 Loading Data
While FRETBursts can load several data �les formats, we
encourage users to adopt the recently introduced Photon-
HDF5 �le format [40]. Photon-HDF5 is an HDF5-based, open
format, speci�cally designed for freely-di�using smFRET
and other timestamp-based experiments. Photon-HDF5 is
a self-documented, platform- and language-independent bi-
nary format, which supports compression and allows sav-
ing photon data (e.g. timestamps) and measurement-speci�c
metadata (e.g. setup and sample information, authors, prove-
nance, etc.). Moreover, Photon-HDF5 is designed for long-
term data preservation and aims to facilitate data sharing be-
tween di�erent so�ware and research groups. All example
data �les provided with FRETBursts use the Photon-HDF5
format.

To load data from a Photon-HDF5 �le, we use the function
loader.photon_hdf5 (link):
d = loader.photon_hdf5(filename)

where filename is a string containing the �le path. �is com-
mand loads the measurement data into the variable d, a Data

object (see section 3.3).
�e same command can load data from a variety of

smFRET measurements supported by the Photon-HDF5 for-
mat, taking advantage of the rich metadata included with
each �le. For instance, data generated using di�erent exci-
tation schemes such as CW excitation or pulsed excitation,
single-laser vs two alternating lasers, etc., or with any num-
ber of excitation spots, are automatically recognized and in-
terpreted accordingly.

FRETBursts also supports loading µs-ALEX data stored in
.sm �les (a custom binary format used in the Weiss lab) and
ns-ALEX data stored in .spc �les (a binary format used by
TCSPC Becker & Hickl acquisition hardware). Alternatively,
these and other formats (such as ht3, a binary format used

by Pico�ant hardware) can be converted into Photon-HDF5
�les using phconvert, a �le conversion library and utility for
Photon-HDF5 (link). More information on loading di�erent
�le formats can be found in the loader module’s documen-
tation (link).

4.2 Alternation Parameters
For µs-ALEX and ns-ALEX data, Photon-HDF5 normally
stores parameters de�ning alternation periods correspond-
ing to donor and acceptor laser excitation. At load time, a
user can plot these parameters and change them if deemed
necessary. In µs-ALEX measurements [50], CW laser lines
are alternated on timescales of the order of 10 to 100 µs. Plot-
ting an histogram of timestamps modulo the alternation pe-
riod, it is possible to identify the donor and acceptor excita-
tion periods (see �gure 3a). In ns-ALEX measurements [44],
pulsed lasers with equal repetition rates are delayed with re-
spect to one another with typical delays of 10 to 100 ns. In
this case, forming an histogram of TCSPC times (nanotimes)
will allow the de�nition of periods of �uorescence a�er ex-
citation of either the donor or the acceptor (see �gure 3b). In
both cases, the function plot_alternation_hist (link) will
plot the relevant alternation histogram (�gure 3) using cur-
rently selected (or default) values for donor and acceptor ex-
citation periods.

To change the period de�nitions, we can type:
d.add(D_ON =(2100 , 3900), A_ON =(100, 1900))

where D_ON and A_ON are pairs of numbers (tuples in Python)
representing the start and stop values for D or A excitation
periods. �e previous command works for both µs-ALEX
and ns-ALEX measurements. A�er changing the parameters,
a new alternation plot will show the updated period de�ni-
tions.

�e alternation period de�nition can be applied to the data
using the function loader.alex_apply_period (link):
loader.alex_apply_period(d)

A�er this command, d will contain only photons inside
the de�ned excitation periods. If the user needs to update
the periods de�nition, the data �le will need to be reloaded
and the steps above repeated as described.

4.3 Background Estimation
�e �rst step of smFRET analysis involves estimating back-
ground rates. For example, the following command:
d.calc_bg(bg.exp_fit , time_s =30,

tail_min_us=’auto’)

estimates the background rates in windows of 30 s using the
default iterative algorithm for choosing the ��ing thresh-
old (section 3.2). Beginner users can simply use the previous
command and proceed to burst search (section 4.4). For more
advanced users, this section provides details on the di�erent
background estimation and plo�ing functions provided by
FRETBursts.
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Figure 3: Alternation histograms for µs-ALEX and ns-ALEX measurements. Histograms used for the selection/de-
termination of the alternation periods for two typical smFRET-ALEX experiments. Distributions of photons detected by
donor channel are in green, and by acceptor channel in red. �e light green and red shaded areas indicate the donor and
acceptor period de�nitions. (a) µs-ALEX alternation histogram, i.e. histogram of timestamps modulo the alternation period
for a smFRET measurement (in timestamp clock unit). (b) ns-ALEX TCSPC nanotime histogram for a smFRET measure-
ment (in TDC or TAC bin unit). Both plots have been generated by the same plot function (plot alternation hist()).
Additional information on these speci�c measurements can be found in the a�ached notebook (link).

First, we show how to estimate the background every 30 s,
using a �xed inter-photon delay threshold of 2 ms (the same
for all photon streams):
d.calc_bg(bg.exp_fit , time_s =30, tail_min_us

=2000)

�e �rst argument (bg.exp_fit) is the function used to �t
the background rate for each photon stream (see section 3.2).
�e function bg.exp_fit estimates the background using a
maximum likelihood estimation (MLE) of the delays distri-
bution. �e second argument, time_s, is the duration of the
background period (section 3.2) and the third, tail_min_us,
is the minimum inter-photon delay to use when ��ing the
distribution to the speci�ed model function. To use dif-
ferent thresholds for each photon stream we pass a tuple
(i.e. a comma-separated list of values, link) instead of a
scalar. However, the recommended approach is to choose
the threshold automatically using tail_min_us=’auto’. �is
approach uses an heuristic algorithm described in the Back-
ground estimation section of the µs-ALEX tutorial (link). Fi-
nally, it is possible to use a rigorous but slower approach to
�nd an optimal threshold, as described in SI S5.

FRETBursts provides two kinds of plots to represent the
background. One shows the histograms of inter-photon de-
lays compared to the ��ed exponential distribution, shown
in �gure 1) (see section 3.2 for details on the inter-photon
distribution). �is plot is created with the command:
dplot(d, hist_bg , period =0)

�is command illustrates the general form of a plo�ing
commands in FRETBursts, as described in SI S4. Here we

only note that the argument period is an integer specify-
ing the background period to be plo�ed (when omi�ed, the
default is 0, i.e. the �rst period). Figure 1 allows to quickly
identify pathological cases where the background ��ing pro-
cedure returns unreasonable values.

