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Abstract

Machine learning approaches have been widely used for the identification of neu-

ropathology from neuroimaging data. However, these approaches require large

samples and suffer from the challenges associated with multi-site, multi-protocol

data. We propose a novel approach to address these challenges, and demonstrate

its usefulness with the Autism Brain Imaging Data Exchange (ABIDE) database.

We predict symptom severity based on cortical thickness measurements from 156

individuals with autism spectrum disorder (ASD) from four different sites. The

proposed approach consists of two main stages: a domain adaptation stage us-

ing partial least squares regression to maximize the consistency of imaging data

across sites; and a learning stage combining support vector regression for regional

prediction of severity with elastic-net penalized linear regression for integrating re-

gional predictions into a whole-brain severity prediction. The proposed method

performed markedly better than simpler alternatives, better with multi-site than

single-site data, and resulted in a considerably higher cross-validated correlation

score than has previously been reported in the literature for multi-site data. This

demonstration of the utility of the proposed approach for detecting structural brain

abnormalities in ASD from the multi-site, multi-protocol ABIDE dataset indicates

the potential of designing machine learning methods to meet the challenges of ag-

glomerative data.

Keywords: Autism spectrum disorder,Magnetic resonance imaging, Cortical thickness,

Machine learning, Domain adaptation

1 Introduction

Autism Spectrum Disorder (ASD) is a developmental disorder characterized by impair-

ments in social interaction and communication, restricted interests, and repetitive pat-

terns of behaviour (Lord and Jones, 2012; Wing, 1997; Gillberg, 1993). The definition

admits substantial behavioural heterogeneity (Georgiades et al., 2013); ASD is, in fact, a

family of developmental disorders with unique, but related, phenotypes, with a variety of

genetic associations (Devlin and Scherer, 2012). Moreover, ASDs are developmental dis-

orders, and the behavioural abnormalities evolve over time (Gotham et al., 2012; Szatmari

et al., 2015), adding to the apparent heterogeneity. This large behavioural heterogeneity

appears to be paralleled by a wide array of neuroanatomical abnormalities, which also

evolve over development (Zielinski et al., 2014; Wolff et al., 2014). Almost every brain re-

gion has been implicated in autism, including subcortical (Jacobson et al., 1988; Cerliani

et al., 2015) and cerebellar regions (Bauman, 1991; Fatemi et al., 2002), gray-matter and

white-matter (Barnea-Goraly et al., 2004; Rojas et al., 2006), and regions of all lobes of

the cerebrum (Zilbovicius et al., 2000; Courchesne et al., 2011; Lewis et al., 2013, 2014).
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Indeed, the neuroanatomical heterogeneity is so great that replication of results across

studies is rare. The inconsistencies in findings are likely primarily due to the small sam-

ple sizes used in most studies, in combination with the large behavioural heterogeneity,

as well as measurement related differences (Auzias et al., 2014, 2015; Castrillon et al.,

2014). Thus, there is an urgent need for larger sample sizes, if we are to discover clinically

useful information (Amaral et al., 2008; Auzias et al., 2014, 2015; Lefebvre et al., 2015).

Large samples may allow the extraction of core neuroanatomical abnormalities from the

noise introduced by the heterogeneity of the disorder. Such abnormalities could serve

as biomarkers, and could provide insight into the causes of the disorder, and potential

interventions.

To date, however, no dataset collected by a single site is sufficient in size to achieve

such goals. Further, there are limited publicly available data from multi-site studies uti-

lizing a single scanner type with the same acquisition protocol across sites. But, so-called

‘big data’ has come to neuroscience, including for the study of ASD. There are currently

multiple initiatives to bring together neuroimaging data from multiple sites, acquired on

multiple types of scanners, and with differing protocols. The Autism Brain Imaging Data

Exchange (ABIDE)1 is one such initiative (Di Martino et al., 2014). ABIDE provides pre-

viously collected datasets composed of both MRI data and phenotypic information from

16 different international sites for over 1100 individuals, approximately half of whom are

typically developing (TD) and half have been diagnosed with ASD. This sample size,

which is more than an order of magnitude larger than that used in most single-site stud-

ies, provides the power needed to identify neuroanatomical abnormalities related to ASD.

But, the multi-site, multi-protocol aspect of the data introduces additional heterogene-

ity. Indeed, previous studies using the ABIDE data have shown that acquisition site has

significant effects on basic image properties (Nielsen et al., 2013; Castrillon et al., 2014).

This further exacerbates the problem of identification of core neuroanatomical abnormal-

ities in this extremely heterogeneous data. The between-site heterogeneity constitutes

the main technical challenge in the current work (Auzias et al., 2014), and the solution

that we offer is a contribution applicable not only to the ABIDE dataset, but to any

neuroimaging data agglomeration.

The solution to the problem lies in finding a new common space within different

datasets for reduction of between-site variation. Techniques for achieving this are often

referred to as domain adaptation (Jiang, 2008; Pan and Yang, 2010). Domain adaptation

is a new branch of machine learning techniques that seeks to improve the similarity of

the data from different sources with mismatched distributions. We utilize these domain

adaptation machine learning algorithms to address the problem that arises in the situation

where the data distribution changes across different acquisition sites. We apply this

approach to the ABIDE data to identify neuroanatomical abnormalities associated with

1http://fcon_1000.projects.nitrc.org/indi/abide/
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symptom severity in ASD.

