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Abstract 

Integrated information theory postulates that the particular way stimuli appear when we consciously 

experience them arises from integrated information relationships across neural populations. We investigated 

if such equivalence holds by testing if similar/different percepts map onto similar/different information 

structures. We computed integrated information structure from intracranial EEGs recorded in 6 

neurosurgical patients who had electrodes implanted over posterior cortices. During recording, we 

dissociated subjective percepts from physical inputs in three distinct stimulus paradigms (passive viewing, 

continuous flash suppression, and backward masking). Unsupervised classification showed that integrated 

information within stimulus-selective cortical regions classified visual experiences with significant accuracy 

(peaking on average around 64% classification accuracy). Classification by other relevant information 

theoretic measures such as mutual information and entropy was consistently poorer (56% and 54% 

accuracy). The findings argue that concepts from integrated information theory are empirically testable, 

promising a potential link between conscious experience and informational structures. 
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Introduction 

Conscious experience is intrinsic to the experiencing subject. This is most strikingly demonstrated 

during dreaming, hallucination, and imagination, where without any sensory inputs conscious experience 

emerge. For example, experiencing subjects usually cannot tell the difference between dreaming and normal 

experience (Nir & Tononi, 2010). Any moment of experience is also highly informative in the sense that it 

excludes a vast number of other possible experiences at that moment. Finally, experience is composed of 

many contents in a hierarchical structure that is irrevocably bound together into a holistic experience. These 

are the fundamental properties of consciousness: an intrinsic, integrated experience composed of various 

contents and that excludes other possible experiences. How can these fundamental properties of 

consciousness be supported by neuronal systems in the brain? 

In the context of neuroscience, the concept of "information" is typically employed to characterize 

how much a neuron or neural population can tell an observer about presented stimuli or executed behaviors; 

receptive field mapping (Atick & Redlich, 1992; Seriès, Latham, & Pouget, 2004), object classification 

(Haxby et al., 2001), mind reading (Haynes & Rees, 2006; Kamitani & Tong, 2005), and response 

prediction can be all formalized in terms of mutual information I(X;S) or I(X;B), where X, S and B stand 

respectively for states of a neuronal system, sensory inputs, and behavioral outputs (Knill & Pouget, 2004; 

Quian Quiroga & Panzeri, 2009; Rieke, 1999). In other words, the mutual information quantifies how much 

uncertainty about stimuli or behaviors can be reduced if an observer knows the states of the neural system. 

Intrinsic information, a concept distinct from Shannon's standard (extrinsic) "information", is defined from 

an intrinsic perspective: how does a system’s state constrain its own future and past states (Oizumi, Amari, 

Yanagawa, Fujii, & Tsuchiya, 2016; Tononi, 2004)? It is the intrinsic information, better understood as 

causal power (Hoel, Albantakis, & Tononi, 2013; Oizumi, Albantakis, & Tononi, 2014), that is relevant for 

conscious experience, not the traditional notion of ‘extrinsic’ information. Consciousness exists even 

without stimulus, behavior, or an external observer: as a case in point, none of these are required for the rich 

experiences of dreams. 

 To ground the phenomenological notion of  ‘integrated, intrinsic information’, the concept of 

integrated information has been rigorously developed within the framework of the integrated information 

theory (IIT) (Oizumi et al., 2014; Tononi, 2004) of conscious experience. However, the theoretical concepts 

of IIT are computationally difficult (or even intractable) for empirical observations and require 

approximated measures of integrated information. One such approximation can be derived via the mutual 

information between present and past states of a system (Barrett & Seth, 2011; Oizumi et al., 2016). The 

entropy H(X(t)) of a system over an interval of time t quantifies the uncertainty of states X taken on by the 

system. The (auto-)mutual information I X t( );X t −τ( )( ) , can be understood as intrinsic information: how 

current states X(t) constrain possible past states X(t-τ), reducing the uncertainty of X. If we partition the 

system, estimate I only within the parts, and recombine these estimates, we discover whether or not some 

information is integrated across the whole system: the loss of information across the minimal cut of the 
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system (information that cannot be confined to any partition) is the integrated information, Φ. Importantly, 

Φ is uniquely defined for all parts of a system. For example, the integrated information in a system of three 

elements, A, B, and C, is exhaustively characterized as the set {Φ(AB), Φ(AC), Φ(BC), Φ(ABC)}. We refer 

to this hierarchical pattern of integrated information as the integrated information structure. 

