bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

FRETBursts: Open Source Burst Analysis Toolkit for Confocal
Single-Molecule FRET

Antonino Ingargiola !, Eitan Lerner!, SangYoon Chung!, Shimon Weiss!, and Xavier Michalet!

"Dept. Chem. & Biochem, Univ. California Los Angeles, Los Angeles, CA, USA.

February 8, 2016

Abstract 2 FRETBursts Overview| 3
D1 Featured 3
Single-molecule Forster Resonance Energy Transfer P2 Notebook Workflow 3
(smFRET) allows probing intermolecular interactions and 3 DevelopmentModel 3
conformational changes in biomacromolecules, and repre-
sents an invaluable tool in studying cellular processes at the B__Architecture and Concepts 3
molecular scale [21]. smFRET experiments can detect the B.1 PhotonStreamd 3
distance between two fluorescent labels (donor and acceptor) B.2 Background Definitiong 4
in the 3-10 nm range. In the commonly employed confocal 3.3 TheDataClasg. 4
geometry, molecules are free to diffuse in solution. When B.4 Introduction to Burst SearcH 4
a molecule traverses the excitation volume it emits a burst B.5 y-corrected Burst Sizes and Weighty 5
of photons that can be detected by single-photon avalanche 3.6 PlottingDatd 6
detectors (SPADs). The intensities of donor and acceptor
fluorescence can then be related to the distance between the % _SMFRET Burst Analysis 6
two dyes. 4.1 LoadingtheDatd 6
The analysis of smFRET experiments involves identify- 4.2 Alternation Parametery 6
ing photon bursts from single-molecules in a continuous 4.3 Background Estimationf 7
stream of photon, estimating the background and other cor- f.3.1 _Error Metrics and Optimal Threshold 8
rection factors, filtering and finally extracting the corrected 4 BurstSearch 8
FRET efficiencies for each sub-population in the sample. In 4.4.1 _ Burst Search in FRETBursty 8
this paper we introduce FRETBursts, a software for confo- #.4.2__ Correction Coefficienty 8
cal smFRET data analysis which allows executing a complete 5 BurstSelection................. 10
burst analysis pipeline by using state-of-the-art algorithms. 4.5.1 -corrected Burst Size Selection . . . 10
FRETBursts is an open source python package that we en- 45.2_ Select the FRET Populationd 10
vision both as toolkit for research and new developments 4.6 Population Analysis 11
in burst analysis and as reference implementation of com- 4.7 __Timestamps and Burst Data 12

monly employed algorithms. We follow the highest standard

in software development to ensure that the source is easy to b_Implementin].Surst Variance Analysi 12
51 BVAOverviewl 12

read, well documented and thoroughly tested. Moreover, in

an effort to lower the barriers to computational reproducibil- 5.2 BVA Implementation] 13
ity, we embrace a modern workflow based on Jupyter note- B Development and Contributiond 13
books that allows to capture of the whole process from raw
data to figures within a single document. 13
Contents 1 Introduction
L_Introduction 1 1.1 Open Science and Reproducibility
1.1 Open Science and Reproducibility] 1
1.2 Paper Overview 2 In the last 20 years, single molecule FRET (smFRET), has
emerged as one of the most useful techniques in single-
"ingargiola.antonino@gmail.com molecule spectroscopy [[16,43]. Except a few specific ensem-

https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

ble time-resolved measurements [24, 33], smFRET unique
feature is the ability to resolve conformational changes of
biomolecules or measure binding-unbinding kinetics on het-
erogeneous samples. smFRET measurements on freely dif-
fusing molecules (the focus of this paper) have the advantage
of probing molecules and processes without possible pertur-
bation from surface immobilization [5, 8].

The field of freely-diffusing smFRET data analysis, has
seen a number of significant contributions over the years [[1,
4, 7, 10-13, 23, 29, 35, 38, B9, #5]. However, so far, except for
some fundamental steps of burst analysis, there is no single
approach that is universally accepted and broadly applied.
On one hand this situation stems from the fact that differ-
ent approaches tend to answer slightly different questions.
On the other hand, this is the result of the trade off in each
research lab between accuracy and software complexity, in
particular on the amount of effort each group wants to in-
vest in implementing new non-trivial methods reported in
literature.

In fact, except for a recent laudable example [26], each re-
search group have reimplemented its own unpublished or
closed-source versions of the analysis software, with very
little collaboration or code sharing. Even in our group, past
smFRET papers merely mention the usage of custom-made
software without additional details [23,29]. The fact that se-
tups for freely-diffusing smFRET can significantly vary (in
number of polarization or spectral channels for example),
makes the problem only worst. This situation, represents a
real impediment to the scientific progress because:

(a) As new methods are proposed in literature, under-
standably, only few groups are willing (or have the re-
sources) to invest the time necessary to re-implement them
in their own software, especially when contributions are
incremental. In the rare occasions of new methods being
groundbreaking, the reimplementation requires a systematic
duplication of efforts.

(b) Both the non-availability of the software and the differ-
ences in implementation details render a direct comparison
of different software implementations difficult, if not impos-
sible. This limits the ability to cross-validate the correctness
of different implementations of the same method or to com-
pare accuracy and effectiveness of different methods.

(c) The variety of optical setups resulted in an accumu-
lation of different incompatible file binary formats, some
vendor-specific and some custom-made. This clearly repre-
sent an additional barrier in data exchange between groups
using different hardware and aggravate the previous issues.

Effectively, these issues have created islands of non-
communicating groups (regarding software and data shar-
ing), in stark contrast with the consolidated tradition, in the
biological sciences, of openly sharing reagents and samples.

From a more general stance, since the pioneering work
of Donoho group in the 90’s [3], became clear that devel-
oping and maintaining open source scientific software for
reproducible research is a critical requirement for progress
in modern science [[17, 41]. Peer-reviewed publications de-

scribing such software are also necessary [31], although the
debate is still open on the most effective model for peer-
reviewing this class of publications [[14, 15] (Willson 2015)
(Mills 2015) (Brown 2015 and 2013).

Facing the previous issues, we decided to develop
FRETBursts, an open source Python software for burst
analysis of freely-diffusing single-molecule FRET experi-
ments. With FRETBursts we provide a tool that is avail-
able to any scientist to use, study and modify. Further-
more, FRETBursts execution model based on Juyter Note-
book [B6] is designed to facilitate computational repro-
ducibility. FRETBursts is hosted and openly developed on
GitHub [2, 32], where users can send comments, report
issues or contribute code. In a parallel effort, some of
the authors recently introduced a common file format for
timestamp-based single-molecule fluorescence experiments
called Photon-HDF5 [[18]. The work on Photon-HDF5, which
is fully supported by FRETBursts, complements the ecosys-
tem of open tools for reproducible science in the single-
molecule field.

Understanding smFRET burst analysis requires several
concepts and definitions. In this paper we aim to provide
a brief introduction to smFRET analysis concepts and ter-
minology used by FRETBursts. We illustrate how to per-
form the fundamental steps of burst analysis, highlighting
key parameters and algorithms available. The aim is not cov-
ering all FRETBursts features and options but providing an
overview detailed enough for starting using FRETBursts and
customizing the analysis. For additional information, we re-
fer the reader to the FRETBursts Reference Documentation
(link) and to the FRETBursts ps-ALEX notebook (link) Fi-
nally, usage questions can be posted by opening an Issue on
GitHub (link).

1.2 Paper Overview

The paper is structured as follows. In the next section g we
give an overview of the software features, the modality of ex-
ecution and the development style. In section f§, we review a
few preliminary concepts and terminology needed to under-
stand the smFRET burst analysis. In section i, we detail the
execution the main steps involved in smFRET burst analysis:
data loading (section 1)), defining excitation alternation pe-
riods (section jt.9), background correction (section k.3), burst
search (section [.4), burst selection (section [.5) and FRET
fitting (section). The aim is to provide the reader with
enough information to understand the specificities of the dif-
ferent algorithms and to be able to adapt the analysis to new
situations. In section H, we show how to implement a new
burst analysis in FRETBursts, taking as an example the Burst
Variance Analysis (BVA) [B9]. In section f we describe the
development process, the testing infrastructure and contrib-
utors guidelines. Finally, in section [|, we summarize what
we believe to be the strengths of FRETBursts software.
Throughout this paper, links to relevant sections of docu-
mentation and other web resources are displayed as “(link)”.

https://software-carpentry.org/blog/2015/04/quality-is-free-getting-there-isnt.html
https://www.mozillascience.org/effective-code-review-for-journals
http://ivory.idyll.org/blog/2015-we-live-in-a-bubble.html
http://ivory.idyll.org/blog/on-code-review-of-scientific-code.html
http://fretbursts.readthedocs.org/
http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/FRETBursts%20-%20us-ALEX%20smFRET%20burst%20analysis.ipynb
https://github.com/tritemio/FRETBursts
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

In order to make the text accessible to the widest number
of readers, we concentrated python-specific details in spe-
cial subsections titled Python details. These subsections pro-
vide deeper insights for readers already familiar with python
and can be safely skipped otherwise. Finally, note that all
commands here reported can be found in the accompanying
notebooks (link).