The great majority of ASD studies have focused on identifying group differences be-

tween typically developing individuals and those with ASD, or conversely, training clas-

sifiers to distinguish between these groups (Ecker et al., 2010; Nielsen et al., 2013; Wang

et al., 2015). But, perhaps the largest source of heterogeneity is associated with the

severity of the disorder. In fact, both individuals with ASD as well as those deemed to be

typically developing display a wide range of symptoms of autism in a variety of behaviours.

This variability may mask neural abnormalities associated with these symptoms, and limit

the success of attempts to classify an individual based on their neuroimaging data. Ap-

proaches which relate dimensional measures of symptoms to measures of neuroanatomy

appear more useful than those which aim only to identify abnormalities associated with

a diagnosis of ASD (Sato et al., 2013; Schumann et al., 2009). Thus, in this work we take

this latter approach. We design a model to estimate symptom severity scores derived

from the Autism Diagnostic Observation Schedule (ADOS) from cortical thickness mea-

surements. We are motivated by evidence that local cortical thickness measures provide

an index of the maturation of cortex and cortico-cortical connectivity (Shaw et al., 2008;

Raznahan et al., 2011), and that ASD may be characterized by delayed maturation.

Our proposed method for estimation of the severity score consists of two main stages:

a domain adaptation stage that uses partial least squares regression (PLS) with sites as

response variable, and the learning stage which consists of the combination of two different

regression methods, i.e. support vector regression (SVR) and elastic-net penalized linear

regression (LR). We evaluate the reliability of the model across a multisite dataset without

standardization of the acquisition protocol across sites, and the effect of each part of the

algorithm.

2 Materials and methods

2.1 ABIDE data

The data used in this study were from the ABIDE dataset (Di Martino et al., 2014).

ABIDE is a publicly available dataset that involved 16 international sites, from 532 in-

dividuals with ASD and 573 typical controls, yielding 1112 datasets composed of MRI

(functional and structural) and phenotypic information for each subject. The scan pro-

cedures and parameters are described in the ABIDE website 2.

2http://fcon_1000.projects.nitrc.org/indi/abide/
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2.2 Image preprocessing

The T1-weighted volumes were processed with CIVET, a fully automated structural im-

age analysis pipeline developed at the Montreal Neurological Institute. CIVET corrects

intensity non-uniformities using N3 (Sled et al., 1998); aligns the input volumes to the

Talairach-like ICBM-152-nl template (Collins et al., 1994); classifies the image into white

matter, gray matter, cerebrospinal fluid, and background (Zijdenbos et al., 2002; Tohka

et al., 2004); extracts the white-matter and pial surfaces (Kim et al., 2005); and warps

these to a common surface template (Lyttelton et al., 2007). Cortical thickness is mea-

sured in native space using the linked distance between the two surfaces at 81,924 vertices.

The thickness map was then blurred to impose a normal distribution on the corticometric

data, and to increase the signal to noise ratio; a 30-millimeter full width at half maximum

surface-based diffusion smoothing kernel was used.

Quality control (QC) of the CIVET results was performed by two independent review-

ers. Data with artifacts due to motion, low signal to noise ratio, hyperintensities from

blood vessels, or poor placement of the gray or white matter (GM and WM) surfaces for

any reason were excluded. 215 subjects with ASD were excluded in the QC.

2.3 Subjects

After image preprocessing and the QC, the number of ASD subjects reduced from 532 to

317 from 16 different sites. Next, we excluded ASD subjects with missing ADOS total and

module information and then we included only subjects from sites containing at least 20

subjects. The remaining 156 subjects were from 4 different sites (NYU, PITT, TRINITY,

USM) which were used for estimating severity score. Details of the characteristics of the

ABIDE samples used in this work are presented in Table 1.

*** Table 1 around here ***

2.4 Severity score

This work studies the relation between cortical thickness and measures derived from

the Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 2000). The ADOS

is a semi-structured assessment of communication, social interaction, and stereotypical

behaviours for individuals with autism or other pervasive developmental disorders. The

ADOS applies to individuals ranging from nonverbal to verbally fluent, and ranging from

infants to adults. But different ADOS modules are utilized, depending on the individual’s

particular developmental and language level. The scores from different modules are not

directly comparable. In order to increase comparability across modules, Gotham et al.

(2007) created algorithmic scores by summing the scores for specific subsets of items

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 9, 2016. ; https://doi.org/10.1101/039180doi: bioRxiv preprint 

https://doi.org/10.1101/039180
http://creativecommons.org/licenses/by/4.0/


within each module. The algorithms attempt to achieve comparability of item content

and total item number. But items are inherently developmentally graded, so an additional

calibration is necessary to make it possible to compare algorithm totals across modules.

Gotham et al. (2009) provide such an adjustment, transforming algorithm scores to

calibrated severity scores based on the age of the individual and the module used. Such

calibrated severity scores can be directly correlated with brain measures.

The ABIDE data provides the calibrated severity scores for some but not all sub-

jects; for the remaining subjects it provides neither the algorithm scores nor the ADOS

item scores needed to compute the algorithm scores, and so severity scores cannot be

computed. But, for those cases in which ABIDE provides both the total of the social

and communication ADOS scores and the algorithm scores, the correlation between the

two is 0.91. Thus a proxy severity score can be derived using the total of the social

and communication ADOS scores in place of the algorithm score; in those cases in which

ABIDE provides both the total of the social and communication ADOS scores and the

calibrated severity scores, the correlation between the calibrated severity scores and these

proxy severity scores is 0.89. In this work we estimate the correlation between cortical

thickness and these proxy severity scores. To assuage any doubts about the validity of

this proxy for severity, we also estimate the correlation between cortical thickness and

the total of the social and communication ADOS scores, using the information of which

ADOS modules were used.