�e second background-related plot represents a timetrace
of background rates, as shown in �gure 2. �is plot allows
monitoring background rate variations occurring during the
measurement and is obtained with the command:
dplot(d, timetrace_bg)

Normally, samples should have a fairly constant back-
ground rate as a function of time as in �gure 2(a). However,
sometimes, non-ideal experimental conditions can yield a
time-varying background rate, as illustrated in �gure 2(b).
A possible reason for the observed behavior could be bu�er
evaporation from an open sample (we strongly recommend
using a sealed observation chamber whenever possible).
Additionally, cover-glass impurities can contribute to the
background. �ese impurities tend to bleach on timescales
of minutes resulting in background variations during the
course of the measurement.

Python details �e estimated background rates are stored
in the Data a�ributes bg_dd, bg_ad and bg_aa, corresponding
to photon streams Ph_sel(Dex=’Dem’), Ph_sel(Dex=’Aem’)
and Ph_sel(Aex=’Aem’) respectively. �ese a�ributes are
lists of arrays (one array per excitation spot). �e ar-
rays contain the estimated background rates in the di�er-
ent time windows (background periods). Additional back-
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ground ��ing functions (e.g. least-square ��ing of inter-
photon delay histogram) are available in bg namespace (i.e.
the background module, link).

4.4 Burst Search
Following background estimation, burst search is the next
step of the analysis. In FRETBursts, a standard burst search
using a single photon stream (see section 3.4) is performed by
calling the Data.burst_search method (link). For example,
the following command:
d.burst_search(F=6, m=10, ph_sel=Ph_sel(’all’))

performs a burst search on all photons
(ph_sel=Ph_sel(’all’)), with a count rate threshold
equal to 6 times the local background rate (F=6), using
10 consecutive photons to compute the local count rate
(m=10). A di�erent photon stream, threshold (F ) or number
of photons m can be selected by passing di�erent values.
�ese parameters are good general-purpose starting point
for smFRET analysis but they can be adjusted if needed.

Note that the previous burst search does not perform any
burst size selection (however, by de�nition, the minimum
bursts size is e�ectively m). An additional parameter L can
be passed to impose a minimum burst size before any cor-
rection. However, it is recommended to select bursts only
a�er applying background corrections, as discussed in the
next section 4.6.

It might sometimes be useful to specify a �xed photon-
rate threshold, instead of a threshold depending on the back-
ground rate, as in the previous example. In this case, instead
of F , the argument min_rate_cps can be used to specify
the threshold (in counts-per-second). For example, a burst
search with a 50 kcps threshold is performed as follows:
d.burst_search(min_rate_cps =50e3, m=10,

ph_sel=Ph_sel(’all’))

Finally, to perform a DCBS burst search (or in general an
AND gate burst search, see section 3.4) we use the function
burst_search_and_gate (link), as illustrated in the following
example:
d_dcbs = bext.burst_search_and_gate(d, F=6, m

=10)

�e last command puts the burst search results in a new
copy of the Data variable d (in this example the copy is called
d_dcbs). Since FRETBursts shares the timestamps and de-
tectors arrays between di�erent copies of Data objects, the
memory usage is minimized, even when several copies are
created.

Python details Note that, while d.burst_search() is a
method of Data, bext.burst_search_and_gate() is a func-
tion in the bext module taking a Data object as a �rst argu-
ment and returning a new Data object.

�e function burst_search_and_gate accepts optional ar-
guments, ph_sel1 and ph_sel2, whose default values cor-
respond to the classical DCBS photon stream selection (see

section 3.4). �ese arguments can be speci�ed to select dif-
ferent photon streams than those used in a classical DCBS.

�e bext module (link) collects “plugin” functions that
provides additional algorithms for processing Data objects.

4.5 Bursts Corrections
In µs-ALEX, there are 3 important correction parameters: γ-
factor, donor leakage into the acceptor channel and acceptor
direct excitation by the donor excitation laser [16]. �ese
corrections can be applied to burst data by simply assigning
values to the respective Data a�ributes:
d.gamma = 0.85

d.leakage = 0.15

d.dir_ex = 0.08

�ese a�ributes can be assigned either before or a�er the
burst search. In the la�er case, existing burst data are auto-
matically updated using the new correction parameters.

�ese correction factors can be used to display corrected
FRET distributions. However, when the goal is to �t the
FRET e�ciency of sub-populations, it is simpler to �t the
background-corrected PR histogram and then correct the
population-level PR value (see SI in [16]). Correcting PR of
each population (instead of correcting the data in each burst)
avoids distortion of the FRET distribution and keeps peaks
of static FRET subpopulations closer to the ideal binomial
statistics [19].

FRETBursts implements the correction formulas forE and
S in the functions fretmath.correct_E_gamma_leak_dir

and fretmath.correct_S (link). A derivation of these correc-
tion formulas (using computer-assisted algebra) can be found
online as an interactive notebook (link).

4.6 Burst Selection
A�er burst search, it is common to select bursts according to
di�erent criteria. One of the most common is burst size.

For instance, to select bursts with more than 30 photons
detected during the donor excitation (computed a�er back-
ground correction), we use following command:
ds = d.select_bursts(select_bursts.size , th1

=30)

�e previous command creates a new Data variable (ds)
containing the selected bursts. th1 de�nes the lower bound
for burst size, while th2 de�nes the upper bound (when not
speci�ed, as in the previous example, the upper bound is
+∞). As before, the new object (ds) will share the photon
data arrays with the original object (d) in order to minimize
the amount of used memory.

�e �rst argument of select_bursts (link) is a
python function implementing the “selection rule”
(select_bursts.size in this example); all remaining
arguments (only th1 in this case) are parameters of the
selection rule. �e select_bursts module (link) contains
numerous built-in selection functions (link). For example,
select_bursts.ES is used to select a region on the E-S
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ALEX histogram, select_bursts.width to select bursts
based on their duration. New custom criteria can be readily
implemented by de�ning a new selection function, which re-
quires only a couple of lines of code (see the select_bursts

module’s source code for examples, link).
Finally, di�erent criteria can be combined sequentially.