2 FRETBursts Overview

2.1 Features

FRETBursts can analyze smFRET measurements from one
or multiple excitation spots [19]. The supported excita-
tion schemes include single laser, alternating laser exci-
tation (ALEX) with either CW lasers (us-ALEX [2(]) or
pulsed lasers (ns-ALEX [22] or pulsed-interleaved excitation
(PIE) [27]).

The software implements both standard and novel algo-
rithms for smFRET data analysis including background es-
timation as a function of time (including background accu-
racy metrics), sliding-window burst search [8], dual-channel
burst search (DCBS) [29] and modular burst selection meth-
ods based on user-defined criteria (including a large set of
pre-defined selection rules). Novel features include burst size
selection with y-corrected burst sizes, burst weighting, burst
search with background- dependent threshold (in order to
guarantee a minimal single-to background ratio [25]). More-
over, FRETBursts provides a large set of fitting options to
characterize FRET populations. In particular, distributions
of burst quantities (such as E or .S) can be assessed through
(1) histogram fitting (with arbitrary model functions), (2)
non-parametric weighted kernel density estimation (KDE),
(3) weighted expectation-maximization (EM), (4) maximum
likelihood fitting using Gaussian models or Poisson statistic.
Finally FRETBursts includes a large number of predefined
and customizable plot functions which (thanks to the mat-
plotlib graphic library) produce publication quality plots in a
wide range of formats.

2.2 Notebook Workflow

FRETBursts has been developed with the goal of facilitating
computational reproducibility of the performed data anal-
ysis [B]. For this reason, the preferential way of using
FRETBursts is by executing one of the tutorials which are
in the form of Jupyter notebooks [36]. Jupyter (formerly
IPython) notebooks are web-based documents which contain
both code and rich text (including equations, hyperlinks, fig-
ures, etc...). FRETBursts tutorials are notebooks which can
be re-executed, modified or used to process new data files
with minimal modifications. The “notebook workflow” [36]
not only facilitates the description of the analysis (by inte-
grating the code in a rich document) but also greatly enhance
its reproducibility by storing an execution trail that includes

software versions, input files, parameters, commands and all
the analysis results (text, figures, tables, etc...).

The Jupyter Notebook environment streamlines
FRETBursts execution (compared to a traditional script
and terminal based approach) and allows FRETBursts to
be used even without prior python knowledge. The user
only needs to get familiar with the notebook graphical
environment, in order to be able to navigate and run the
notebooks. The list of FRETBursts notebooks can be found
in the FRETBursts_notebooks repository on GitHub (link).

2.3 Development Model

FRETBursts (and the entire python ecosystem it depends on)
is open source and the source code is fully available for any
scientist to study, review and modify. The authors encourage
users to use GitHub issues for questions, discussions and bug
reports, and to submit patches through GitHub pull requests.

In order to minimize the likelihood of bugs and erroneous
results, FRETBursts is developed following modern software
engineering techniques such as defensive programming, unit
testing, regression testing and continuous integration [44].

The open source nature of FRETBursts and of the python
ecosystem, not only makes it a more transparent, reviewable
platform for scientific data analysis, but also allows to lever-
age state-of-the-art online services as GitHub (link) for host-
ing, issues tracking and code reviews, TravisCI (link) for con-
tinuous integration (i.e. automated test suite execution on
multiple platforms after each commit) and ReadTheDocs.org
for automatic documentation building and hosting. All these
services would be extremely costly, if available tout court, for
a proprietary software or platform [9].

3 Architecture and Concepts

In this section we introduce some general concepts and nam-
ing conventions related to the smFRET burst analysis in
FRETBursts.

3.1 Photon Streams

The fundamental data at the core of smFRET experiments is
the array of photon arrival timestamps, with a temporal res-
olution set by the acquisition hardware, ranging from below
nanoseconds to a few tens of nanoseconds. In single-spot
measurements, all timestamps are stored in a single array.
In multi-spot measurements [[19], there are as many times-
tamps arrays as excitation spots.

Each array contains timestamps from both donor (D) and
acceptor (A) channels. In ALEX measurements [23], we
can further differentiate between photons emitted during D
and A excitation periods. In FRETBursts the different selec-
tions of photons/timestamps are called “photon streams” and
they are specified with a Ph_sel object (link). In non-ALEX
smFRET data there are 3 photon streams (table [l), while in
ALEX data we have 5 base photon streams (table [).

https://github.com/tritemio/fretbursts_paper
https://github.com/tritemio/FRETBursts_notebooks
http://https://github.com
https://travis-ci.org
https://readthedocs.org/
http://fretbursts.readthedocs.org/en/latest/ph_sel.html
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Photon selection ‘ code

All-photons Ph_sel('all')
D-emission Ph_sel(Dex='Dem')
A-emission Ph_sel(Dex='Aem')

Table 1: Photon selection syntax (non-ALEX)

code
Ph_sel('all"')
Ph_sel(Dex='Dem')
Ph_sel(Dex='Aem')
Ph_sel (Aex='Dem')
Ph_sel (Aex='Aem')

Photon selection

All-photons

D-emission during D-excitation
A-emission during D-excitation
D-emission during A-excitation
A-emission during A-excitation

Table 2: Photon selection syntax (ALEX)

The Ph_sel class (link) allows the expression of any com-
bination of photon streams. For example, in ALEX measure-
ments, the D-emission during A-excitation stream is usually
excluded because it does not contain any useful signal [23].
To indicate all but the photons in this photon stream we write
Ph_sel(Dex='DAem', Aex='Aem'), which indicates selection
of donor and acceptor photons (DAem) during donor excita-
tion (Dex) and only acceptor photons (Aem) during acceptor
excitation (Aex).

3.2 Background Definitions

An estimation of the background rates is needed both to se-
lect a proper threshold for burst search and to correct the
raw burst counts by subtracting the background counts.

The recorded stream of timestamps is the result of two
processes: one characterized by a high count rate, due to
fluorescence photons of single molecules crossing the ex-
citation volume, and another one characterized by a lower
count rate due to “background counts” originating from the
detectors dark counts, out of focus molecules and sample
scattering and/or auto-fluorescence [12]. The signature of
those two processes can be observed in the distribution of
timestamp delays (i.e. the waiting times between two sub-
sequent timestamps) as illustrated in figure fl(a). The “tail”
of the distribution (a straight line in semi-log scale) corre-
sponds to exponentially-distributed delays, indicating that
those counts are generated by a Poisson process (link). At
short timescales, the distribution departs from exponential
behavior due to the contribution of the higher rate process
of single molecules traversing the excitation volume. To es-
timate the background rate, (i.e. the exponential time con-
stant) it is necessary to define a delay threshold, above which
the distribution can be considered exponential. Next a fit-
ting method, for example the Maximum Likelihood Estima-
tion (MLE) or a curve fit of the histogram via non-linear least
squares (NLSQ) must be selected.

It is advisable to check the background at different time
points throughout the measurements in order to track pos-
sible variations. Experimentally, we found that when the

Name Description

nd number of photons detected by the donor chan-
nel (during donor excitation period in ALEX
case)

na number of photons detected by the accep-
tor channel (during donor excitation period in
ALEX case)

naa number of photons detected by the accep-

tor channel during acceptor excitation period
(present only in ALEX measurements)

Table 3: Data attributes names and descriptions for burst
photon counts in different photon streams.

background is not constant, it usually varies on time scales
of tens of seconds (see figure B). FRETBursts splits the data
in uniform time slices called background periods and com-
putes the background rates for each of these slices (see sec-
tion [£.3). Note that the the same splitting in background pe-
riods is used during burst search to compute a background-
dependent threshold and to apply the burst correction (sec-

tion ft.4).

3.3 The Data Class

The Data class (link) is the fundamental data container in
FRETBursts. It contains the measurement data and parame-
ters (attributes) as well as several methods for data analysis
(background estimation, burst search, etc...). All analysis re-
sults (bursts data, estimated parameters) are also stored as
Data attributes.

There are 3 important “burst counts” attributes which con-
tains the number of photon detected in donor or acceptor
channel during donor or acceptor excitation (table B). The at-
tributes in table [f are background-corrected by default. Fur-
thermore, na is corrected for leakage and direct excitation
(section [t.4.9) if the relative coefficients are specified (by de-
fault they are 0). There is also a closely related attribute
named nda for donor photons during acceptor excitation. nda
is normally neglected as it only contains background.

Python details Many Data attributes are list of arrays (or
scalars) with list-length equal to the number of excitation
spots. This means that, in single-spot measurements, to ac-
cess an array of burst-data we always have to specify the
index 0, for example Data.nd[0]. Data implements a short-
cut syntax to access the first element of a list with an under-
score, so we can type equivalently use Data.nd_ instead of
Data.nd[0].