2.5 Overview of methodology

*** Figure 1 around here ***

The overall structure of the proposed method is illustrated in Figure 1. The method

is divided into two main stages: 1) the domain adaptation stage and 2) the learning

stage. In the domain adaptation stage, first, the cortical thickness measures along cor-

tex were divided into separate regional subsets according to the Automated Anatomical

Labelling (AAL) atlas. Each regional subset contains only the vertices belonging to one

AAL cortical region. In order to reduce the between-sites variability, we performed PLS

based domain adaptation for each subset separately (Section 2.6). This resulted in 78

region-specific site-adapted subsets of cortical thickness components (Figure 1 A) with

the same, fixed number of components (25) for each region. This step was performed

in an unsupervised manner in all subjects before dividing data into training and test

sets. Note that we did not use the severity score (label data) or any kind of cognitive

information of the subjects in this stage and only the site information was used as the

response variable. We stress that the label information was not used, so this does not

lead to double-dipping. For a clear explanation we refer to Gammerman et al. (1998).
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It is important to note that the division of the cortical thickness measures into regional

subsets must be done before the PLS-based domain adaptation stage as otherwise the

PLS components will not be regionally specific.

In the learning stage, first, we applied SVR in each (site-adapted, after domain adap-

tation) subset separately, with the severity score as the response variable (Section 2.7).

This resulted in 78 outputs, each of them estimating the severity score based on only

one AAL brain region. In order to combine the results from different brain regions, we

concatenated these 78 outputs from SVR to form a new dataset. The resultant dataset

has dimensionality 78, from 78 SVR outputs. Finally, we applied elastic-net penalized

linear regression on the new set to obtain the final estimated severity score (Figure 1 B;

Section 2.8).

2.6 Partial Least Squares

Partial Least Squares (PLS) is a feature transformation method for modeling relations

between sets of observed variables, particularly with high dimensional and highly cor-

related predictor variables. Similarly to principal component analysis (PCA), PLS con-

structs new predictor variables, i.e., latent variables, as linear combinations of the original

predictor variables. The difference between PCA and PLS is that PLS considers response

variables for constructing latent variables while PCA considers only the predictor vari-

ables. In particular, PLS tries to discover the relation between predictor variables X and

response variables Y by determining the multidimensional direction in the X space with

the maximum multidimensional variance direction in the Y space. For more details on

applications of PLS for neuroimaging, we refer to Krishnan et al. (2011).

We denote a regional subset of the cortical thickness values by X ∈ RN×D, where N

is the number of subjects and D is the number of vertices in the corresponding subset.

The same process is applied to each of the 78 cortical regions; we drop the sub-section

index for clarity. The response variable representing the site information is denoted by

Y = {Y1,1, ..., YN,M}, where M is number of sites. Yn,m is 1 if subject n belongs to site

m, otherwise it is 0. PLS assumes the following relationships between predictor X and

response Y variables:

X = TPT + E,

Y = UQT + F
(1)

where the latent variables of X and Y are stored in T and U matrices respectively, P

and Q are orthogonal loading matrices and E and F are error terms. Typically, the

decompositions of X and Y are computed by iterative application of the singular value

decomposition (SVD)(Abdi, 2007; de Leeuw, 2007) in such a way that in each iteration

the covariance between T and U is maximized. Particularly, the PLS method tries to
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find weight vectors w, c so that

[cov(t,u)]2 = [cov(Xw,Yc)2] = max|r|=|s|=1[cov(Xr,Ys)]2 (2)

where cov(t,u) = tTu/N denotes the covariance between latent variables of the predictor

and response variables({ti}Ki=1, {ui}Ki=1); K denotes the number of the PLS component.

For computation of PLS, two main algorithms are considered: nonlinear iterative par-

tial least squares (NIPALS)(Wold, 1974) and SIMPLS algorithm (De Jong, 1993). The

method used in the current work is based on SIMPLS algorithm that calculates weight

vector w directly from the matrix X (De Jong, 1993; Rosipal and Krämer, 2006). Finally,

the resulting PLS components in the N ×K matrix T = [t1, . . . , tN ]T , where ti are the

site-adapted cortical thickness coefficients for subject i, were used as the feature sets for

predicting severity scores.

We note that PCA, but not PLS, has previously been used for unsupervised domain

adaptation as a baseline method for the applications of object recognition and sentiment

analysis (Shi and Sha, 2012), where all data from both source and target domain were

projected into PCA direction computed from the data in the target domain. In Shi and

Sha (2012) the model was trained on a data from the single source domain and tested on

data from the target domain while we consider the multiple source domain adaptation.

As our data are from 4 different sites (sources), the purpose is to identify a feature space

where the data from different sites share similar distributions.Therefore, we applied PLS

to all data in order to identify a new low dimensional feature space that would only contain

such cortical thickness information that is invariant between the acquisition sites.

2.7 Support Vector Regression

After PLS analysis on each of the 78 regional subsets of cortical thickness measures,

we have 78 matrices T`, ` = {1, ..., 78} of the site adapted cortical thickness coefficients

corresponding to the 78 cortical regions. To derive a prediction of the severity score based

on a single cortical region, we apply support vector regression (SVR). Again, the process

is done independently for each region and we drop indexes pertaining to the regions for

clarity.

Support vector machines (SVM) were first introduced (Cortes and Vapnik, 1995; Boser

et al., 1992; Vapnik and Vapnik, 1998) as a pattern recognition method representing

decision boundary between samples from two different classes in such a way that the

margin (the distance) between the decision boundary and the closest training sample to

it is maximized. SVM transforms the training data from the original space into a high

dimensional feature space via a kernel-induced mapping function, and then the separating

hyperplane is computed in this new feature space.