For example, with the following commands:
ds = d.select_bursts(select_bursts.size ,

th1=50, th2 =200)

dsw = ds.select_bursts(select_bursts.width ,

th1 =0.5e-3, th2=3e-3)

bursts in dsw will have sizes between 50 and 200 photons,
and duration between 0.5 and 3 ms.

Burst Size Selection In the previous section, we selected
bursts by size, using only photons detected in both D and A
channels during D excitation (i.e. Dex photons), as in eq. 1.
Alternatively, a threshold on the burst size computed includ-
ing all photons can be applied by adding naa to the burst size
(see eq. 2). �is is achieved by passing add_naa=True to the
selection function. �e complete selection command is:
ds = d.select_bursts(select_bursts.size ,

th1=30, add_naa=True)

�e result of this selection is plo�ed in �gure 4. When
add_naa is not speci�ed, as in the previous section, the de-
fault is add_naa=False (i.e. compute size using only Dex pho-
tons).

Another important parameter for de�ning the burst size is
the γ-factor. As noted in section 3.5, the γ-factor is used to
compensate for di�erent �uorescence quantum yields for the
D and A �uorophores as well as di�erent photon-detection
e�ciencies for the D and A channels. When γ is signi�cantly
di�erent from 1, neglecting its e�ect on burst size leads to
over-representing one FRET population versus the others.

When the γ factor is known (and 6= 1), a more unbiased
selection of di�erent FRET populations can be achieved pass-
ing the argument gamma to the selection function:
ds = d.select_bursts(select_bursts.size ,

th1=15, gamma =0.65)

When not speci�ed, γ = 1 is assumed. For more details on
burst size selection, see the select_bursts.size documen-
tation (link).

Python details �e method to compute γ-corrected burst
sizes (with or without addition of naa) is Data.burst_sizes

(link).

Select the FRET Populations In smFRET-ALEX experi-
ments, donor-only (D-only) and acceptor-only (A-only) pop-
ulations can be detected in addition to the FRET popula-
tion(s). In most cases, the D-only and A-only populations
are of no interest and need to be �ltered out.

In principle, using the E-S representation, D-only and A-
only bursts can be excluded by selecting bursts within a
range of S values (e.g. S=0.2-0.8). �is approach, however,

Figure 4: E-S histogram showing FRET, D-only and A-
only populations. A 2-D ALEX histogram and marginal
E and S histograms for a 40-bp dsDNA with D-A dis-
tance of 17 bases (Donor dye: ATTO550, Acceptor dye:
ATTO647N). Bursts are selected with a size-threshold of 30
photons, including Aex photons. �e plot is obtained with
alex jointplot(ds). �e 2D E-S distribution plot (join
plot) is an histogram with hexagonal bins, which reduce the
binning artifacts (compared to square bins) and naturally re-
sembles a sca�er-plot when the burst density is low (see
SI S4). �ree populations are visible: FRET population (mid-
dle), D-only population (top le�) and A-only population (bot-
tom, S < 0.2). Compare with �gure 5 where the FRET pop-
ulation has been isolated.
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Figure 5: E-S histogram a�er �ltering out D-only and
A-only populations. 2-D ALEX histogram a�er selection of
FRET population using the composition of two burst selec-
tion �lters: (1) selection of bursts with counts in Dex stream
larger than 15; (2) selection of bursts with counts in AexAem
stream larger than 15. Compare to �gure 4 where all burst
populations (FRET, D-only and A-only) are reported.

simply truncates the burst distribution with arbitrary thresh-
olds and is therefore not recommended for quantitative as-
sessment of FRET populations.

An alternative approach consists in applying two selec-
tion �lters sequentially. First, the A-only population is �l-
tered out by applying a threshold on the number of photons
during D excitation (Dex). Second, the D-only population is
�ltered out by applying a threshold on the number of A pho-
tons during A excitation (AexAem). �e commands for these
combined selections are:
ds1 = d.select_bursts(select_bursts.size , th1

=15)

ds2 = ds1.select_bursts(select_bursts.naa , th1

=15)

Here, the variable ds2 contains the combined burst selec-
tion. Figure 5 shows the resulting �ltered FRET population
obtained with the previous selection.

4.7 Population Analysis
Typically, a�er bursts selection, E or S histograms are �t-
ted to a model. FRETBursts mfit module allows ��ing his-
tograms of bursts quantities (i.e. E or S) with arbitrary mod-
els. In this context, a model is an object specifying a function,
the parameters varied during the �t and optional constraints
for these parameters. �is concept of model is taken from
lm�t [51], the underlying library used by FRETBursts to per-
form the �ts.

Models can be created from arbitrary functions.
FRETBursts includes prede�ned (i.e. built-in) models
such as 1- to 3-Gaussian peaks or 2-Gaussian connected
by a �at “plateau”. �e la�er is an empirical model which
can be used to more accurately �t the center values of two
populations when the peaks are connected by intermediate-
FRET bursts (for the analytical de�nition of this function
see the documentation, link). Built-in models are created by
calling a corresponding factory function (whose names start
with mfit.factory_) which initializes the parameters with
values and constraints suitable for E and S histograms �ts
(see Factory Functions documentation, link).

As an example, we can �t the E histogram of bursts in
the ds variable with two Gaussian peaks with the following
command:
bext.bursts_fitter(ds , ’E’, binwidth =0.03,

model=mfit.

factory_two_gaussians ())

Changing ’E’ with ’S’ will �t the S histogram instead.
�e binwidth argument speci�es the histogram bin width
and the model argument de�nes which model shall be used
for ��ing.

All ��ing results (including best �t values, uncertainties,
etc…), are stored in the E_fitter (or S_fitter) a�ributes of
the Data variable (named ds here). To print a comprehensive
summary of the �t results, including uncertainties, reduced
χ2 and correlation between parameters, we can use the fol-
lowing command:
fit_res = ds.E_fitter.fit_res [0]

print(fit_res.fit_report ())

Finally, to plot the ��ed model together with the FRET
histogram, as shown in �gure 6, we pass the parameter
show_model=True to the hist_fret function (see section S4
for an introduction to plo�ing in FRETBursts):
dplot(ds, hist_fret , show_model=True)

For more examples on ��ing bursts data and plo�ing re-
sults, refer to the ��ing section of the µs-ALEX notebook
(link), the Fi�ing Framework section of the documentation
(link) as well as the documentation for bursts_fitter func-
tion (link).