3.4 Introduction to Burst Search

Identifying single-molecule bursts in the stream of photons
is one of the most crucial steps in the analysis of freely-
diffusing single-molecule FRET data. The widely used “slid-
ing window” algorithm, introduced by the Seidel group in

http://fretbursts.readthedocs.org/en/latest/ph_sel.html
http://en.wikipedia.org/wiki/Poisson_process
http://fretbursts.readthedocs.org/en/latest/data_class.html
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1998 ([8], [110]), involves searching for m consecutive pho-
tons detected during a period shorter than At. In other
words, bursts are regions of the photon stream where the
local rate (computed using m photons) is above a minimum
threshold rate. Since a universal criterion to choose the rate
threshold and the number of photons m is, as of today, lack-
ing, it has become a common practice to manually adjust
those parameters for each specific measurement.

A more general approach consists in taking into account
the background rate of the specific measurements and in
choosing a rate threshold that is F' times larger than the
background rate. This approach assures that all the result-
ing bursts have a signal-to-background ratio (SBR) larger
than (F' — 1) [25]. A consistent criterion for choosing the
threshold is particularly important when comparing differ-
ent measurements with different background rates, when the
background significantly varies during measurements or in
multi-spot measurements where each spot has a different
background rate.

A second important aspect of burst search is the choice
of photon stream used to perform the search. In most cases,
for instance when identifying FRET populations, the burst
search should use all photons (i.e. ACBS). In some other
cases, when focusing on donor-only or acceptor only pop-
ulations, it is better to perform the search using only donor
or acceptor signal. In order to handle the general case and to
provide flexibility, FRETBursts allows to perform the burst
search on arbitrary selections of photons. (see section B.1
for more info on photon stream definitions).

Additionally, Nir et al. [29] proposed a DCBS, which can
help to mitigate artifacts due to photo-physical effects such
as blinking. In DCBS a search is performed independently
on two photon streams and bursts are marked only when
both photon streams exhibit a rate higher than the threshold,
implementing an AND-gate logic. Usually, the term DCBS
refers to a burst search where the two photon streams are (1)
all photons during donor excitation (Ph_sel(Dex='DAem'))
and (2) acceptor channel photons during acceptor excitation
(Ph_sel(Aex="Aem')).

After each burst search, it is necessary to select bursts
having a minimum number of photons (burst size). In the
most basic form, this selection can be performed during burst
search by discarding bursts with size smaller than a threshold
L, as originally proposed by Eggeling et al. [8]. This method,
however, neglects the effect of background and y factor on
the burst size and can lead to a selection bias of certain chan-
nels and/or sub-populations. For this reason we encourage
performing a burst size selection after background correc-
tion, possibly taking into account the y factor, as discussed
in sections B.9 and £.9. In special situations, users can also
choose to replace this size selection with another criterion
such as burst duration or brightness.

3.5 +y-corrected Burst Sizes and Weights

The number of photons detected during a burst, commonly
called “burst size”, is usually computed using either all pho-
tons, or photons detected during donor excitation period. To
compute the burst size, FRETBursts uses one of the following
formulas:

Ndex = Mg + Y N4 (1)

Ng = Ng +YNd + Naa (2)

where ng, n, and n,, are, similarly to the attributes in ta-
ble E the background-corrected burst counts in different
channels and excitation periods. -, called the “y factor”,
takes into account different quantum yields of donor and ac-
ceptor dyes and different photon detection efficiencies be-
tween donor and acceptor detection channels [23]. Eq. fI in-
cludes only photons during donor excitation periods, while
eq. [l includes all photons. Burst sizes computed according
to eq. fll or [are called y-corrected burst sizes.

The burst search algorithm yields a set of bursts whose
sizes approximately follows an exponential distribution.
Bursts with large sizes (which contain most of the informa-
tion) are much less frequent than bursts with smaller sizes.
For this reason, it is important to select burst sizes larger than
a threshold in order to properly characterize FRET popula-
tions (see section [£.5).

Selecting bursts by size is a critically important step. A
too low threshold will broaden the FRET populations and
introduce artifacts (spurious peaks and patterns) due to the
majority of bursts having E and S computed from ratios of
small integers. Conversely, a too high threshold will result
in a lower number of bursts and possibly poor statistics in
representing FRET populations. Additionally, when select-
ing bursts (see section .5), it is important to use y-corrected
burst sizes, in order to avoid under-representing some FRET
sub-populations due to different quantum yields between
donor and acceptor dyes and/or different photon detection
efficiencies of donor and acceptor emission.

A simple way to mitigate the dependence on the burst
size threshold is weighting bursts according to their size (i.e.
their information content) so that the bursts with largest
sizes will have the largest weights. The weighting can be
used to build weighted histograms or Kernel Density Esti-
mation (KDE) plots. When using weights, the choice of a
particular burst size threshold affects the shape of the burst
distribution to a lesser extent, therefore lower thresholds can
be used (yielding to better statistics) without broadening the
peaks of sub-populations (yielding to better population iden-
tification).

Python details FRETBursts has the option to weight
bursts using y-corrected burst sizes which optionally in-
clude acceptor excitation photons naa. A weight propor-
tional to the burst size is applied by passing the argument
weights='size' to histogram or KDE plot functions. The

https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

weights keyword can be also passed to fitting functions in
order to fit the weighted E or S distributions (see section [£.6).
Several other weighting functions (for example quadrati-
cal) are listed in the fret_fit.get_weights documentation

(link).

3.6 Plotting Data

FRETBursts uses matplotlib [6] and seaborn [42] to provide a
wide range of built-in plot functions (link) for Data objects.
The plot syntax is the same for both single and multi-spot
measurements. The majority of plot commands are called
through the wrapper function dplot, for example to plot a
timetrace of the photon data, type:

‘dplot(d, timetrace)

The function dplot is the generic plot function which cre-
ates figure and handles details common to all the plotting
functions (for instance the title). d is the Data variable and
timetrace is the actual plot function which operates on a sin-
gle channel. In multi-spot measurements dplot creates one
subplot for each spot and calls timetrace for each channel.

All built-in plot functions which can be passed to dplot
are defined in the burst_plot module (link).

Python details When FRETbursts is imported, all plot
functions are also imported. To facilitate finding the plot
functions through auto-completion, their names start with
a standard prefix indicating the plot type. The prefixes are:
timetrace for binned timetraces of photon data, ratetrace
for rates of photons as a function of time (non binnned),
hist for functions plotting histograms and scatter for scat-
ter plots. Additional plots can be easily created directly with
matplotlib.

By default, in order to speed-up batch processing,
FRETBursts notebooks display plots as static images using
the inline matplotlib backend. User can switch to interactive
figures inside the browser by activating the interactive back-
end with the command ¥matplotlib notebook. Another op-
tion is displaying figures in a new standalone window using
a desktop graphical library such as QT4. In this case the com-
mand to be used is %matplotlib qt.

A few plot functions such as timetrace and hist2d_alex
have interactive features which require the QT4 backend. As
an example, after switching to the QT4 backend the follow-
ing command:

‘dplot(d, timetrace, scroll=True, bursts=True)

will open a new window with a timetrace plot with overlay
of bursts, and an horizontal scroll-bar for quick ”scrolling”
throughout time. The user can click on a burst to have the
corresponding burst info be printed in the notebook. Simi-
larly, calling the hist2d_alex function with the QT4 back-
end allows selecting an area on the E-S histogram using the
mouse.

‘dplot(ds, hist2d_alex, gui_sel=True)

The values that identify the region are printed in the note-
book and can be passed to the function select_bursts.ES to
select bursts inside that region (see section [.5).

4 smFRET Burst Analysis

4.1 Loading the Data

While FRETBursts can load data files from a few file for-
mats, the authors promote Photon-HDF5 [18], an HDF5-
based open format specifically designed for freely-diffusing
smFRET and other timestamp-based experiments. Photon-
HDF5 is a self-documented platform and language indepen-
dent binary format which support compression and allows
saving photon-data (e.g. timestamps) and measurement-
specific meta-data (setup and sample information, authors,
provenance etc...). Moreover, Photon-HDF5 is designed
for long-term data preservation and aims to facilitate data
sharing among different software and research groups.
FRETBursts example data files are in Photon-HDF5 format
and can be opened with stand-alone viewers (such as HD-
FView, link) or programming language.

To load data from a Photon-HDF5 file we use the function
loader.photon_hdf5 (link) as follows:

‘d = loader.photon_hdf5(file_name)

where file_name is a string containing the file path. This
command loads all the measurement data into the variable
d, a Data object (see section .3).

The same command can load data from a variety of mea-
surement types stored in a Photon-HDF5 file. For instance,
data generated using different excitation schemes (CW vs
pulsed, single-laser vs 2 alternating lasers) or with any num-
ber of excitation spots is automatically recognized.

Other file formats which FRETBursts can load include ps-
ALEX data stored in SM format (a custom binary format used
in S.W.lab), ns-ALEX data stored in SPC format (a binary for-
mat used by TCSPC Becker & Hickl cards). ns-ALEX data in
HT3 format (a binary format used by PicoQuant hardware)
can be easily converted to Photon-HDF5 using the phcon-
vert converter (link) and then loaded in FRETBursts. More
information on loading these file formats and on manually
loading other arbitrary formats can be found in the loader
module’s documentation (link).