Support vector machines can also be applied to regression problems when the response
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variable is a real-valued number, resulting in support vector regression (SVR). To achieve

the maximal margin property in a regression problem, Vapnik (1995) proposed the ε-

SVR algorithm by devising the ε-insensitive loss function. In SVR, a specific value

is determined as ε in the loss function, after which the task is to fit a regression line

surrounded by a tube with radius ε to the data. The data points inside the tube are not

considered in determining the regression line and only the data points lying on the edges

or outside the tube, i.e. support vectors, affect the course of the regression line.

SVR approximates a severity score by a nonlinear function described by the weight

vector ŵ and the bias b̂ so that

severity ≈ f(t) = ŵTφ(t) + b̂, (3)

where t is a vector of the regional site adapted cortical thickness (CT) coefficients for a

subject, φ is a non-linear mapping and the response variable is the corresponding severity

score. SVR handles the nonlinearity via the kernel trick. A high (or infinite) dimensional

dot product ŵTφ(t) can be computed as a sum of dot products implicitly described in

the input space with the original dimensionality f(t) =
∑N

i=1wik(t, ti), where k is the

kernel function, ti are the site adapted CT coefficients for the training subject i and wi

are the parameters to be solved by the SVR algorithm. The kernel-trick makes otherwise

intractable computations feasible and φ and ŵ do not need to be explicitly defined. In

this work, we adopted the radial basis function kernel (RBF) k(x,y) = exp(−γ||x−y||2)
and set γ to its default value 1/K, where K = 25 is the number of PLS components. The

RBF kernel is the most widely used kernel function in nonlinear SVR. For solving the SVR

parameters wi, b̂, we used ν-SVR (Schölkopf et al., 2000). This is a re-parametrization of

the original soft-margin ε-SVR algorithm (Cortes and Vapnik, 1995) allowing automatic

tuning of ε by introducing an additional parameter ν (Smola and Schölkopf, 2004). The

ν-SVR aims to solve the following optimization problem:

min
1

2
‖ŵ‖2 + C(νε+

1

N

N∑
n=1

(ξn + ξ∗n))

subject to


severityn − (ŵTφ(tn)− b̂) ≤ ε+ ξn

(ŵTφ(tn) + b̂)− severityn ≤ ε+ ξ∗n

ξn, ξ
∗
n ≥ 0, ε ≥ 0

(4)

This allows for training errors exceeding ε by introducing slack variables ξn, ξ
∗
n. The

overfitting is prevented by the regularization term 1
2
‖ŵ‖2 =

∑
i

∑
j wiwjk(ti, tj) and the

tradeoff between the close fit to the data and regularization is controlled by the parameter

C.
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We re-iterate that the purpose of this step is to determine a predictive severity score for

each subject based on each cortical region. This step was repeated for each brain region

separately, which resulted in 78 single scores for each subject, each of them predicting

severity score based on one cortical region.

2.8 Penalized Linear Regression

From the SVR, we have a predicted severity score zi,` = ŵT
` φ(ti,`) + b̂` for a subject i and

region `. For each subject i, we concatenate the regional predictions into a 78-element

vector zi. In order to integrate the predicted severity scores derived from different brain

regions, we used least squares linear regression (LR) with elastic net penalty. The elastic

net penalty is a combination of ridge and lasso penalties (Zou and Hastie, 2005) that has

two important advantages in our case: 1) it allows for variable selection, meaning that

the regions with low predictability are dropped from the model and 2) it possesses the

grouping effect meaning that the regions with similar predictions receive similar weights

in the final model. The LR model is formalized as:

severityi = aTzi + b+ εi =
78∑
`=1

a`zi,` + b+ εi, (5)

where i refers to a subject, a = [a1, . . . , a78]
T and b are the model parameters and εi is

the error term. Adding the elastic net penalty, the model is solved by minimizing the

following elastic net cost function:

1

2N

N∑
i=1

(severityi − b− zTi a)2 + λ[(1− α)||a||22/2 + α||a||1], (6)

where N is the number of training samples, λ is the complexity parameter found by cross-

validation, α ∈ [0, 1] defines the compromise between ridge ||a||22/2 and lasso penalties

||a||1, and || · ||1 denotes the L1-norm. Here, we selected α = 0.5 to give equal weights

for the ridge and lasso penalties.

2.9 Implementation and validation

It is imperative to avoid using the test subjects’ data for training the model as this would

result positively biased estimates of the prediction accuracy. For dividing data into two

training (SVR-training and SVR-test) and test sets, we used two nested and stratified

cross-validation loops (10-folds for each loop) except for site-based testing where the outer

loop was leave-one-site-out loop. In the inner CV loop, the SVR-train set was used to

train the SVRs and the SVR-test set was used for constructing regional predictions zi,`

for every training subject; we did not use the same dataset both for learning the SVR
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and computing regional predictions to avoid over-fitting. The training set (union of SVR-

training and SVR-test) was used to train the Elastic-net regression model. We re-divided

the training set into 10-folds for finding the optimal λ for the model. Test data were

used only for evaluating the model. The performance of the model was then evaluated

based on the (cross-validated) Pearson correlation coefficient (R), mean absolute error

(MAE) and the coefficient of determination3(Q2) between estimated and true severity

score in test set. The reported results are averages over 100 nested 10-fold CV runs in

order to minimize the effect of the random variation. Three different metrics are reported,

because these each provide complementary information. Cross-validated R is simple to

interpret, but it can hide the bias in the predictions, which are made apparent by Q2-

value. MAE provides the prediction errors in the equal scale with the original scale of

the severity scores. Prior to each step, both the predictor variables and response variable

were normalized to have zero mean and unit variance, except in domain adaptation step

in which the data are centralized/normalized by default. To compare the performance

of two learning algorithms, we computed a p-value for the 100 correlation scores with a

permutation test.