The IIT proposes that consciousness (the intrinsic, integrated, and hierarchical phenomenon 

described in the first paragraph) is identical to the pattern of integrated information generated by the 

conscious system (i.e. the brain’s integrated information structure). Following from this, we hypothesized 

that the integrated information structure of a high-level visual area should closely reflect what subjects 

consciously perceive. We tested this hypothesis by measuring integrated information structures in human 

intracranial electrocorticography (ECoG) during various distinct perceptual contents. Perceptual contents 

were manipulated via stimulus paradigms including continuous flash suppression (CFS) (Tsuchiya & Koch, 

2005) and backward masking (Breitmeyer & Ogmen, 2007), where physical stimulus and conscious 

perceptual contents are dissociable, and via unmasked stimulus paradigms. We extracted the intrinsic 

integrated information structure from small groups of ECoG channels, contingent on specific 

stimulus/percept conditions, and used these structures to classify perceptual contents. For comparison, we 

also extracted mutual information and entropy structures, which have related derivation but do not reflect 

information integration. We found that the integrated information structures mapped onto percepts better 

than related structures; in some subjects, the mapping was extremely precise and extended across multiple 

stimulus paradigms, consistent with the hypothesized equivalence between conscious contents and 

integrated information structure. 

 

Results 

Behavior  

During ECoG recording, subjects participated in several visual tasks. We used both masked and 

unmasked stimulus paradigms (Supplemental Figure S1). In continuous flash suppression (CFS, 

Supplemental Figure S1A), a target face (neutral or fearful) and a flickering Mondrian mask were presented 

simultaneously into different eyes; the mask tended to suppress the target, especially when target contrast 

was low. In backward masking (BM, Supplemental Figure S1B), a face target (neutral, fearful or happy) was 

quickly followed by a noise mask, which tended to suppress visibility of the target when the mask-target 

delay was very brief. In the unmasked paradigms (UNM, one-back and fixation tasks, Supplemental Figure 

S1C), we showed upright/inverted neutral faces, Mondrians, tools, and houses; in different blocks, subjects 

were asked either to attend to stimulus category (one-back) or not to attend (fixation task). In CFS and BM, 

behavioral performance on a specific physical stimulus parameter allowed us to categorize individual 

experimental trials into those plausibly accompanied by specific conscious visual experiences of faces and 

other objects, while in UNM, we presumed that targets were visible so long as the subject continued to 

respond in the attention tasks (Supplemental Figure S1D). Behavioral performance is summarized in 

Supplemental Figure S2. 
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Measuring Integrated Information 

To estimate the integrated information structure in neural data, we used the time series derived from 

bi-polar re-referenced changes in field potential amplitudes recorded with subdural ECoG electrodes 

(Methods). We denote the (activity) state of a group of ECoG channels within a particular trial over time 

window T (from time t-T/2 to t+T/2) as the multivariate vector Xt. We then estimate the covariance and 

cross-covariance matrices Σ(Xt), Σ(Xt-τ), and Σ(Xt|Xt-τ) with a lag parameter τ, for windows in individual 

trials (at this step, multiple trials’ worth of data can be combined by averaging over the covariance/cross-

covariance matrices for each trial). Assuming Gaussian state distribution, we can then derive the entropy 

H(Xt) and conditional entropy H(Xt|Xt-τ) (denoted below as HCOND) over the time window. 

The mutual information I(Xt ; Xt-τ) across the time lag τ is the difference between the entropy and the 

conditional entropy, and can be understood as the information that the system possesses about its own past. 

It is important that for the mutual information, it does not matter whether parts of a system interact; even a 

collection of completely disconnected parts can have a large amount of information about its own past. Such 

a mere aggregate of independent parts should be quantified as zero with any measure of integration. A 

measure of integrated information should reflect the information generated by a whole system, above and 

beyond the sum of information generated by its parts (Tononi, 2004).  

We estimate the integrated information, Φ*, as the difference between the mutual information I(Xt ; 

Xt-τ) and the ‘mismatched decoding’ mutual information I*(Xt ; Xt-τ) (Oizumi et al., 2016). I* quantifies the 

mutual information generated by a model version of the analyzed system with independent parts (Latham & 

Nirenberg, 2005; Merhav, Kaplan, Lapidoth, & Shitz, 1994; Oizumi, Ishii, Ishibashi, Hosoya, & Okada, 

2010) (See Methods as well). I* is computed for the partition of the system that minimizes the difference 

between I and I*: the minimum information partition (MIP) (Balduzzi & Tononi, 2008). This minimal 

difference is information that cannot be isolated to parts of the system: the integrated information, Φ* = I – 