4.2 Alternation Parameters

In case of ps-ALEX and ns-ALEX data, it is necessary to de-
fine the alternation periods for donor and acceptor excita-
tion. In ps-ALEX measurements, CW lasers are alternated
on timescales of 10-100 ps. By plotting the histogram of
the timestamps modulo the alternation period is possible to
identify the donor and acceptor periods (see figure fla). In
ns-ALEX measurements, pulsed lasers are interleaved with
typical separation of 10-100 ns. In this case the histogram

http://fretbursts.readthedocs.org/en/latest/fret_fit.html#fretbursts.fret_fit.get_weights
http://fretbursts.readthedocs.org/en/latest/plots.html
http://fretbursts.readthedocs.org/en/latest/plots.html
http://www.hdfgroup.org/products/java/hdfview/
http://fretbursts.readthedocs.org/en/latest/loader.html#fretbursts.loader.photon_hdf5
http://photon-hdf5.github.io/phconvert/
http://fretbursts.readthedocs.org/en/latest/loader.html
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[Donor:2150-3900 [Accept: 200-1900

[_1 Donor: 1750-3300 Accept: 2560-1650

30000 10°
25000 104
20000
@ 10°
8
thz 15000 ¥
= 102
10000
1 ik
5000 10 I
0 10°
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Timestamp MODULO Alternation period Nanotime bin
(a) (b)

Figure 1: Histograms used for the selection/determination of the alternation periods for two typical smFRET-ALEX exper-
iments. Distributions of photons detected by the donor channels are in green, and by the acceptor channel in red. The light
green and red shaded areas mark the donor and acceptor period definitions. (a) ps-ALEX alternation histogram, i.e. his-
togram of timestamps modulo the alternation period for a smFRET sample. (b) ns-ALEX nanotime histogram for a smFRET
sample. Both plots have been generated by the same plot function (plot_alternation_hist()). Additional information
on these specific measurements can be found in the attached notebook.

of the TCSPC nanotimes will allow the definition of the pe-
riod of fluorescence after excitation of either the donor or the
acceptor (see figure [ib).

In both cases, the functions plot_alternation_hist (link)
will plots the relevant alternation histogram (figure [l) using
currently selected (or default) values for donor and acceptor
excitation periods.

To change the period definitions, the user can type:

‘d.add(D_0N=(2850, 580), A_ON=(900, 2580))

where D_ON and A_ON are tuples (pairs of numbers) repre-
senting the start and stop values for D or A excitation pe-
riods. The previous command works both for ps-ALEX and
ns-ALEX measurements.

After changing the parameters, a new alternation plot will
show the updated period selections.

When the alternation period definition is cor-
rectly defined, it can be applied using the function
loader.alex_apply_period (link):

‘ loader.alex_apply_period(d)

After this command, d will contain only photons inside the
defined excitation periods. At this point, in order to further
change the period definitions, it is necessary to reload the

data file.

4.3 Background Estimation

The first step of smFRET analysis involves estimating back-
ground rates. For example, to compute the background every
30 s, using a minimal inter-photon delay threshold of 2 ms
for all the photon, we use:

‘d.calc_bg(bg.exp_fit, time_s=30, tail_min_us=2000)

The first argument (bg.exp_fit) is the underlying func-
tion used to fit the background in each period and for each
photon stream (see section B.4). The function bg.exp_fit
estimates the background using a maximum likelihood esti-
mation (MLE) of the delays distribution. Additional fitting
functions are available in bg namespace (i.e. the background
module, link). The second argument, time_s, is the back-
ground period (section @) and the third, tail_min_us, is
the inter-photon delay threshold above which the distribu-
tion is assumed exponential. It is possible to use different
thresholds for each photon stream, passing a tuple (ie. a
comma-separated list of values, link) instead of a scalar. Fi-
nally, it is possible to use a heuristic estimation of the thresh-
old using tail_min_us='auto'. For more details refer to the
Data.calc_bg documentation (link).

FRETBursts provides are two kind of plots to represent the
background. One is the histograms of inter-photon delays
compared to the fitted exponential distribution reported in
figure P (see section B.3 for details on the inter-photon dis-
tribution). This plot is performed with the command:

| dplot (d, hist_bg, bp=0)

The argument bp is an integer specifying the background
period to be plotted. When not specified the default is 0, i.e.
the first period. Figure fl allows to quickly identify patho-
logical cases when the background fitting procedure returns
unreasonable values.

The second background-related plot is a timetrace of back-
ground rates, as shown in figure f. This plot allows to mon-
itor background changes taking place during the measure-

http://fretbursts.readthedocs.org/en/latest/plots.html#fretbursts.burst_plot.plot_alternation_hist
http://fretbursts.readthedocs.org/en/latest/loader.html#fretbursts.loader.alex_apply_period
http://fretbursts.readthedocs.org/en/latest/background.html
https://docs.python.org/3.5/tutorial/datastructures.html#tuples-and-sequences
http://fretbursts.readthedocs.org/en/latest/data_class.html#fretbursts.burstlib.Data.calc_bg
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

ment and is obtained with the command:

‘dplot(d, timetrace_bg)

Normally, samples should have a constant background as
a function of time like in figure f(a). However, oftentimes,
non-ideal experimental conditions can yield a time-varying
background, as shown in figure E(b). For example, when the
sample is not sealed in an observation chamber, evaporation
can induce background variations (typically increasing) as
a function of time. Additionally, cover-glass impurities can
contribute to the background even when focusing deep into
the sample (10pm or more). These impurities tend to bleach
on timescales of minutes resulting in background variations
during the course of the measurement.

Python details For an ALEX measurement, the tuple
passed to tail_min_us to define the thresholds, is required
to have have 5 values corresponding the 5 photon streams.
The order of the photon streams can be obtained from the
Data.ph_streams attribute (i.e. d.ph_streams in our ex-
ample). The estimated background rates are stored in the
Data attributes bg_dd, bg_ad and bg_aa, corresponding to
the photon streams Ph_sel (Dex="'Dem'), Ph_sel (Dex="'Aem')
and Ph_sel(Aex='Aem') respectively. These attributes are
lists of arrays (one array per excitation spot). The arrays
contain the estimated background rates in the different back-
ground periods.

4.3.1 Error Metrics and Optimal Threshold

The functions used to fit the background provide also a
goodness-of-fit estimator computed on the basis of the em-
pirical distribution function (EDF) [B0, 37]. The “distance”
between the EDF and the theoretical (i.e. exponential) cu-
mulative distribution represents and indicator of the quality
of fit. Two different distance metrics can be returned by the
background fitting functions. The first is the Kolgomorov-
Smirnov statistics, which uses the maximum of the differ-
ence between the EDF and the theoretical distribution. The
second is the Cramér von Mises statistics corresponding to
the integral of the squared residuals (see the code for more
details, link).

In principle, the optimal inter-photon delay threshold will
minimize the error metric. This approach is implemented by
the function calc_bg_brute (link) which performs a brute-
force search in order to find the optimal threshold. This level
of sophistication in estimating the background rates is not
necessary under typical experimental conditions, as the dif-
ference between an optimal threshold and a manually (or
heuristically) chosen one will be small if not negligible in
most practical cases.

4.4 Burst Search
4.4.1 Burst Search in FRETBursts

Following background estimation, burst search is the next
step of the analysis. In FRETBursts, a standard burst search

on a single photon stream (see section B.4) is performed by
calling the Data.burst_search method (link). For example,
the following command:

‘d.burst_search(F=6, m=10, ph_sel=Ph_sel('all'))

performs a burst search on all photons
(ph_sel=Ph_sel('all')), with a minimum rate 6 times
larger than the background rate (F=6) and using 10 consec-
utive photons to compute the local rate (m=10). A different
photon selection, threshold (F) or number of photons for
rate computation m can be selected by passing a different
value. These parameters are generally a good starting point
for smFRET analysis but can be adjusted in specific cases.

Note that, in the previous burst search, no burst size se-
lection was performed (i.e. the minimum bursts size is effec-
tively m). An additional parameter L can be passed to apply
a threshold on the raw burst size (before any correction). It is
recommended, however, to select bursts only after the back-
ground correction is applied as shown in the next section [£.5.

It might sometimes be useful to specify a fixed photon-
rate threshold, instead of a threshold depending on the back-
ground rate, as in the previous example. In this case, instead
of F, the argument min_rate_cps can be used to specify the
threshold (in Hz). For example, a burst search with a 50 kHz
threshold can be performed as follows:

d.burst_search(min_rate_cps=50e3, m=10,
ph_sel=Ph_sel('all'))

Finally, to perform a DCBS burst search (or in general an
AND gate burst search, see section @) we use the function
burst_search_and_gate (link) as in the following example:

‘d_dcbs = bext.burst_search_and_gate(d, F=6, m=10)

The last command puts the burst search results in a new
copy the Data variable d (the copy is here called d_dcbs).
Since FRETBursts shares the arrays timestamps and detec-
tors between different copies of Data objects, the memory
usage is contained even when using several copies.

Python details Note that, while .burst_search() is a
method of Data, burst_search_and_gate is a function in the
bext module taking a Data object as a first argument and re-
turning a new Data object.