Python details Models returned by FRETBursts’s fac-
tory functions (mfit.factory_*) are lmfit.Model objects
(link). Custom models can be created by calling lmfit.Model

directly. When an lmfit.Model is ��ed, it returns a
ModelResults object (link), which contains all information
related to the �t (model, data, parameters with best values
and uncertainties) and useful methods to operate on �t re-
sults. FRETBursts puts a ModelResults object of each exci-
tation spot in the list ds.E_fitter.fit_res. For instance, to
obtain the reduced χ2 value of the E histogram �t in a single-
spot measurement d, we use the following command:
d.E_fitter.fit_res [0]. redchi
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Figure 6: FRET histogram �tted with two Gaussians.
Example of a FRET histogram ��ed with a 2-Gaussian model.
A�er performing the �t (see main text), the plot is generated
with dplot(ds, hist fret, show model=True).

Other useful a�ributes are aic and bic which contain
statistics for the Akaike information criterion (AIC) [52] and
the Bayes Information criterion (BIC) [53]. AIC and BIC are
general-purpose statistical criteria for comparing the suit-
ability of multiple non-nested models according to the data.
By penalizing models with higher number of parameters,
these criteria strike a balance between the need of achiev-
ing high goodness of �t with the need of keeping the model
complexity low to avoid over��ing.

Examples of de�nition and modi�cation of �t models are
provided in the aforementioned µs-ALEX notebook (link).
Users can also refer to the comprehensive lm�t’s documen-
tation (link).

4.8 FRET Dynamics
Single-molecule FRET histograms show more information
than just mean FRET e�ciencies. While in general the pres-
ence of several peaks clearly indicates the existence of mul-
tiple subpopulations, a single peak cannot a priori be asso-
ciated with a single population de�ned by a unique FRET
e�ciency without further analysis.

Shot-noise analysis [17] or probability distribution anal-
ysis (PDA) [18, 54] allow to compute the minimum width
of a static FRET population (i.e. caused by the statistics of
discrete photon-detection events). Typically, several mecha-
nisms contribute to the broadening of the experimental FRET
peak beyond the shot-noise limit. �ese include hetero-
geneities in the sample resulting in a distribution of Förster
radii, or actual conformational changes giving rise to a dis-
tribution of D-A distances [8].

Gopich and Szabo developed an elegant analytical model
for the FRET distribution of M interconverting states based
on superposition of Gaussian peaks [55]. Unfortunately,
the method is not of straightforward application for freely-
di�using data as it requires a special selection criterion for

�ltering bursts with quasi-Poisson rates. Santoso et al. [56]
and Kalinin et al. [57] extended the PDA approach to esti-
mate conversion rates between di�erent states by comparing
FRET histograms as a function of the time-bin size. In addi-
tion, Gopich and Szabo [58,59] developed a related method to
compute conversion rates using a likelihood function which
depends on photon timestamps (overcoming the time bin-
ning and FRET histogramming step and directly applicable
to freely-di�using data). In case of measurement including
lifetime, the multiparameter �uorescence detection (MFD)
method allows to identify dynamics from the deviation from
the linear relation between lifetime and E [8]. Ho�man et
al. [60] proposed a method called RASP (recurrence analy-
sis of single particles) to extend the timescale of detectable
kinetics. Ho�man et al. compute the probability that two
nearby bursts are due to the same molecule and therefore
allows se�ing a time-threshold for considering consecutive
bursts as the same single-molecule event.

Other interesting approaches include combining smFRET
and FCS for detecting and quantifying kinetics on timescales
much shorter than the di�usion time [61–63]. In addition,
Bayes-based methods have been proposed to �t static popu-
lations [64, 65], or to study dynamics [66].

Finally, two related methods for discriminating between
static heterogeneity and sub-millisecond dynamics are Burst
Variance Analysis (BVA) proposed by Torella et al. [23] and
two-channel kernel density estimator (2CDE) proposed by
Tomov et al. [24]. �e BVA method is described in the
next section. �e 2CDE method, which has been imple-
mented in FRETBursts, computes local photon rates from
timestamps within bursts using Kernel Density Estimation
(KDE) (FRETBursts includes general-purpose functions to
compute KDE of photon timestamps in the phrates mod-
ule, (link)). From time variations of local rates, it is possi-
ble to infer the presence of some dynamics. In particular,
the 2CDE method builds, for each burst, a quantity (E)D
(or (1 − E)A), which is equal to the burst average E when
no dynamics is present, but is biased toward an higher (or
lower) value in presence of dynamics. From these quantities,
a burst “estimator” (called FRET-2CDE) is derived. For a user,
the 2CDE method amounts to plo�ing the 2-D histogram of
E versus FRET-2CDE, and assessing the vertical position of
the various populations: populations centered around FRET-
2CDE=10 undergo no dynamics, while population biased to-
wards higher FRET-2CDE values undergo dynamics.

�e BVA and 2CDE methods are implemented in two note-
books included with FRETBursts (BVA link, 2CDE link). To
use them, a user needs to download the relevant notebook
and run the anaysis therein. �e other methods mentioned
in this section are not currently implemented in FRETBursts.
However, users can easily implement any additional meth-
ods in FRETBursts, using its built-in burst analysis and
timestamps/bursts manipulation functions. In the next sec-
tion, we show how to perform low-level analysis of times-
tamps and bursts data by implementing the BVA method
from scratch. An additional example showing how to split

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/039198doi: bioRxiv preprint 

http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/FRETBursts%20-%20us-ALEX%20smFRET%20burst%20analysis.ipynb#FRET-fit:-in-depth-example
http://lmfit.github.io/lmfit-py/
http://fretbursts.readthedocs.io/en/latest/phrates.html
http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/Example%20-%20Burst%20Variance%20Analysis.ipynb
http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/Example%20-%202CDE%20Method.ipynb
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/


bursts in constant time-bins can be found in the respec-
tive FRETBursts notebook (link). �ese examples serve as
a guide for implementing new methods. We welcome re-
searchers willing to implement new methods to ask ques-
tions on GitHub or on the mailing list. We also encourage
sharing eventual new methods implemented in FRETBursts
for the bene�t the entire community.