I* (for detailed derivation, see Methods and (Oizumi et al., 2016)).  
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Figure 1. The procedure for estimation of integrated information structure in ECoG data. A) ECoG 
recording. Black rings mark the location of electrodes; we used bipolar re-referenced channels between each 
local pair of electrodes. Four of these are marked in color. B) Means (thick lines) and standard deviations 
(shades) of the field potentials for the four channels marked in A, from 500ms before to 1000ms after a face 
stimulus onset. Here we averaged intervals over 45 trials in the CFS experiment where the high-contrast face 
target was reported as highly visible by Subject 153. C-E) Time courses of the entropy H (C), mutual 
information I (D) and integrated information Φ* (E) for each of the 11 subsystems. Each subsystem is a 
subset of the channels in the system ABCD. Values were estimated over a time window T=200ms and τ = 
3ms, and plotted by aligning its center with the time point on the x-axis. Entropy and the mutual information 
are proportional to number of channels, so we have plotted H and I divided by the number of channels for 
each subsystem, to emphasize the dynamics over all subsystems. The dynamics of Φ* are highly 
idiosyncratic. Note the increase in Φ* for subsystems BD and ACD, after the stimulus onset. The increase in 
ACD’s Φ* is accompanied by change in its minimum information partition (MIP) (F and G): subsystem 
ACD switches from a bipartite to a tripartite MIP when a face is seen, accompanied by the increase in Φ* 
magnitude (indicated by the darker colors). 
	  

The Structure of Integrated Information 

 To mirror the nested, multi-order structure of perceptual experience, we measured Φ* for every 

subsystem within a selected system of ECoG channels. The resulting ‘power set’ of Φ* values describes a 

hierarchy of overlapping subsystems that may or may not integrate information within the specified system 

– we refer to this hierarchical set of integrated information values as the Φ* structure. We measured these 

Φ* structures at every location of a 4-channel searchlight, in each of six subjects, for a range of τ (time lag) 
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values from 1.5 to 12 msec. All computations were performed over 200ms time windows (longer windows 

make for better covariance matrix estimates, while sacrificing temporal specificity) spaced 100ms apart over 

a period from 400ms before stimulus onset to 1000ms after onset. To select regions of interest (presented in 

Figures 1 through 4), we focused on maximae in evoked Φ*, i.e. the searchlight locations with maximal 

increase in Φ* after stimulus onset, regardless of the stimulus category. Our rationale for this selection was 

theory-driven: we reasoned that where information integration is evoked by a stimulus, the structure of the 

information should naturally identify the percept. The procedure is described in detail in the Methods. 

Similar criteria for selecting a region of interest are discussed in the Methods and illustrated in Supplemental 

Figure S4.    

We first present a detailed analysis of integrated information structure in a single subject (S153), in a 

group of channels located over the right fusiform gyrus (FG), a region that has a known association with 

conscious perception of faces (Baroni et al., 2016; Parvizi et al., 2012; Puce, Allison, & McCarthy, 1999; 

Rangarajan et al., 2014; Tong, Nakayama, Vaughan, & Kanwisher, 1998). The process is illustrated in 

Figure 1 for a system of four channels (Figure 1A) – these four channels (with τ=3msec) contained the 

highest evoked Φ* of any searchlight location in this subject. Figure 1B plots the average time course of 

raw bipolar re-referenced voltages (no baseline correction) during trials where subjects consciously saw 

(visibility rating of 4) high-contrast faces in the CFS task. We computed Φ* for every combination of 

channels within this system: for a system of 4 channels this yields six 2nd-order subsystems, four 3rd-order 

subsystems, and a single 4th-order subsystem. Panels 1C-E show the time courses of the quantities that 

underlie Φ*, computed for each of 11 subsystems. The most general quantity is the entropy H (Figure 1C). 

From the entropy H we subtract the conditional entropy HCOND, yielding the mutual information I (Figure 

1D). Next we identify the MIP for each subsystem, which identifies the weakest link that minimizes the 

difference between I and I* (the difference is subject to a normalization term; see Methods; also note that for 

a 2nd-order subsystem, the only possible partition is the MIP). The integrated information is evaluated at the 

MIP: Φ* = I - I* (Figure 1E). 