The function burst_search_and_gate accepts optional ar-
guments, ph_sell and ph_sel2, whose default values cor-
respond to the classical DCBS photon stream selection (see
section B.4). These arguments can be specified to select dif-
ferent photon streams than in a classical DCBS.

The bext module (link) collects “plugin” functions that
provides additional algorithms for processing Data objects.

4.4.2 Correction Coefficients

In pus-ALEX there are 3 important correction parameters: y-
factor, donor spectral leakage into the acceptor channel and
acceptor direct excitation by the donor excitation laser [23].
These corrections can be applied by simply assigning to the
respective Data attributes:

https://github.com/tritemio/FRETBursts/blob/master/fretbursts/background.py#L43
http://fretbursts.readthedocs.org/en/latest/plugins.html#fretbursts.burstlib_ext.calc_bg_brute
http://fretbursts.readthedocs.org/en/latest/data_class.html#fretbursts.burstlib.Data.burst_search
http://fretbursts.readthedocs.org/en/latest/plugins.html#fretbursts.burstlib_ext.burst_search_and_gate
http://fretbursts.readthedocs.org/en/latest/plugins.html
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

(@) (b)
* * Experim. distrib. = gl, 2.19 kcps
Y Exponential fit & DexDem, 0.60 kcps
$ DexAem, 0.99 kcps
AexAem, 0.56 kcps

Delays
Delays

0 2 4 6 8 10 0 2 4 6 8
Inter-photon delay (ms) Inter-photon delay (ms)

Figure 2: Experimental distributions of inter-photon delays (dots) and corresponding fits of the exponential tail (solid lines).
(Panel a) An example of inter-photon delays distribution (red dots) and an exponential fit of the tail of the distribution (black
line). (Panel b) Inter-photon delays distribution and exponential fit for different photon streams as obtained with dplot(d,
hist_bg). The dots represent the experimental histogram for the different photon streams. The solid lines represent the
corresponding exponential fit of the tail of the distributions. The legend shows abbreviations of the photon streams and the

fitted rate backround rate.

(@) (b)
—e— All-ph —o— DexAem
—eo— DexDem —eo— AexAem

BG rate (kcps)

0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s)

Time (s)

Figure 3: Estimated background rate as a function of time for two pus-ALEX measurements. Different colors represent
different photon streams. (Panel a) A measurement performed with a sealed sample chamber exhibiting constant a back-
ground as a function of time. (Panel a) A measurement performed on an unsealed sample exhibiting significant background
variations due to sample evaporation an to photo-bleaching of impurities during the measurements (likely on the cover-
glass). These plots are produced by the command dplot(d, timetrace_bg) after estimation of background. Each data

point in these figures is computed for a 30 s time window.

https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

d.gamma = 0.85
d.leakage = 0.04
d.dir_ex = 0.08

These attributes can be assigned either before or after the
burst search. In the latter case, existing burst data is auto-
matically updated using the new correction parameters.

These correction factors can be used to display cor-
rected FRET distributions. However, in order to resolve
the peak FRET efficiency value, we found that is more ac-
curate to fit the FRET histogram without those corrections
(i.e. background-corrected proximity ratio). Next, we can
use an algebraic formula to correct fitted peak positions
(see SI of [23]) and obtain the corrected FRET efficiency.
FRETBursts implements the correction formulas for £ and .S
in the functions fretmath.correct_E_gamma_leak_dir and
fretmath.correct_S (link). A complete derivation of all
these correction formulas (and their inverse) has been posted
as a notebook (link).

4.5 Burst Selection

After burst search, it is common to select bursts according to
different criteria. One of the most common is the burst size.

For instance, to select bursts with more than 30 photons
(computed after background correction) detected during the
donor excitation we use:

‘ds d.select_bursts(select_bursts.size, th1=30)

The previous command creates a new Data variable (ds)
containing the selected bursts. As mentioned before the new
object will share the photon data arrays with the original
object (d) in order to minimize the RAM use.

The first argument of select_bursts (link) is a
python function implementing the 7selection rule”
(select_bursts.size in this example); all the remain-
ing arguments (only th1 in this case) are parameters of the
selection rule. The select_bursts module (link) contains
numerous built-in selection functions (link). For example,
select_bursts.ES is used to select a region on the E-S ALEX
histogram, select_bursts.width to select bursts based on
their duration. New criteria can be easily implemented
by defining a new selection function, which requires not
more than a couple of lines of code in most cases (see the
select_bursts module’s source code for several examples,
link).

Finally, different criteria can be combined by applying
them sequentially. For example, with the following com-
mands:

ds = d.select_bursts(select_bursts.size,
th1=50, th2=200)
dsw = ds.select_bursts(select_bursts.width,
th1=0.5e-3, th2=3e-3)

we apply a combined burst size and duration selection, in
which bursts have sizes between 50 and 200 photons, and
duration between 0.5 and 3 ms.

10

4.5.1 <y-corrected Burst Size Selection

In the previous section, we selected bursts by size using
only photons detected by donor and acceptor channel dur-
ing donor excitation. Conversely, we can apply a thresh-
old on the all-photon burst size (section B.5) by adding 7244
to the burst size as in eq. | This is achieved by pass-
ing add_naa=True to the selection function. When add_naa
is not specified, as in the previous section, the default
add_naa=False is used (i.e. use only photons during donor
excitation). The complete selection command is:

ds = d.select_bursts(select_bursts.size,
th1=30, add_naa=True)

and the resulting selection is plotted in figure .

Another important parameter for defining the burst size is
the y-factor, i.e. the imbalance between the donor and the ac-
ceptor channels. As noted in section B.5, the y-factor is used
to compensate bias for the different fluorescence quantum
yields of the D and A fluorophores as well as the different
photon-detection efficiencies of the D and A channels. When
y-factor is not 1, neglecting its effect on burst size leads to
over-representing (in terms of number of bursts) one popu-
lation versus to the others.

When the y factor is known, users can pass the argument
gamma during burst selection:

ds = d.select_bursts(select_bursts.size,
thi=15, gamma=0.65)

When not specified, v = 1 is assumed.
For more information on burst size selection refer to the
select_bursts.size documentation (link).

Python details The method Data.burst_sizes (link)
computes and returns y-corrected burst sizes with or with-
out addition of naa.

4.5.2 Select the FRET Populations

In smFRET-ALEX experiments, in addition to one or more
FRET populations, there are always donor-only (D-only) and
acceptor-only (A-only) populations. In most cases, these ad-
ditional populations are not of interest and need to be filtered
out.

In principle, using the E-S representation, we can exclude
D-only and A-only bursts by selecting bursts withing a range
of S values (e.g. S=0.2-0.8). This approach, however, simply
truncates the burst distribution with arbitrary thresholds and
is therefore not recommended for quantitative assessment of
FRET populations.

A better approach consists in applying two selection filters
one after the other. First, we filter out the A-only population
by applying a threshold on number of photons during donor
excitation. Second, we exclude the D-only population by by
applying a threshold on number of photons during acceptor
excitation. The commands for this combined selections are:

dsl =
ds2

th1=15)
th1=15)

d.select_bursts(select_bursts.size,
dsl.select_bursts(select_bursts.naa,

http://fretbursts.readthedocs.org/en/latest/fretmath.html
http://nbviewer.jupyter.org/github/tritemio/notebooks/blob/master/Derivation%20of%20FRET%20and%20S%20correction%20formulas.ipynb
http://fretbursts.readthedocs.org/en/latest/data_class.html#burst-selection-methods
http://fretbursts.readthedocs.org/en/latest/burst_selection.html
http://fretbursts.readthedocs.org/en/latest/burst_selection.html#module-fretbursts.select_bursts
https://github.com/tritemio/FRETBursts/blob/master/fretbursts/select_bursts.py
http://fretbursts.readthedocs.org/en/latest/burst_selection.html#fretbursts.select_bursts.size
http://fretbursts.readthedocs.org/en/latest/data_class.html#fretbursts.burstlib.Data.burst_sizes
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

% 40
3
@ 20
F*
54
1.0 48
42
0.8
36
0.6 30
(7]
0.4 24
18
0.2
12
0.0 6
0
00 02 04 06 08 1.0 0 200 400
E # Bursts

Figure 4: A 2-D ALEX histogram and marginal E and S his-
tograms obtained with alex_jointplot(ds). Bursts se-
lected with a burst size threshold of 30 photons, including
photons during the acceptor excitation. Three populations
are visible: FRET population (middle), D-only population
(top left) and A-only population (bottom, S < 0.2). Compare
with figure § where the FRET population has been isolated.

Here, the variable ds2 contains the composite selection of
bursts. Figure f shows the resulting pure FRET population
obtained with the previous selection.

4.6 Population Analysis

Typically, after bursts selection, E or S histograms are fit-
ted to a model. FRETBursts mfit module allows fitting his-
tograms of bursts quantities (i.e. E or S) with arbitrary mod-
els. In this context, a model is an object specifying a func-
tion, the parameters varied during the fit and optional con-
traints for these parameters. This concept of model is taken
from Imfit [28], the underlying library used by FRETBursts
to perform the fits.