5 Implementing Burst Variance
Analysis

In this section, we describe how to implement burst vari-
ance analysis (BVA) as described in [23]. FRETBursts pro-
vides well-tested, general-purpose functions for timestamps
and burst data manipulation and therefore simpli�es imple-
menting custom burst analysis algorithms such as BVA.

5.1 BVA Overview
�e BVA method has been developed to identify the pres-
ence of dynamics in FRET distributions [23], and has been
successfully applied to identify biomolecular processes with
dynamics on the millisecond time-scale [23, 67].

�e basic idea behind BVA is to subdivide bursts into con-
tiguous burst chunks (sub-bursts) comprising a �xed num-
ber n of photons, and to compare the empirical variance of
acceptor counts of all sub-bursts in a burst, with the theo-
retical shot-noise-limited variance. An empirical variance of
sub-bursts larger than the shot-noise-limited value indicates
the presence of dynamics.

In a FRET (sub-)population originating from a single static
FRET e�ciency, the sub-bursts acceptor counts na can be
modeled as a binomial-distributed random variable Na ∼
B(n,Ep), where n is the number of photons in each sub-
burst and Ep is the estimated population proximity-ratio
(PR). Note that we can use the PR because, regardless of
the molecular FRET e�ciency, the detected counts are par-
titioned between donor and acceptor channels according to
a binomial distribution with success probability equal to the
PR. �e only approximation done here is neglecting the pres-
ence of background (a reasonable approximation since the
backgrounds counts are in general a very small fraction of
the total counts). We refer the interested reader to [23] for
further discussion.

IfNa follows a binomial distribution, the random variable
Esub = Na/n, has a standard deviation reported in eq. 3.

Std(Esub) =

(
Ep (1− Ep)

n

)1/2

(3)

BVA analysis consists of four steps: 1) dividing bursts into
consecutive sub-bursts containing a constant number of con-
secutive photons n, 2) computing the PR of each sub-burst,
3) calculating the empirical standard deviation (sE) of sub-
bursts PR in each burst, and 4) comparing sE to the ex-
pected standard deviation of a shot-noise-limited distribu-

tion (eq. 3). If, as in �gure 7, the observed FRET e�ciency dis-
tribution originates from a static mixture of sub-populations
(of di�erent non-interconverting molecules) characterized
by distinct FRET e�ciencies, sE of each burst is only af-
fected by shot-noise and will follow the expected standard
deviation curve based on eq. 3. Conversely, if the observed
distribution originates from biomolecules belonging to a sin-
gle species, which interconverts between di�erent FRET sub-
populations (over times comparable to the di�usion time),
as in �gure 8, sE of each burst will be larger than the ex-
pected shot-noise-limited standard deviation, and will be lo-
cated above the shot-noise standard deviation curve (right
panel of �gure 8).

5.2 BVA Implementation
�e following paragraphs describe the low-level details in-
volved in implementing the BVA using FRETBursts. �e
main goal is to illustrate a real-world example of accessing
and manipulating timestamps and burst data. For a ready-to-
use BVA implementation users can refer to the correspond-
ing notebook included with FRETBursts (link).

Python details For BVA implementation, two photon
streams are needed: all-photons during donor excitation
(Dex) and acceptor photons during donor excitation (Dex-
Aem). �ese photon stream selections are obtained by com-
puting boolean masks as follows (see section S3):
Dex_mask = ds.get_ph_mask(ph_sel=Ph_sel(Dex=’

DAem’))

DexAem_mask = ds.get_ph_mask(ph_sel=Ph_sel(Dex=

’Aem’))

DexAem_mask_d = AemDex_mask[Dex_mask]

Here, the �rst two variables (Dex_mask and DexAem_mask)
select photon from the all-photons timestamps array, while
DexAem_mask_d, selects A-emi�ed photons from the array of
photons emi�ed during D-excitation. As shown below, the
la�er is needed to count acceptor photons in burst chunks.

Next, we need to express bursts start-stop data as indexes
of the D-excitation photon stream (by default burst start-stop
indexes refer to all-photons timestamps array):
ph_d = ds_FRET.get_ph_times(ph_sel=Ph_sel(Dex=’

DAem’))

bursts = ds_FRET.mburst [0]

bursts_d = bursts.recompute_index_reduce(ph_d)

Here, ph_d contains the Dex timestamps, bursts the orig-
inal burst data and bursts_d the burst data with start-stop
indexes relative to ph_d.

Finally, with the previous variables at hand, the BVA algo-
rithm can be easily implemented by computing the sE quan-
tity for each burst:
n = 7

E_sub_std = []

for burst in bursts_d:

E_sub = []

startlist = range(burst.istart , burst.istop

+ 2 - n, n)
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Figure 7: BVA distribution for a static mixture sample. �e le� panel shows the E-S histogram for a mixture of single
stranded DNA (20dT) and double stranded DNA (20dT-20dA) molecules in 200 mM MgCl2. �e right panel shows the
corresponding BVA plot. Since both 20dT and 20dT-20dA are stable and have no dynamics, the BVA plots shows sE peaks
lying on the static standard deviation curve (red curve).

Figure 8: BVA distribution for a hairpin sample undergoing dynamics. �e le� panel shows the E-S histogram for
a single stranded DNA sample (A31-TA, see in [68]), designed to form a transient hairpin in 400mM NaCl. �e right panel
shows the corresponding BVA plot. Since the transition between hairpin and open structure causes a signi�cant change in
FRET e�ciency, sE lies largely above the static standard deviation curve (red curve).
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stoplist = [i + n for i in startlist]

for start , stop in zip(startlist , stoplist)

:

A_D = DexAem_mask_d[start:stop].sum()

E = A_D / n

E_sub.append(E)

E_sub_std.append(np.std(E_sub))

Here, n is the BVA parameter de�ning the number of pho-
tons in each burst chunk. �e outer loop iterates through
bursts, while the inner loop iterates through sub-bursts. �e
variables startlist and stoplist are the list of start-stop
indexes for all sub-bursts in current burst. In the inner loop,
A_D and E contain the number of acceptor photons and FRET
e�ciency for the current sub-burst. Finally, for each burst,
the standard deviation of E is appended to the list E_sub_std.