Most subsystems show a similar time course for H and I (in the example system of Figure 1 as well 

as most other observed systems), with entropy and mutual information decreasing a few hundred 

milliseconds after stimulus onset. In contrast, Φ* has an idiosyncratic time course, strongly dependent on 

the specific subsystem. For most subsystems, Φ* remains near zero regardless of the visual stimulus; for 

others, it may start high and drop after a particular stimulus is presented (e.g. subsystem BCD in Figure 1E); 

and for other subsystems Φ* starts low and increases after stimulus presentation (e.g., subsystems BD and 

ACD in Figure 1E). A further point of interest around the Φ* dynamics is the internal structure of each 

computation: the MIP. Figure 1F shows how the MIP changes over time for a particular subsystem ACD, 

resting in a bipartite state (A vs CD) before stimulus onset, and switching to a tripartite state (A vs C vs D) 

after stimulus onset. This change in partition structure accompanies/underlies ACD's increased integrated 

information upon the onset of stimulus onset. 
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Figure 2. Integrated information structure presented on a Hasse graph. See also Supplementary Movie 1. A) 
The graph for all subsystems in the system ABCD evaluated in Figure 1 in the interval 200-400 ms. The x 
and y coordinates here are assigned for visualization purposes. Each node in the graph is one of the 11 
subsystems in the system ABCD. The edges of the graph represent addition or subtraction of a single 
channel from a subsystem. The color of each node (when visible) represents the order of the subsystem: blue 
nodes are 2nd-order subsystems, black nodes are 3rd-order subsystems, and the red node is the ‘top’ 4th-order 
subsystem. B) The same graph viewed against the y-axis, with the magnitude of Φ* represented on the 
vertical (Z) axis. Subsystem ACD is labeled in black – adding or subtracting channels to this subsystem only 
reduces Φ*. All the other subsystems in this system integrate less information than subsystem ACD, 
including the ‘enveloping’ higher-order system ABCD. C) The same graph viewed against the x-axis. 
 

Graphing Φ* Structure 

The complete set of subsystems within a specified system constitutes a partially-ordered set that can 

be visualized with a Hasse graph (Figure 2A). In the graph (whose x- and y-coordinates are arbitrary), we 

place the highest 4th-order subsystem ABCD at the origin (the red colored node), surrounded by the 3rd-order 

subsystems in black, which are further surrounded by the 2nd-order subsystems in blue. The edges represent 

the simplest possible transition through a ‘subsystem space’: one subsystem transitions to another by adding 

or subtracting one channel. For example, subsystem ACD, the 3rd-order node featured in Figure 2F, is 

connected to subsystems AC, CD, AD via edges as well as ABCD.  The 3D rendering of the structure is 

easily appreciated in Supplementary Movie 1.  

The 4-channel Φ* structure in Figure 2 is suggestive of a highly nonlinear and nonmonotonic 

changes in the shape of the information integration structure. Here the 3rd-order subsystem ACD attains the 

highest Φ* of all 11 possible subsystems. The graph illustrates how subtracting from or adding to a 

subsystem can reduce the integrated information. The Φ* of subsystem ABCD is less than that of ACD 

because there is a relatively weak interaction between B and ACD. In this case, the minimum information 

partition (MIP) is between B and ACD. 
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Figure 3. A-C) Graphs of Φ* structure in the interval 200-400msec after stimulus onset, in S153’s right 
fusiform gyrus (location specified in panel E), in multiple percept/stimulus conditions in three stimulus 
paradigms. Marker colors mean the same thing as in Figure 2. The same channel system in Subject 153 is 
analyzed here as in Figures 1 and 2. Two prominent subsystems, ABC and ACD, are marked by the blue 
and orange circles in each graph – these are indicated in D. A) Φ* structures for trials with the three 
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unmasked stimuli in the one-back experiment: Faces, Inverted Faces, and Mondrians. B) Φ* structures 
generated in the four trial types in the backward masking experiment: Visible Face trials here are those 
where the subject correctly localized (4AFC) and identified emotion (3AFC) of the masked face, shown 
separately for long and short SOA trials; Invisible Face trials are those short SOA trials where the subject 
was incorrect for localization; and ‘Mask Only’ trials were catch trials where no faces were presented. C) 
Φ* structures from the CFS experiment. Within each row, physical structure of the stimuli, including 
contrast of the target face, was identical. Columns indicate the reported visibility of the face target. Hit/miss 
ratios are shown in each panel. The inset images roughly depict what was perceived in the corresponding 
intervals. To compute Φ* structure in each panel, we used the number of trials available in the condition (N 
or Hit+Miss), as indicated by the inset numbers. See Supplementary Movie 2 for comparison of visible 
face trials in CFS and BM with invisible trials in CFS.  
 