PLS was computed by the PLSREGRESS functions in MATLAB software with a

fixed number of components. The SVR training was implemented using LIBSVM (Chang

and Lin, 2011). The parameters in SVR, namely C (the soft margin parameter) and γ

(parameter for RBF kernel function), were set to their default values (C = 1, ν = 0.5, γ =

1/F, where F is the number of features here equaling to K = 25). Since the cortical

thickness measures were divided into 78 subsets and both PLS and SVR were computed

in each subset separately, tuning the method parameters, inside a nested cross-validation

loop, was impractical. Therefore, we used fixed number of components in PLS and the

default parameters of the SVR across all subsets. The fixed number of PLS components

in the proposed method was 25, selected by initial experiments among the candidate set

{5, 10, 15, 20, 25, 30}.
The implementation of elastic-net penalized linear regression was done by using the

GLMNET library (Qian et al., 2013) and the regularization parameter λ was selected

using 10-folds CV in the training data. Note that in each computation time the penalized

LR was done only once in the outputs of SVR from different brain regions, so tuning the

regularization parameter using CV was easily feasible.

3The Q2 provides a measure of how well out-of-training set severity scores are predictable by the
learned model (http://scikit-learn.org/stable/modules/model_evaluation.html#regression-

metrics). It is defined as Q2 = 1 −
∑N

i=1(si−ŝi)
2∑N

i=1(si−s̄)2
, where ŝi is the predicted severity score for sub-

ject i, si is the true severity score for subject i, and s̄ is mean of the actual/true severity scores. Q2 is
bounded above by 1 but is not bounded from below. Note that Q2 does not equal R2, i.e., the correlation
squared, but the Q2 value can never exceed R2. More details about different metrics and their relations
are available in the supplement.
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3 Results

The average cross-validated correlation R between the estimated and observed severity

scores among 100 distinct 10-fold CV iterations was 0.51 (standard deviation 0.04, range

from 0.39 to 0.63), the average mean absolute error (MAE) was 1.36 (standard deviation

0.05, range from 1.25 to 1.51) and the average coefficient of determination Q2 was 0.26

(standard deviation 0.045, range from 0.13 to 0.39 ). These values indicated that the

proposed approach was able to provide information about the severity of the disease

based on structural information of the brain in ASD patients. Particularly, we note that

the union of 95% confidence intervals (CIs) of R for individual runs was [0.25, 0.72],

where CIs were computed based on the Fisher’s r-to-Z transform, and the lower limit

of the worst 95% CI of R was clearly positive. The box-plots of the correlation scores

and MAEs are available in Fig. 2 and the scatter plot of the estimated and observed

severity scores of the CV run with the median R is shown in the upper left panel of Fig.

3. We note that validation accuracy was almost the same (the average R was 0.49 or 0.50

depending on whether module information was used) when predicting raw ADOS scores

instead of the proxy severity scores. The validation results concerning the prediction of

the raw ADOS scores are presented in the Supplementary figures 1, 2, and 3.

For evaluation of the effectiveness of each stage (PLS, SVR, Elastic-net LR) of the

proposed approach, we performed experiments by excluding each stage of the method sep-

arately and comparing the accuracy of the predictions obtained this way to the accuracy

of the predictions of the complete method.

To evaluate the PLS based domain adaptation stage, we repeated the experiments

with the same procedure, except that we replaced PLS by PCA which can be thought

as an unsupervised dimensionality reduction method equivalent to PLS but not utilizing

the information about the acquisition site. In other words, by using PCA, a common

feature space was determined for all data from different sites without considering the site

information. The optimal number of PCA components used (20) was selected with the

same procedure as the number of PLS components (see Section 2.9). When the PLS-

based domain adaptation was substituted by PCA, the average correlation score (among

100 different runs) dropped from 0.51 to 0.42 (p < 0.0001), the average MAE increased

from 1.36 to 1.45 and the average Q2 dropped from 0.26 to 0.17.

*** Figure 2 around here ***

*** Figure 3 around here ***

To validate the SVR step, we performed two experiments. First, we estimated severity

score by applying elastic-net penalized regression directly on the site adapted thickness
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values, i.e., retaining PLS-based domain adaptation step but performing it to the 81924

thickness values without dividing them to regional subsets and not performing the nonlin-

ear SVR (PLS+LR (whole brain)). By eliminating the SVR step, the average correlation

score decreased to 0.17 (p < 0.0001), the average MAE increased to 1.56 and the average

Q2 decreased to 0.03. Second, we averaged the cortical thickness values within each AAL

region, performed the PLS based domain adaptation on these 78 regional mean corti-

cal thickness measures and used the Elastic net penalized LR to predict severity scores

based on the resulting PLS components (PLS + LR (regional mean CT)). The average

correlation score decreased to 0.20, the MAE increased to 1.55 and the Q2 decreased to

0.04. Again, the optimal number of the PLS components (5) was selected by the same

procedure as for the complete method (see Section 2.9).