By plo�ing the 2D distribution of sE (i.e. E_sub_std) ver-
sus the average (uncorrected) E we obtain the BVA plots of
�gure 7 and 8.

6 Conclusions
FRETBursts is an open source and openly developed (see
SI S2) implementation of established smFRET burst analysis
methods made available to the single-molecule community.
It implements several novel concepts which improve the
analysis results, such as time-dependent background esti-
mation, background-dependent burst search threshold, burst
weighting and γ-corrected burst size selection. More impor-
tantly, FRETBursts provides a library of thoroughly-tested
functions for timestamps and burst manipulation, making it
an ideal platform for developing and comparing new analyt-
ical techniques.

We envision FRETBursts both as a state-of-the-art burst
analysis so�ware as well as a platform for development and
assessment of novel algorithms. To underpin this envisioned
role, FRETBursts is developed following modern so�ware
engineering practices, such as DRY principle (link) to re-
duce duplication and KISS principle (link) to reduce over-
engineering. Furthermore, to minimize the number so�-
ware errors [36,69], we employ defensive programming [39]
which includes code readability, unit and regression testing
and continuous integration [28]. Finally, being open source,
any scientist can inspect the source code, �x errors, adapt it
to her own needs.

We believe that, in the single-molecule community,
standard open source so�ware implementations, such as
FRETBursts, can enhance reliability and reproducibility of
analysis and promote a faster adoption of novel methods,
while reducing the duplication of e�orts among di�erent
groups.
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Supporting Information

S1 Notebook Work�ow
FRETBursts has been developed with the goal of facilitating computational reproducibility of the performed data analy-
sis [25]. For this reason, the preferential way of using FRETBursts is by executing one of the tutorials which are in the form
of Jupyter notebooks [35]. Jupyter (formerly IPython) notebooks are web-based documents which contain both code and
rich text (including equations, hyperlinks, �gures, etc…). FRETBursts tutorials are notebooks which can be re-executed,
modi�ed or used to process new data �les with minimal modi�cations. �e “notebook work�ow” [35] not only facilitates
the description of the analysis (by integrating the code in a rich document) but also greatly enhances its reproducibility
by storing an execution trail that includes so�ware versions, input �les, parameters, commands and all the analysis results
(text, �gures, tables, etc.).

�e Jupyter Notebook environment streamlines FRETBursts execution (compared to a traditional script and terminal
based approach) and allows FRETBursts to be used even without prior python knowledge. �e user only needs to get familiar
with the notebook graphical environment, in order to be able to navigate and run the notebooks. A list of all FRETBursts
notebooks can be found in the FRETBursts_notebooks repository on GitHub (link). Finally, we provide a service to run
FRETBursts notebooks online, without requiring any so�ware installation (link).

S2 Development and Contributions
Errors are an inevitable reality in any reasonably complex so�ware [36, 69]. It is therefore critical to implement counter-
measures to minimize the probability of introducing bugs and their potential impact [37,39]. In developing FRETBursts we
leverage open source technlogies and follow modern so�ware development best-practices as summarized below.

FRETBursts (and the entire python ecosystem it depends on) is open source and the source code is fully available for
any scientist to study, review and modify. �e open source nature of FRETBursts and of the python ecosystem, not only
makes it a more transparent, reviewable platform for scienti�c data analysis, but also allows to leverage state-of-the-art
online services such as GitHub (link) for hosting, issues tracking and code reviews, TravisCI (link) and AppVeyor (link) for
continuous integration (i.e. automated test suite execution on multiple platforms a�er each commit) and Read�eDocs.org
for automatic documentation building and hosting. All these services would be extremely costly, if available at all, for a
proprietary so�ware or platform [70].

We highly value source code readability, a property which can reduce the number of bugs by facilitating understanding
and verifying the code. For this purpose, FRETBursts code-base is well commented (with comments representing over 35%
of the source code), follows the PEP8 python code style rules (link), and has docstrings in napoleon format (link).

Reference documentation is built with Sphinx (sphinx-doc.org) and all API documents are automatically generated from
docstrings. On each commit, documentation is automatically built and deployed on Read�eDocs.org.

Unit tests cover most of the core algorithms, ensuring consistency and minimizing the probability of introducing bugs.
�e continuous integration services, execute the full test suite on each commit on multiple platforms, immediately reporting
errors. As a rule, whenever a bug is discovered, the �x also includes a new test to ensure that the same bug does not happen
in the future. In addition to the unit tests, we include a regression-test notebook (link) to easily compares numerical results
between two versions of FRETBursts. Additionally, the tutorials themselves are executed before each release as an additional
test layer to ensure that no errors or regressions are introduced.

FRETBursts is openly developed using the GitHub platform. �e authors encourage users to use GitHub issues for ques-
tions, discussions and bug reports, and to submit patches through GitHub pull requests. Contributors of any level of exper-
tise are welcome in the projects and publicly acknowledged. Contributions can be as simple as pointing out de�ciencies in
the documentation but can also be bug reports or corrections to the documentation or code. Users willing to implement new
features are encouraged to open an Issue on GitHub and to submit a Pull Request. �e open source nature of FRETBursts
guarantees that contributions will become available to the entire single-molecule community.

S3 Timestamps and Burst Data
Beyond providing prepackaged functions for established methods, FRETBursts also provides the infrastructure for explor-
ing new analysis approaches. Users can easily get timestamps (or selection masks) for any photon stream. Core burst data
(start and stop times, indexes and derived quantities for each burst) are stored in Bursts objects (link). �is object provides
a simple and well-tested interface (100 % unit-test coverage) to access and manipulate burst data. Bursts are created from
a sequence of start/stop times and indexes, while all other �elds are automatically computed. Bursts’s methods allow to
recompute indexes relative to a di�erent photon selection or recompute start and stop times relative to a new timestamps
array. Additional methods perform fusion of nearby bursts or combination of two set of bursts (time intersection or union).
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�is functionality is used for example to implement the DCBS. In conclusion, Bursts e�ciently implements all the common
operations performed with burst data, providing and easy-to-use interface and well tested algorithms. Leveraging Bursts

methods, users can implement new types of analysis without wasting time implementing (and debugging) standard manipu-
lation routines. Examples of working directly with timestamps, masks (i.e. photon selections) and burst data are provided in
one of the FRETBursts notebooks (link). Section 5 provides a complete example on using FRETBursts to implement custom
burst analysis techniques.