Models can be created from arbitrary functions. For con-
venience, FRETBursts allows to use predefined models such
as 1 to 3 Gaussian peaks or 2-Gaussian plus “bridge”. Built-in
models are created calling a corresponding factory function
(names starting with mfit.factory_) which initializes the
parameters with values and constraints suitable for E and S
histograms fits. (see Factory Functions documentation, link).

Continuing our example, in order to fit the E histogram of
bursts in the ds variable with two Gaussian peaks, we use
the following command:

bext.bursts_fitter(ds, 'E', binwidth=0.03,

model=mfit.
factory_two_gaussians())

Changing 'E' with 'S' will fit the S histogram instead.
The argument binwidth specifies the histogram bin width

11

400
§]
e
= ‘ ‘ ‘ ‘ ’
*
0 1 | I I II I I
Bursts: 4651
48
1.0
42
0.8
36
0.6 30
%]
0.4 24
18
0.2
12
0.0 6

00 02

0.4

06 08 1.0 0 200 400

Bursts

Figure 5: 2-D ALEX histogram after selection of FRET pop-
ulation using two selection filters on donor excitation and
acceptor excitation number of photons, starting from bursts
in figure f.

and the argument model takes pre-initialized model used to
be used for fitting.

All fitting results (including best fit values, uncertainties,
etc...), are stored in the E_fitter (or S_fitter) attributes of
the Data variable (here named ds). To print a comprehen-
sive summary of the fitting results including uncertainties,
reduced x? and correlation between parameters we can use
the following command:

fit_res ds.E_fitter.fit_res[0]
print (fit_res.fit_report())

To plot the fitted model together with the FRET histogram
as in figure |, we pass the parameter show_model=True to
hist_fret function as follows (see section B.g for an intro-
duction to plotting):

‘ dplot(ds, hist_fret, show_model=True)

For more examples on fitting bursts data and plotting re-
sults see the fitting section of the ps-ALEX notebook (link),
the Fitting Framework section of the documentation (link) as
well as the bursts_fitter function documentation (link).

Python details Models returned by FRETBursts’s factory
functions (mfit.factory_x*) are lmfit.Model objects (link).
Custom models can be created calling 1mfit.Model directly.
When an Imfit.Model is fitted, it returns a ModelResults ob-
ject (link) which contains all the information related to the
fit (model, data, parameters with best values and uncertain-
ties) and useful methods to operate on fit results. FRETBursts
puts a ModelResults object of each excitation spot in the list
ds.E_fitter.fit_res. Asan example, to get the reduced X2
value of the E histogram fit in a single-spot measurement d,
we use:

http://fretbursts.readthedocs.org/en/latest/mfit.html#model-factory-functions
http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/FRETBursts%20-%20us-ALEX%20smFRET%20burst%20analysis.ipynb#FRET-fit:-in-depth-example
http://fretbursts.readthedocs.org/en/latest/fit.html
http://fretbursts.readthedocs.org/en/latest/plugins.html#fretbursts.burstlib_ext.bursts_fitter
https://lmfit.github.io/lmfit-py/model.html
https://lmfit.github.io/lmfit-py/model.html#the-modelresult-class
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

3.0

2.5

2.0

PDF

1.0

0.5

0.0
0.0

Figure 6: Example of a FRET histogram fitted with a
2-Gaussian model. The plot is generated after perform-
ing the fit with the command dplot(ds, hist_fret,
show_model=True).

‘ d.E_fitter.fit_res[0].redchi

Other useful attributes are aic and bic which contain the
Akaike information criterion (AIC) and the Bayes Informa-
tion criterion (BIC) quantities. AIC and BIC allow to com-
pare different models and to select the most appropriate for
the data at hand.

Example of defining and modifying models for fitting are
provided in the afore mentioned ps-ALEX notebook. Users
can also refer to the comprehensive Imfit’s documentation

(link).

4.7 Timestamps and Burst Data

Beyond providing prepackaged functions for established
methods, FRETBursts also provides the infrastructure for ex-
ploring new analysis approaches. Users can easily get times-
tamps (or selection masks) for any photon stream. Core burst
data (essentially start and stop times, indexes and derived
quantities for each burst) are stored in a Bursts object (link).
This object provides a simple and well-tested interface (100
% unit-test coverage) to access and manipulate burst data.
Bursts are created from a sequence of start/stop times and
indexes, while all the other fields are automatically com-
puted. Bursts’s methods allow to recompute indexes rela-
tive to a different photon selection or recompute start and
stop times relative to a new timestamps array. Additional
methods perform fusion of nearby bursts or combination of
two set of bursts (time intersection or union). This function-
ality is used for example to implement the DCBS. In con-
clusion, Bursts efficiently implements all the common op-
erations performed with burst data, providing and easy-to-
use interface and well tested algorithms. Leveraging Bursts
methods, users can implement new types of analysis with-
out wasting time implementing (and debugging) standard
manipulation routines. Examples of working directly with
timestamps, masks (i.e. photon selections) and burst data

12

are provided in one of the FRETBursts notebooks (link). Sec-
tion f provides a complete example on using FRETBurts to
implement custom burst analysis techniques.

Python details Timestamps are stored in the Data at-
tribute ph_times_m, which is a list or arrays, one array
per excitation spot. In single-spot measurements the full
timestamps array is accessed as Data.ph_times_m[0]. To
get timestamps of arbitrary photon streams, users can use
the method Data.get_ph_times (link). Photon streams are
selected from the full (all-photon) timestamps array using
boolean masks. The masks can be obtained using the method
Data.get_ph_mask (link). Bursts objects internally store the
start and stop times and indexes in a numpy array. The other
fields are computed on-the-fly using class properties, so they
are always up to date even if start and stop are modified. Iter-
ation over Bursts is relatively fast, with performances simi-
lar to iterating through numpy rows.

5 Implementing Burst Variance

Analysis

In this section we describe how to implement the burst vari-
ance analysis (BVA) [B9]. FRETBurts provides well-tested,
general-purpose functions for timestamps and burst data
manipulation and therefore simplifies implementing custom
burst analysis algorithms such as BVA.

5.1 BVA Overview

Single-molecule FRET histograms show more information
than just mean FRET efficiencies. While, in general, sev-
eral peaks indicate the presence of multiple subpopulations,
a single peak cannot be a priori associated with a single FRET
efficiency, unless a detailed shot-noise analysis is carried
out [[1,29].

The width of a FRET distribution has a typical lower
boundary set by shot noise, which is caused by the statis-
tics of discrete photon-detection events. FRET distributions
broader than the shot noise limit, can be ascribed to a static
mixture of species with slightly different FRET efficiencies,
or to a specie undergoing dynamic transitions (e.g. intercon-
version between multiple states, diffusion in a continuum of
conformations, binding-unbinding events, etc...). By simply
looking at the FRET histogram, in cases when there is sin-
gle peak broader than shot-noise, it is not possible to dis-
criminate between the static and dynamic case. The BVA
method has been developed to address this issue of detecting
the presence of dynamics in FRET distributions [39], and has
been successfully applied to identify biomolecular processes
with dynamics on the millisecond time-scale [34,39].

The basic idea behind BVA is to slice bursts in sub-bursts
with a fixed number of photons n, and to compare the em-
pirical variance of acceptor counts across all sub-bursts in a

http://lmfit.github.io/lmfit-py/
http://fretbursts.readthedocs.org/en/latest/burstsearch.html
http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/Example%20-%20Working%20with%20timestamps%20and%20bursts.ipynb
http://fretbursts.readthedocs.org/en/latest/data_class.html?highlight=get_ph_times#fretbursts.burstlib.Data.get_ph_times
http://fretbursts.readthedocs.org/en/latest/data_class.html?highlight=get_ph_mask#fretbursts.burstlib.Data.get_ph_mask
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

burst with the theoretical shot-noise limited variance, dic-
tated by the Binomial distribution. An empirical variance of
sub-bursts larger than the shot-noise limited value indicates
the presence of dynamics. Naturally, since the estimation of
the sub-bursts variance is affected by uncertainty, BVA anal-
ysis provides and indication of an higher or lower probability
of observing dynamics.

In a FRET (sub-)population distribution originating from a
single static FRET efficiency, the sub-bursts acceptor counts
N, can be modeled as a Binomial-distributed random vari-
able N, ~ Binom{n, E'}, where n is the number of pho-
tons in each sub-burst and E is the estimated population
FRET efficiency. Note that, without approximation, we can
replace E with PR and use the uncorrected counts. This
is possible because, regardless of the molecular FRET effi-
ciency, the detected counts are partitioned between donor
and acceptor channel according to a Binomila distribution
whit a p parameter equal to PR. The only approximation
done here and in the following paragraphs is neglecting the
presence background (a reasonable approximation since the
backgrounds counts are in general a very small fraction of
the total counts). We refer the interested reader to [39] for
further discussion.

If N, follows a binomial distribution, the random variable
E = N, /n, has standard deviation reported in eq. .

E(1-E)

Std(E) = .

®)

5.2 BVA Implementation

BVA analysis consists of four steps: 1) slicing bursts into sub-
bursts containing a constant number of consecutive pho-
tons, n, 2) computing FRET efficiencies of each sub-burst,
3) calculating the empirical standard deviation (sg) of sub-
burst FRET efficiencies over the whole burst, and 4) com-
paring sg to the expected standard deviation of a shot-noise
limited distribution (eq.).