Figure 2 shows box plots for the R and MAE for different experiments across 100

computation runs. It can be observed that the regional SVR had the largest effect on

the performance of the method. The performance of the method was not good when

excluding this step despite that PLS based domain adaptation was used. Figure 2 also

illustrates that the PLS based domain adaptation step led to markedly improved pre-

dictions when coupled with the regional SVR. Figure 3 shows the scatter plot between

estimated and observed severity scores (of the median correlation within 100 computation

times). According to these plots, the severity scores with very high or very low values

were the most difficult to estimate as most of the observed severity scores were located

within the range from 4 to 9.

*** Figure 4 around here ***

*** Figure 5 around here ***

Figure 4 shows the importance of top 24 brain regions identified by average magnitude

of the regression coefficients in the penalized LR, i.e., the final step of the proposed

approach, within 100 computation times of 10 fold CV. The visualization of these regions

is provided in Figure 5. Since we standardized the data before applying LR, the absolute

value of each regression coefficient provides the importance of corresponding predictor in

the model and therefore we could compute the importance of each brain region based on

the magnitude of the regression coefficients.

We studied the effect of acquisition site on the performance of the proposed method.

To address this issue, a ”site-wise” cross-validation analysis was performed. To be more

specific, a 4-fold leave-one-site-out CV was performed in such a way that the data from

each site was in its own fold and the method was trained using data from 3 sites and

tested in the remaining site. The results are listed in the Table 2. Figure 6 shows the

scatter plot between estimated and observed severity scores (of the median correlation

within 100 computation times) for each site. The prediction accuracy of the site PITT
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was comparable with that of the standard 10 fold CV, but the prediction accuracy in

the other sites decreased markedly from that of the standard 10 fold CV. These results

suggest that utilizing some samples from the same site as the test sample in the learning

procedure might improve notably the prediction accuracy. One possible explanation for

this result is obviously the decreased number of training subjects available for the method

training, especially in the case of NYU and USM sites, which contained the largest number

of subjects (NYU 72 of 156 subjects and UsM 41 of 156 subjects, see Table 1). Also, Q2

scores for TRINITY and USM sites were strongly negative indicating that the severity

scores predicted from the data of the other sites were biased. The technical reason for

the bias was obvious when examining the average observed severity scores from each

site (NYU: 6.3; PITT : 6.7; TRINITY: 5.7; USM: 7.4). The average severity score of

TRINITY was lower than the average of the other sites and the average severity score

of USM was higher than the average of the other sites while the regression assumes that

the averages are the same and thus produced biased severity predictions for the two sites.

Note that the domain adaptation method of this article cannot correct for this kind of

site discrepancies as it does not consider severity scores.

*** Table 2 around here ***

*** Figure 6 around here ***

We experimented with the method by training and testing with single site data, that is,

we trained four different prediction models and tested them with the data from the same

site in the nested cross-validation framework. The average cross-validated correlation

R within ten 10-fold CV runs was the largest for the site USM (average correlation

score R(USM) was 0.22) and for the three other sites the average correlation score was

close to or below zero (R(NY U) = −0.05, R(PITT ) = 0.01, R(TRINITTY ) = −0.28).

These results clearly suggested the utility of having a larger number of subjects at the

expense of having to deal with multi-site data. We still point out that the variance

of cross-validated performance measures was inflated due to small sample sizes and the

sample sizes for PITT and TRINITY are too small for adequate error estimation. In

particular, the clearly negative R for the site TRINITY, with the smallest sample size,

could be attributed to the small sample size that, for example, considerably decreased

the stability of the inner CV and led to the selection of poor models.

*** Figure 7 around here ***

Since certain cognitive functions are lateralized (Hugdahl, 2005), we performed the

experiments within right and left hemispheres separately to study the relative relevance

of each hemisphere in estimating the severity score. The results revealed greater relevance

of right hemisphere in estimating the severity score compared to left hemisphere. Using
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only the cortical thickness measures belonging to the right hemisphere yielded the aver-

age correlation score of 0.46, the average MAE of 1.41 and the average Q2 of 0.20. The

measures in the left hemisphere produced significantly lower average correlation score of

0.28 (p < 0.0001), the average MAE of 1.53 and the average Q2 of 0.05. These results

support the findings of Torgerson et al. (2015) that indicated higher relevance of regions

and connections of the right hemisphere compared to the left hemisphere in predicting

ASD severity based on ADOS score. While using cortical thickness measurements from

only the right hemisphere led to accurate severity score estimates, combining cortical

thickness measurements from both right and left hemispheres still led to a better perfor-

mance (p < 0.0001). This can be also seen in Fig. 4 where among the most important

brain regions for the model there are regions from both hemispheres, although, the best

predictors were located in the right hemisphere.

4 Discussion

The objective of the current study was to devise methods to overcome the issues associated

with multi-site, multi-protocol data in order to take advantage of the increased sample

sizes provided by such agglomerative data to better predict behavioural outcomes from

brain structure. We explored this problem using data from four sites from the ABIDE

dataset, and used cortical thickness to predict ADOS-based ASD symptom severity. We

developed a novel two-stage approach consisting of a domain adaptation stage that uses

partial least squares regression with site as a response variable, and a learning stage which

utilizes a combination of support vector regression and linear regression. We evaluated the

reliability of the method by comparison with variations without domain adaptation, or

without support vector regression. The proposed two-stage method performed markedly

better than the alternatives, and resulted in a cross-validated correlation score that was

much higher than for any of the sites alone, and considerably higher than has previously

been reported in the literature for multisite data.