Python details Timestamps are stored in the Data a�ribute ph_times_m, which is a list or arrays, one array per excitation
spot. In single-spot measurements the full timestamps array is accessed as Data.ph_times_m[0]. To get timestamps of
arbitrary photon streams, users can call Data.get_ph_times (link). Photon streams are selected from the full (all-photons)
timestamps array using boolean masks, which can be obtained calling Data.get_ph_mask (link). All burst data (e.g. start-
stop times and indexes, burst duration, etc.) are stored in Bursts objects. For uniformity, the bursts start-stop indexes
are always referring to the all-photons timestamps array, regardless of the photon stream used for burst search. Bursts

objects internally store only start and stop times and indexes. �e other Bursts a�ributes (duration, photon counts, etc.)
are computed on-the-�y when requested (using class properties), thus minimizing the object state. Bursts support iteration
with performances similar to iterating through rows of 2D row-major numpy arrays.

S4 Plotting Data

FRETBursts uses matplotlib [47] and seaborn [71] to provide a wide range of built-in plot functions (link) for Data objects.
�e plot syntax is the same for both single and multi-spot measurements. �e majority of plot commands are called through
the wrapper function dplot, for example to plot a timetrace of the photon data, type:
dplot(d, timetrace)

�e function dplot is the generic plot function, which creates �gure and handles details common to all the plo�ing
functions (for instance, the title). d is the Data variable and timetrace is the actual plot function, which operates on a single
channel. In multispot measurements, dplot creates one subplot for each spot and calls timetrace for each channel.

All built-in plot functions which can be passed to dplot are de�ned in the burst_plot module (link).

Python details When FRETBursts is imported, all plot functions are also imported. To facilitate �nding the plot functions
through auto-completion, their names start with a standard pre�x indicating the plot type. �e pre�xes are: timetrace for
binned timetraces of photon data, ratetrace for rates of photons as a function of time (non binnned), hist for functions
plo�ing histograms and scatter for sca�er plots. Additional plots can be easily created directly with matplotlib.

By default, in order to speed-up batch processing, FRETBursts notebooks display plots as static images using the inline
matplotlib backend. User can switch to interactive �gures inside the browser by activating the interactive backend with
the command %matplotlib notebook. Another option is displaying �gures in a new standalone window using a desktop
graphical library such as QT4. In this case, the command to be used is %matplotlib qt.

A few plot functions, such as timetrace and hist2d_alex, have interactive features which require the QT4 backend. As
an example, a�er switching to the QT4 backend the following command:
dplot(d, timetrace , scroll=True , bursts=True)

will open a new window with a timetrace plot with overlay of bursts, and an horizontal scroll-bar for quick ”scrolling”
throughout time. �e user can click on a burst to have the corresponding burst info be printed in the notebook. Similarly,
calling the hist2d_alex function with the QT4 backend allows selecting an area on the E-S histogram using the mouse.
dplot(ds, hist2d_alex , gui_sel=True)

�e values which identify the region are printed in the notebook and can be passed to the function select_bursts.ES to
select bursts inside that region (see section Burst Selection in the main text).

Plotting ALEX histograms
E-S histograms are traditionally computed using a bin size of 0.02-0.04, and cover a range slightly larger than the [0, 1]
interval in which ratios of quantities not corrected for background would normally fall. FRETBursts allows plo�ing the
square-bin 2-D E-S histogram using the plot function hist2d_alex as shown in the previous example. �e histogram can
be “smothed” via bicubic interpolation between bin centers (default) or plo�ed with raw square bins (pass the argument
interpolation=’none’). Additionally, a sca�er plot of E-S points is by default overlayed and it can be useful for observing
the burst distribution in sparse regions. However, the di�erent layers make this plot hard to read.
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A more elegant approach for e�ectively representing E-S histograms with minimal clu�er and high information content
is using an hexbin plot (as used by the FRETBursts function alex_jointplot). �e hexbin plot is a 2-D histograms using
hexagonal bins that reduces gridding artifacts of square bins. In addition, in sparse regions, the hexbin plot naturally
resembles a sca�er plot (with hexagonal markers). �e use of hexagonal bins for 2D distributions has been pioneered by
Dan Carr in S-PLUS and then popularized by Nicholas Lewin-Koh which wrote the R language port. Later, hexbin has been
implemented in the matplotlib python library (which is what FRETBursts uses). �e advantages of hexagonal bins have
been extensively studied and can be summarized with Nicholas Lewin-Koh words (link):

Why hexagons? �ere are many reasons for using hexagons, at least over squares. Hexagons have symmetry of
nearest neighbors which is lacking in square bins. Hexagons are the maximum number of sides a polygon can
have for a regular tesselation of the plane, so in terms of packing a hexagon is 13% more e�cient for covering the
plane than squares. �is property translates into be�er sampling e�ciency at least for elliptical shapes. Lastly
hexagons are visually less biased for displaying densities than other regular tesselations.

�e function alex_jointplot plots a 3-panels plots with a central hexbin plot of E-S values and marginal E and S his-
tograms represented in top and right panel (see �gure 4 and 5 in the main text). Note that unlike other plot functions in
FRETBursts, alex_jointplot is called directly and not through the dplot wrapper.

S5 Background Estimation With Optimal �reshold
�e functions used to �t the background (i.e. bg.exp_fit and other functions in bg module) provide also a goodness-of-
�t estimator computed from the empirical distribution function (EDF) [72, 73]. �e “distance” between the EDF and the
theoretical (i.e. exponential) cumulative distribution represents and indicator of the quality of �t. Two di�erent distance
metrics can be returned by the background ��ing functions. �e �rst is the Kolgomorov-Smirnov statistics, which uses the
maximum of the di�erence between the EDF and the theoretical distribution. �e second is the Cramér von Mises statistics
corresponding to the integral of the squared residuals (see the code for more details, link).