If, as in figure [, the observed FRET efficiency distribu-
tion originates from a static mixture of FRET efficiency sub-
populations (of different non-interconverting molecules), s
of each burst is only affected by shot noise and will fol-
low the expected standard deviation curve based on eq. ff.
Conversely, if the observed distribution originates from
biomolecules of a single specie, which interconverts be-
tween different FRET sub-populations in (times comparable
to diffusion time), as in figure E, sg of each burst will be
larger than the expected shot-noise-limited standard devia-
tion, hence it will be placed above the shot-noise standard
deviation curve (right panel on figure §). For implementa-
tion details please refer to the BVA notebook included with
FRETBursts (link).

13

6 Development and Contributions

Errors are an inevitable reality in any reasonably complex
software. It is therefore critical to implement countermea-
sures to minimize the probability of introducing bugs and
their potential impact [32, 44]. We strive to follow modern
best-practices in software development which are summa-
rized below.

In FRETBursts, we highly value source code readability, a
property which can reduce the number of bugs by facilitat-
ing understanding and verifying the code. For this purpose,
FRETBursts code-base is well commented (more that 35% of
source code), follows the PEP8 python code style rules (link),
and has docstrings in napoleon format (link).

Reference documentation is built with Sphinx (sphinx-
doc.org) and all the API documents are automatically gen-
erated from docstrings. On each commit, documentation is
automatically built and deployed on ReadTheDocs.org.

Unit tests cover most of the core algorithms, ensuring con-
sistency and minimizing the probability of introducing bugs.
The TravisCI (link) continuous integration service, executes
the full test suite on each commit, timely reporting errors.
As a rule, whenever a bug is discovered, the fix also includes
a new test to ensure that the same bug cannot happen in the
future. In addition to the unit tests, we include a regression-
test notebook (link) to easily compares numerical results be-
tween two versions of FRETBursts. Additionally, the tutori-
als themselves are executed before each release as an addi-
tional test layer to ensure that no errors or regressions are
introduced.

FRETBursts is openly developed using the GitHub plat-
form. Contributors of any level of expertize are welcome in
the projects and publically acknowledged. Contributions can
be as simple as pointing out deficiencies in the documenta-
tion but can also be bug reports or corrections to the docu-
mentation or code. Users willing to implement new features
are encouraged to open an Issue on GitHub and to submit a
Pull Request. The open source nature of FRETBursts guar-
antees that contributions will remain available to the entire
single-molecule community.

7 Conclusions

FRETBursts provides an open source implementation of
state-of-the-art smFRET burst analysis accessible to the
whole single-molecule community. FRETBursts imple-
ments several novel concepts which can lead to significantly
more accurate results in specific situations: time-dependent
background estimation, background dependent burst search
threshold, burst weighting, burst selection based on y-
corrected burst sizes.

More importantly, FRETBursts provides a library of well-
tested routines for timestamps and burst manipulation, mak-
ing it an ideal environment to quickly develop and compare
novel analytical techniques.

http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/Example%20-%20Burst%20Variance%20Analysis.ipynb
https://www.python.org/dev/peps/pep-0008/
http://sphinxcontrib-napoleon.readthedocs.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
https://readthedocs.org/
http://travis-ci.org
https://github.com/tritemio/FRETBursts/blob/master/notebooks/dev/tests/FRETBursts%20-%20Regression%20tests.ipynb
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

0.40

Bursts

50 0.35

0.30
#Bursts: 1216 18

1.0 16 0.25

0.8
Sa)
5 0.20

06
10 0.15

0.4
0.10
0.2

0.05
0.0

0 0.00
00 02 04 06 08 10 0 100 0.0 0.2 04 0.6 0.8 1.0

E # Bursts PR

Figure 7: Left figure is an E-S histogram for a mixture of single stranded DNA (20dT) and double stranded DNA (20dT-
20dA) in the presence of 200mM MgCls. Right figure is its BVA plot. Since both 20dT and 20dT-20dA are stable and have
no dynamics, the BVA plots shows an sg peak sitting on the expected standard deviation curve (red curve).

0.40

0.35

Bursts

45 0.30

0.25

0.8
30 gl 0.20

0.6
0.15

0.4
15 0.10

0.2

0.05
0.0 5

0.00
00 02 04 06 08 10 0 200 400 0.0 0.2 0.4 0.6 0.8 1.0
E # Bursts PR

Figure 8: Left figure is an E-S histogram for single stranded DNA (A3, -TA, see in [40]), which is designed to form a hairpin
structure temporarily and reversibly in the presence of 400mM NaCl. Right figure is its BVA plot. Since the transition
between hairpin and open structure causes a significant change in FRET efficiency, the BVA plot shows that sg, in the
bridge region between two populations, sits largely above the expected standard deviation curve (red curve).

14

https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

We summarize here what we consider to be the strengths
of the FRETBursts software.

1. Open source and openly developed. The source code
can be checked, modified and adapted for different pur-
poses. All the software dependencies are open source
as well.

. Several state-of-the-art and novel algorithms for each
step of the smFRET burst analysis pipeline are provided.

. Modern software engineering design: the DRY principle
to reduce duplication and the KISS principle to avoid
over-engineering were followed.

. Defensive programming [32]: care about code readabil-
ity, unit and regression testing and continuous integra-
tion.

Given its features, FRETBursts is both a toolkit for de-
veloping novel algorithms in smFRET burst analysis and a
well-tested software for standard smFRET burst analysis. Its
open source nature and open development process assures
that discovered bug are always timely disclosed, and lowers
the barriers for new users to identify and potentially fix bugs,
and even develop new or improved analysis.

Acknowledgments

This work was supported in part by National Institutes of
Health (NIH) grant R01-GM95904 and by U.S. Department
Energy (DOE) grant DEFC02-02ER63421-00.

References

[1] M. Antonik, S. Felekyan, A. Gaiduk, and C. A. M. Sei-
del. Separating structural heterogeneities from stochas-
tic variations in fluorescence resonance energy transfer
distributions via photon distribution analysis. Journal
of Physical Chemistry B, 110(13):6970-6978, apr 2006.

[2] J. D. Blischak, E. R. Davenport, and G. Wilson. A Quick
Introduction to Version Control with Git and GitHub.
PLOS Computational Biology, 12(1):e1004668, jan 2016.

[3] J. B. Buckheit and D. L. Donoho. WaveLab and Repro-
ducible Research. In Wavelets and Statistics, pages 55—
81. Springer Science + Business Media, 1995.

[4] B. A. Camley, F. L. H. Brown, and E. A. Lipman. Forster
transfer outside the weak-excitation limit. J. Chem.
Phys., 131(10):104509, 2009.

M. Dahan, A. A. Deniz, T. Ha, D. S. Chemla, P. G.
Schultz, and S. Weiss. Ratiometric measurement and
identification of single diffusing molecules. Chemical
Physics, 247(1):85-106, aug 1999.

(5]

15

[6] M. Droettboom, J. Hunter, T. A. Caswell, E. Firing,
J. H. Nielsen, P. Elson, B. Root, D. Dale, J.-J. Lee, J. K.
Seppanen, D. McDougall, A. Straw, R. May, N. Varo-
quaux, T. S. Yu, E. Ma, C. Moad, S. Silvester, C. Gohlke,
P. Wurtz, T. Hisch, F. Ariza, Cimarron, I. Thomas,
J. Evans, P. Ivanov, J. Whitaker, P. Hobson, mdehoon,
and M. Giuca. matplotlib: matplotlib v1.5.1, jan 2016.

C. Eggeling, S. Berger, L. Brand, J. Fries, J. Schaf-
fer, A. Volkmer, and C. Seidel. Data registration
and selective single-molecule analysis using multi-
parameter fluorescence detection. Journal of Biotech-
nology, 86(3):163-180, apr 2001.

[8] C. Eggeling, J. R. Fries, L. Brand, R. Gunther, and
C. A. M. Seidel. Monitoring conformational dynam-
ics of a single molecule by selective fluorescence spec-
troscopy. Proceedings of the National Academy of Sci-

ences, 95(4):1556—1561, feb 1998.

J. Freeman. Open source tools for large-scale neuro-
science. Current Opinion in Neurobiology, 32:156-163,
jun 2015.

[10] J. R. Fries, L. Brand, C. Eggeling, M. Koéllner, and
C. A. M. Seidel. Quantitative Identification of Differ-
ent Single Molecules by Selective Time-Resolved Con-
focal Fluorescence Spectroscopy. J Phys. Chem. A,

102(33):6601-6613, aug 1998.

I. Gopich and A. Szabo. Theory of photon statistics in
single-molecule Forster resonance energy transfer. 7.
Chem. Phys., 122(1):014707, 2005.

[12] L V.Gopich. Concentration Effects in “Single-Molecule”
Spectroscopy t. F. Phys. Chem. B, 112(19):6214-6220,

may 2008.

I. V. Gopich and A. Szabo. Single-Molecule FRET
with Diffusion and Conformational Dynamics. 7. Phys.
Chem. B, 111(44):12925-12932, nov 2007.