Recent studies on multisite classification of autism using ABIDE data have shown poor

accuracy in classification of ASD versus TD subjects (Nielsen et al., 2013; Haar et al.,

2014). The study by Nielsen et al. (2013) showed that classification rate was much lower

in a multisite dataset than for single site data. The effect of scanner variation in multisite

analyses of cortical thickness abnormalities in ASD patients was also studied by Auzias

et al. (2014, 2015). They showed that scanner variation is a significant confounding factor,

which is distributed across the cortical surface and reaches its peaks in the frontal region.

Thus, the effect of acquisition site on the basic image properties might be a possible reason

for the poor classification accuracy in the studies by Nielsen et al. (2013) and Haar et al.

(2014), as well as for the inconsistencies on the reported results from different studies,

especially in the context of abnormalities in cortical thickness measurements (Raznahan
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et al., 2013; Hadjikhani et al., 2006).

In the current study, we used PLS based domain adaptation in order to maximize the

consistency of the imaging measures over the multiple scanners/protocols before assessing

ASD pathology. Unlike previous approaches, such as PCA, in which site/scanner are

treated as any other nuisance variable, the PLS based domain adaptation established

a feature space where the data from multiple sites/scanners have similar distributions.

Accommodating multiple sites/scanners in such a way resulted in significantly improved

performance (Figs. 2 and 3), indicating the power of our PLS based domain adaptation

approach for dealing with multi-site data.

Haar et al. (2014) suggested that their poor decoding accuracy for classification of

multisite ABIDE data was not only because of between-site variation, but also weak

anatomical abnormalities in the ASD pathology which offer very limited diagnostic value.

Substantial variability within each diagnostic group complicates classification, hence our

decision to predict symptom severity from neuroimaging measures. The prediction of raw

ADOS scores based on MRI and cortical thickness was previously investigated by Sato

et al. (2013). They predicted ADOS from MRI based inter-regional thickness correla-

tions with SVR as the machine learning method. The method yielded a cross-validated

Spearman correlation of 0.36 with a dataset consisting of MRIs of 82 autistic patients

acquired at three different sites with a standardized protocol. To compare our results to

theirs, we calculated the cross-validated Spearman correlation between the estimated and

observed severity scores, which was 0.51. The higher correlation value that we obtained

must be understood in the context of the following differences between our study and

that performed by Sato et al. (2013). First, our data are from 4 different sites without

any standardization protocol, so the between-site variation was an additional challenge in

the current work. Second, Sato et al. (2013) used inter-regional thickness correlation for

estimation ADOS score, instead, we determined a predictive score for each distinct brain

region and then combined them via a linear regression model to estimate severity score.

Third, we used severity score instead of using raw ADOS score. Lastly, our method was

evaluated with almost double the sample size (156 subjects).

In addition to the PLS-based domain adaptation, the other novel technical character-

istic of the proposed method was our treatment of the whole-brain problem of prediction

as a set of regional problems of prediction. We divided the cortical thickness measures

into regional subsets, determined a predictive score for each region separately, and then

combined the regional scores into a whole brain measure of disease severity. This enabled

us to divide the problem into several sub-problems with lower complexity while better

retaining the original spatial resolution of the thickness measures. We hypothesized that

both of these properties are important for successful predictions: Khundrakpam et al.

(2015) have previously demonstrated that a fine parcellation of the cortical thickness

measures was advantageous for age estimation within healthy children. However, in-
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creasing spatial resolution results in higher dimensionality, which increases the complex-

ity of the model. Specifically, in the domain adaptation stage, finding a low dimensional

site-independent representation for the high dimensional data (81924 cortical thickness

measures) is considerbly more challenging than is the problem for any regional subset.

Moreover, the regional predictions are themselves of value, providing insight into

which brain regions are related to a particular behaviour, and how strongly the measures

in those regions predict that behaviour. Here we have shown that cortical thickness pre-

dicts autism symptom severity in a number of regions, and have ranked the strongest

predictors. Each of these predictor regions has been associated with autism in previous

research, but the much larger sample size provided by the ABIDE data lends confidence

to these findings. As expected based on existing literature and given that problems with

communication are part of the definition of ASD, a number of the strongest predictors

are related to language: the left pars triangularis, rolandic operculum, superior temporal

gyrus, and angular gyrus. The left pars triangularis is part of Broca’s area, which is

critical for language production, and has been implicated in autism in numerous studies

(Just et al., 2004; Zielinski et al., 2014; Lewis et al., 2014). The left rolandic operculum is

involved in the production of prosody, a lack of which is one of the hallmarks of autistic

speech, as well the perception of prosody, and shows abnormal levels of activiation in

ASD (Paul et al., 2005; Gebauer et al., 2014). The superior temporal gyrus also does

acoustic processing important for language, as well as housing Wernicke’s area, a core

area for receptive language ability, and is consistently reported to show abnormalities

in ASD (Lewis et al., 2014; Zilbovicius et al., 2000; Bigler et al., 2007). The angular

gyrus has also been shown to be important for language (Binder et al., 1997), and to

exhibit abnormalities in ASD (Just et al., 2004). Issues with social interaction is also a

core feature of ASD. The superior temporal gyrus is also involved in non-language so-

cial cognition (Adolphs, 2001), as well as the adjacent superior temporal sulcus (Allison

et al., 2000); both have been implicated in this domain in ASD (Di Martino et al., 2009;

Zilbovicius et al., 2006; Redcay, 2008). The bilateral intraparietal sulci are also involved

in social cognition. They are considered part of the mirror neuron system (Rizzolatti and

Fabbri-Destro, 2010), and play a role in interpreting the intentions of the actions of others

(Hamilton and Grafton, 2006). Another core aspect of social cognition is social orient-

ing/joint attention, which has been argued to be defective in ASD (Mundy et al., 1990;

Dawson et al., 2004). These aspects of social cognition have been linked to the anterior

cingulate cortex and to dorsal medial frontal cortex, both of which show abnormalities in

ASD (Mundy et al., 2009; Mundy, 2003). The third part of the ASD definition involves

repetitive patterns of behaviour, exemplified by stereotypic body movements such as

hand-flapping. Such repetitive behaviours have been suggested to relate to basal ganglia

dysfunction in the inhibition of supplementary motor and motor areas (Mink, 1996).