In principle, the optimal inter-photon delay threshold will minimize the error metric. �is approach is implemented
by the function calc_bg_brute (link) which performs a brute-force search in order to �nd the optimal threshold. �is
optimization is not necessary under typical experimental conditions, because the estimated rates normally change only a
by a few per-cent compared to the heuristic threshold selection used by default.

S6 Burst Weights
S6.1 �eory

Freely-di�using molecules across a Gaussian excitation volume give rise to a burst size distribution that is exponentially
distributed. In a static FRET population, burst counts in the acceptor channel can be modeled as a binomial random variable
(RV) with success probability equal to the population PR and number of trials equal to the burst size nd +na. Similarly, the
PR of each burst Ei (i being the burst index) is simply a binomial divided by the number of trials, with variance reported in
eq. 4.

Var(Ei) =
Ep (1− Ep)

nti
(4)

Bursts with higher counts, provide more accurate estimations of the population PR, since their PR variance is smaller
(eq. 4). �erefore, in estimating the population PR we need to ”focus” on bigger bursts. Traditionally, this is accomplished
by merely discarding bursts below a size-threshold. In the following paragraphs we demonstrate how, by proper weighting
bursts, is possible to obtains optimal estimates of PR which takes into account the information of the entire burst population.

According to the Cramer-Rao lower bound (eq. 5), the Fisher information I(θ) sets a lower bound on the variance of any
statistics p̂ of a RV θ.

Var (p̂) ≥ 1

I(θ)
(5)

When the statistics p̂ is an unbiased estimator of a distribution parameter and the equality holds in eq. 5, the estimator
is a minimum-variance unbiased (MVUB) estimator and it is said to be e�cient (meaning that it does an optimal use the
information contained in the sample to estimate the parameter).

A population of N bursts can be modeled by a set of N binomial variables with same success probability Ep and varying
number of successes equal to the burst size. An estimator for Ep can be constructed noticing that the sum of binomial RV
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with same success probability is still a binomial (with number of trials equal to the sum of the number of trials). Taking the
sum of acceptor counts over all bursts divided by the total number of photons as in eq. 6, we obtain an estimator Ê of the
proportion of successes.

Ê =

∑
i nai∑
i nti

(6)

�e variance of Ê (eq. 7) is equal to the inverse of the Fisher information I(Ê) and therefore Ê is a MVUB estimator for
Ep.

Var(Ê) =
Ep(1− Ep)∑

i nti
=

1

I(Ê)
(7)

We can �nally verify that Ê is equal to the weighted average of the bursts PR Ei (eq. 9), with weights proportional to the
burst size (eq. 8).

wi =
nti∑
i nti

(8)

Êw =
1

N

∑
i

wiEi =
1

N

∑
i nti

nai

nti∑
i nti

= Ê (9)

Since Ê is the MVUB estimator, any other estimator of Ep (in particular the unweighted mean of Ei) will have a larger
variance.

We can extend these consideration of optimal weights for the PR estimator to the FRET distribution plot (histograms
or KDEs). Building an unweighted histogram (and ��ing the peak) is analogous to estimating the Ep with an unweighted
average. Conversely, building the FRET histogram using the burst size as weights is equivalent to using the MVUB estimator
for Ep.

S6.2 Weighted FRET estimator

Here we report a simple veri�cation of the results of previous section, namely that a weighted mean of Ei is the estimator
with minimal variance of Ep. For this purpose, we generated a static FRET population of 100 bursts by simply extracting
burst-sizes from an exponential distribution (λ = 10) and acceptor counts from a binomial distribution (Ep = 0.2). By
repeatedly ��ing the population parameter Ep using a size-weighted and unweighted average, we veri�ed that the former
has systematically lower variance of the la�er as predicted by the theory (in the current example the unweighted estimator
has 28.6 % higher variance). Note that this result holds for any arbitrary distribution of burst sizes. �e full simulation
including exponential and gamma-distributed burst sizes is reported in the accompanying Jupyter notebook (link).

S6.3 Weighted FRET histogram

�e e�ect of weighting the FRET histogram is here illustrated with a simulation of a mixture of two static FRET populations
and then with experimental data.

We performed a realistic simulation of a static mixture of two FRET populations starting from 3-D Brownian motion
di�usion of N particles excited by a numerically computed (non-Gaussian) PSF. Input parameters of the simulation include
di�usion coe�cient, particle brightness, the two FRET e�ciencies, as well as detectors DCR. �e simulation is performed
with the open source so�ware PyBroMo [41] which creates smFRET data �les (i.e. timestamps and detectors arrays) in
Photon-HDF5 format [40]. �e simulated data �le is processed with FRETBursts performing burst search, and only a minimal
burst size selection of with threshold of 10 photons. �e resulting weighted and unweighted FRET histograms are reported
in �gure S1. We notice that the use of the weights results in be�er de�nition of FRET peaks.

As a �nal comparison, we report the weighted and unweighted FRET histogram of an experimental FRET population
from measurement of a di-labeled dsDNA sample. Figure S2 show a comparison of a FRET histogram obtained from the
same burst with and without weights. �e burst selection is obtained applying a burst size threshold of 10 counts (a�er
background correction), in order to �lter the extreme low-end of the burst size distribution.

�e use of size-weighted FRET histograms is a simple way to obtain a representation of FRET distribution that maintains
high power of resolving FRET peaks while including the full burst population and thus reducing statistical noise.

As a �nal remark, note that when increasing the size-threshold for burst selection the di�erence between weighted and
unweighted FRET histograms tends to zero because the relative di�erence in burst weights in the selected burst becomes
smaller (i.e. tends to 1, meaning equal weights).
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Figure S1: Comparison of unweighted and size-weighted FRET histograms for a simulated mixtures of static FRET popu-
lations. In both cases bursts are selected with a size threshold of 10 photons (a�er background correction).

Figure S2: Comparison of unweighted and size-weighted FRET histograms for a smFRET measurement of a static FRET
sample (di-labeled dsDNA). In both cases bursts are selected with a size threshold of 10 photons (a�er background correc-
tion).
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