E. C. Hayden. Mozilla plan seeks to debug scientific
code. Nature, 501(7468):472-472, sep 2013.

E. C. Hayden. Rule rewrite aims to clean up scientific
software. Nature, 520(7547):276-277, apr 2015.

J. Hohlbein, T. D. Craggs, and T. Cordes. Alternating-
laser excitation: single-molecule FRET and beyond.
Chem. Soc. Rev., 43(4):1156—-1171, 2014.

D.C.Ince, L. Hatton, and J. Graham-Cumming. The case
for open computer programs. Nature, 482(7386):485—
4388, feb 2012.

A. Ingargiola, T. Laurence, R. Boutelle, S. Weiss, and
X. Michalet. Photon-HDF5: An Open File Format for
Timestamp-Based Single-Molecule Fluorescence Ex-
periments. Biophysical Journal, 110(1):26-33, jan 2016.

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/KISS_principle
https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

(19]

(20]

(21]

(23]

(24]

(28]

(29]

A. Ingargiola, F. Panzeri, N. Sarkhosh, A. Gulinatti,
L. Rech, M. Ghioni, S. Weiss, and X. Michalet. 8-spot
smFRET analysis using two 8-pixel SPAD arrays. In
J. Enderlein, I. Gregor, Z. K. Gryczynski, R. Erdmann,
and F. Koberling, editors, Single Molecule Spectroscopy
and Superresolution Imaging VI. SPIE, feb 2013.

A. N. Kapanidis, T. A. Laurence, N. K. Lee, E. Margeat,
X. Kong, and S. Weiss. Alternating-Laser Excitation of
Single Molecules. Acc. Chem. Res., 38(7):523-533, jul
2005.

A. N. Kapanidis, E. Margeat, S. O. Ho, E. Kortkhonjia,
S. Weiss, and R. H. Ebright. Initial Transcription by
RNA Polymerase Proceeds Through a DNA-Scrunching
Mechanism. Science, 314(5802):1144-1147, nov 2006.

T. A. Laurence, X. Kong, M. Jager, and S. Weiss. Probing
structural heterogeneities and fluctuations of nucleic
acids and denatured proteins. PNAS, 102(48):17348-
17353, 2005.

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet,
J. Mukhopadhyay, R. H. Ebright, and S. Weiss. Ac-
curate FRET Measurements within Single Diffusing
Biomolecules Using Alternating-Laser Excitation. Bio-
physical Journal, 88(4):2939-2953, apr 2005.

E. Lerner, T. Orevi, E. Ben Ishay, D. Amir, and E. Haas.
Kinetics of fast changing intramolecular distance dis-
tributions obtained by combined analysis of FRET ef-
ficiency kinetics and time-resolved FRET equilibrium
measurements. Biophysical journal, 106(3):667-76, feb
2014.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola,
R. Lin, J. E. Millaud, S. Weiss, O. H. W. Siegmund, A. S.
Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aha-
roni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri,
L. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova.
Development of new photon-counting detectors for
single-molecule fluorescence microscopy. Philosophical
Transactions of the Royal Society B: Biological Sciences,
368(1611):20120035-20120035, dec 2012.

R.R. Murphy, S. E. Jackson, and D. Klenerman. pyFRET:
A Python Library for Single Molecule Fluorescence
Data Analysis. ArXiv, dec 2014.

B. K. Miller, E. Zaychikov, C. Brauchle, and D. C.
Lamb. Pulsed Interleaved Excitation. Biophysical Jour-
nal, 89(5):3508-3522, nov 2005.

M. Newville, T. Stensitzki, D. B. Allen, and A. Ingar-
giola. LMFIT: Non-Linear Least-Square Minimization
and Curve-Fitting for PythonY], sep 2014.

E. Nir, X. Michalet, K. M. Hamadani, T. A. Laurence,
D. Neuhauser, Y. Kovchegov, and S. Weiss. Shot-Noise

16

(30]

(31]

(32]

[34]

(39]

[40]

Limited Single-Molecule FRET Histograms: Compari-
son between Theory and Experiments t. J. Phys. Chem.
B, 110(44):22103-22124, nov 2006.

W. C. Parr and W. R. Schucany. Minimum Distance and
Robust Estimation. Journal of the American Statistical
Association, 75(371):616, sep 1980.

C. Pradal, G. Varoquaux, and H. P. Langtangen. Pub-
lishing scientific software matters. Journal of Compu-
tational Science, 4(5):311-312, sep 2013.

A. Prli¢ and J. B. Procter. Ten Simple Rules for the
Open Development of Scientific Software. PLoS Com-
putational Biology, 8(12):1002802, dec 2012.

G. Rahamim, M. Chemerovski-Glikman, S. Rahimipour,
D. Amir, and E. Haas. Resolution of Two Sub-
Populations of Conformers and Their Individual Dy-
namics by Time Resolved Ensemble Level FRET Mea-
surements. PloS one, 10(12):e0143732, jan 2015.

N. C. Robb, T. Cordes, L. C. Hwang, K. Gryte, D. Duchi,
T. D. Craggs, Y. Santoso, S. Weiss, R. H. Ebright, and
A. N. Kapanidis. The Transcription Bubble of the RNA
Polymerase—Promoter Open Complex Exhibits Confor-
mational Heterogeneity and Millisecond-Scale Dynam-
ics: Implications for Transcription Start-Site Selection.
Journal of Molecular Biology, 425(5):875-885, mar 2013.

Y. Santoso, J. P. Torella, and A. N. Kapanidis. Character-
izing Single-Molecule FRET Dynamics with Probability
Distribution Analysis. ChemPhysChem, 11(10):2209-
2219, jun 2010.

H. Shen. Interactive notebooks: Sharing the code. Na-
ture, 515(7525):151-152, nov 2014.

M. A. Stephens. EDF Statistics for Goodness of Fit and
Some Comparisons. Journal of the American Statistical
Association, 69(347):730, sep 1974.

T. E. Tomov, R. Tsukanov, R. Masoud, M. Liber,
N. Plavner, and E. Nir. Disentangling Subpopula-
tions in Single-Molecule FRET and ALEX Experiments
with Photon Distribution Analysis. Biophysical Journal,
102(5):1163-1173, mar 2012.

J. P. Torella, S. J. Holden, Y. Santoso, J. Hohlbein, and
A. N. Kapanidis. Identifying Molecular Dynamics in
Single-Molecule FRET Experiments with Burst Vari-
ance Analysis. Biophysical Journal, 100(6):1568—-1577,
mar 2011.

R. Tsukanov, T. E. Tomov, R. Masoud, H. Drory,
N. Plavner, M. Liber, and E. Nir. Detailed Study of
DNA Hairpin Dynamics Using Single-Molecule Fluo-
rescence Assisted by DNA Origami. The Journal of
Physical Chemistry B, 117(40):11932-11942, oct 2013.

https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/039198; this version posted February 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[41] M. Vihinen. No more hidden solutions in bioinformat-
ics. Nature, 521(7552):261-261, may 2015.

[42] M. Waskom, O. Botvinnik, P. Hobson, J. Warmenhoven,
J. B. Cole, Y. Halchenko, J. Vanderplas, S. Hoyer, S. Vil-
lalba, E. Quintero, A. Miles, T. Augspurger, T. Yarkoni,
C. Evans, D. Wehner, L. Rocher, T. Megies, L. P.
Coelho, E. Ziegler, T. Hoppe, S. Seabold, S. Pascual,
P. Cloud, M. Koskinen, C. Hausler, kjemmett, D. Mila-
jevs, A. Qalieh, D. Allan, and K. Meyer. seaborn: v0.6.0
(June 2015), jun 2015.

[43] S. Weiss. Fluorescence Spectroscopy of Single
Biomolecules. Science, 283(5408):1676—1683, mar 1999.

[44] G.Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong,
M. Davis, R. T. Guy, S. H. D. Haddock, K. D. Huff, I. M.
Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and
P. Wilson. Best Practices for Scientific Computing. PLoS
Computational Biology, 12(1):e1001745, 01 2014.

[45] K. Zhang and H. Yang. Photon-by-Photon Determi-
nation of Emission Bursts from Diffusing Single Chro-
mophores. J. Phys. Chem. B, 109(46):21930-21937, nov
2005.

17

https://doi.org/10.1101/039198
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Open Science and Reproducibility
	Paper Overview

	FRETBursts Overview
	Features
	Notebook Workflow
	Development Model

	Architecture and Concepts
	Photon Streams
	Background Definitions
	The Data Class
	Introduction to Burst Search
	γ-corrected Burst Sizes and Weights
	Plotting Data

	smFRET Burst Analysis
	Loading the Data
	Alternation Parameters
	Background Estimation
	Error Metrics and Optimal Threshold

	Burst Search
	Burst Search in FRETBursts
	Correction Coefficients

	Burst Selection
	γ-corrected Burst Size Selection
	Select the FRET Populations

	Population Analysis
	Timestamps and Burst Data

	Implementing Burst Variance Analysis
	BVA Overview
	BVA Implementation

	Development and Contributions
	Conclusions