In addition to these core behavioural abnormalities, motor and sensory processing
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abnormalities are pervasive in children and adults with autism (Smith, 2004; Marco et al.,

2011; Leekam et al., 2007). Individuals with autism exhibit a range of motor abnormalities

(Smith, 2004), and both hypo- and hyper-sensitivity to visual, auditory, and tactile inputs

(Leekam et al., 2007). In this respect, it is interesting to note that some of the strongest

predictors seen here are in regions associated with low level processing of motor, visual,

auditory, and tactile inputs. Abnormalities in motor behaviors in ASD are associated with

abnormalities in motor and supplementary motor cortex (Mostofsky et al., 2007). Visual

processing involves the striate cortex within the calcarine fissure, and the surrounding

cortex, including the cuneus, the caudal portion of the precuneus, and the lingual gyrus.

Findings of abnormalities in visual cortex in ASD are common (Barbeau et al., 2015;

Samson et al., 2012; Philip et al., 2012; Green et al., 2013). Auditory processing involves

Heschl’s gyrus and the surrounding cortex within the superior temporal gyrus. Individuals

with ASD have been reported to show abnormalities in these areas (O’Connor, 2012;

Samson et al., 2011; Green et al., 2013). Tactile processing involves the postcentral

gyrus, which also exhibits abnormalities in individuals with ASD (Rumsey et al., 1985;

Horwitz et al., 1988; Kaiser et al., 2015).

The predictive importance of these regions involved with low-level processing com-

pared to regions involved in higher cognition is noteworthy.

It bears repeating that the methods described here for research with multi-site, multi-

protocol data are applicable to any such data. The results here served to demonstrate the

validity of the methods, and their use in identifying and ranking regional brain measures

as predictors of behaviour. But the brain measures need not be cortical thickness, and

the predicted behavioural measures need not be the severity of symptoms of ASD.
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Tables

Table 1: Subject demographics; The values are site-wise averages and the values in
parentheses provide standard deviations.

Site No. of subjects Males/Females FIQ VIQ PIQ Age ADOS total
NYU 72 61/11 107.14 (16.64) 105.64 (16.53) 107.58 (17.12) 14.82 (7.09) 11.25 (4.06)
PITT 20 17/3 112 (13.51) 109.60 (12.56) 111.05 (13.53) 18.29 (7.97) 11.75 (2.97)
TRINITY 23 23/0 108.83 (15.23) 107.96 (14.45) 107.36 (15.33) 17.36 (3.63) 10.57 (2.94)
USM 41 41/0 102 (17.05) 98.51 (19.20) 105.15 (17.11) 24.61 (8.05) 13.22 (3.34)

Table 2: The results of ”site-wise” based cross-validation. The reported values are the
averages across 100 computation times.

Site Correlation MAE Q2

NYU 0.22 1.57 -0.04
PITT 0.56 1.08 0.22
TRINITY 0.15 1.59 -0.25
USM 0.24 1.44 -0.29
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Figures

Figure 1: Workflow of the proposed method for estimating symptom severity score in ASD
subjects. Panel A) the PLS based domain adaptation stage and panel B) the learning
stage.
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Figure 2: Box plots for correlation score and mean absolute error within the 100 cross-
validation runs of the proposed approach (PLS + SVR + LR), substituting PLS based
domain adaptation by PCA (PCA + SVR + LR) and without SVR the step (PLS +
LR). PLS + LR (whole brain) refers to the approach where all 81924 vertices were used
as the input to PLS stage and PLS + LR (regional mean CT) refers to the approach
where the regionally averaged thickness values were used as the input for the PLS; see
the text for details. On each box, the central mark is the median, the edges of the box
are the 25th and 75th percentiles, the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted with a +.
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Figure 3: Scatter plots of the estimated severity score vs. observed severity score for
the proposed method (PLS + SVR + LR), without PLS based domain adaptation (PCA
+ SVR + LR), and without the SVR step (PLS + LR). See the text and Figure 2 for
details. The scatter plots are from a cross-validation run with the median correlation
within 100 computation times.
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Figure 4: The importance of the top predictors for estimating severity score in ASD
subjects. The ranking is based on the average magnitude of standardized regression
coefficients across 100 cross-validation runs. The gray bars display the average magnitude
and the error bars (in black) of the length equal to twice the standard deviation of the
magnitude. Predictors with the average magnitude higher than 0.03 are included. For
the importance of other regional predictors, see Fig. 5.
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Figure 5: The importance of each cortical region in the estimation of severity score using
the proposed approach. The importances are the average magnitudes of the standardized
regression coefficients from the Elastic-net penalized regression across 100 cross validation
runs.
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Figure 6: Scatter plots of the estimated severity score vs. observed severity score for the
proposed method for each site separately. The scatter plot for different sites are from a
cross-validation run with the median correlation within 100 computation times.

Figure 7: Scatter plots of the estimated severity score vs. observed severity score for
the proposed method for each brain hemisphere separately. The scatter plots are from a
cross-validation run with the median correlation within 100 computation times.
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