Figure 3 shows Φ* structures computed over the same time period (200 to 400msec after the 

stimulus onset) in the same group of channels as in Figures 1 and 2. Figures 3A-C present Φ* structures 

obtained in three separate experiments: the unmasked one-back task, backward masking (BM) and 

continuous flash suppression (CFS) (For comparisons of these structures, see Supplementary Movie 2 to 

view Φ* structures in a 3 dimensional perspective). Φ* structures in the left two columns are constructed 

from trials where the subject clearly perceived a face (81 trials of unmasked upright or inverted faces in the 

one-back task, 68 trials with correct in both location and emotion discriminations in BM, and 94 trials with 

high visibility ratings in CFS, with hit/miss counts identified in the inset text), whereas the right two 

columns are not (38 Mondrian trials in the one-back task, 28 trials with incorrect in location discrimination 

in the BM, and 95 trials with low visibility ratings in the CFS). In this example, Φ* structures in trials with 

clearer face percepts (the left columns) have higher, tilted shapes, while non-face percepts correspond to 

flatter shapes. The trends are carried by differential behaviors in some subsystems; for example, subsystem 

ACD (marked with the orange circles) attained high values of Φ* only when a face was visible (left 

columns), while subsystem ABC (marked with blue circles), was integrated regardless of perceptual state.  

The overall shapes of the structures are similar within the columns, implying that these Φ* structures 

reflect conscious perception of faces, regardless of the task instructions and low-level visual stimulus 

properties. This is consistent with a proposed equivalence between conscious perception of faces and the Φ* 

structures, which are invariant to task or stimulus details (Aru, Bachmann, Singer, & Melloni, 2012; de 

Graaf, Hsieh, & Sack, 2012).    

 

Natural classification of conscious contents 

To objectively assess the link between Φ* structure and perceptual contents, we employed 

classification analyses based in the notion of representational similarity (Kriegeskorte, Mur, & Bandettini, 

2008). We computed Φ* structure over bins of 3 trials each matched for percept and stimulus categories 

(e.g., high-contrast CFS faces reported as visible). Φ* structure can be characterized in at least two ways. 

First, it can be represented as a vector of Φ* magnitudes (|Φ*|) for each of N subsystems (with 4 channels, 

N=11); we refer to this as the |Φ*| representation. Second, Φ* structure can be represented as the pattern of 

MIPs over N subsystems (e.g., tri-partition of subsystem ABC (A vs B vs C), or bipartition (AB vs C)); we 
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refer to this as the MIP representation. Here, we measured similarity of the Φ* structure in these two 

domains separately (Methods).  

 
Figure 4. Percept classification accuracy for different information structure types. A) The likelihood of 
different structure types given specific classification accuracies (AUC), for each subject, combined over all 
searchlight locations in all stimulus paradigms. Likelihood for each structure type is the incidence of that 
type at the given AUC, divided by the total number of structures observed at the given AUC. When 
classification accuracy is high (value on the x-axis), it is usually obtained (with high likelihood) with Φ* or 
MIP structures. The numbers by each marker indicate the number of observations of each AUC value, for 
each structure type. Chance AUC is 0.5 (see Methods); chance likelihood, since there are four structure 
types (Φ, MIP, I, H) is 0.25. B) Average timecourse of discriminability over 22 conditions (combinations of 
six subjects, three possible tasks, and either lateral or ventral electrode implantations). |Φ*| and MIP 
structures classify percept category better than mutual information and entropy (I and H). Error bars are the 
standard error of the mean of the z-transformed AUC scores. 
 

To evaluate the mapping between percept and structure, we constructed matrices representing 

dissimilarity of Φ* structure between every pairing of trial bins (1 minus the Pearson correlation coefficient 

(Kriegeskorte et al., 2008) for |Φ*| dissimilarity, and a simple matching measure for MIP dissimilarity as 

described in Methods). For comparison, we measured dissimilarity for entropy (H) and mutual information 

(I) structures, which are obtained in the course of the Φ* computation. We then projected the dissimilarity 

matrices into multi-dimensional scaling (MDS) coordinates, and used these coordinates to measure percept 

classification accuracy as the area under the receiver operator characteristic curve (AUC) for each structure 

type, at each searchlight location (see Methods for details). Importantly, there was no training step to 

optimize weights for classification: the raw values extracted from the structures served directly as 

unweighted feature vectors. The searchlight AUC results are summarized in Figure 4a, showing the 

likelihood of each structure type given a specified AUC, for each of six subjects; while very high AUC 

values are rare (only a few searchlight locations in each subject), when AUC is high it is with |Φ*| or MIP 
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structures, and never with I or H structures. Φ* structures naturally classify the contents of consciousness. 

Thus our main results that |Φ*| or MIP classifies better than H or I do not crucially depend on the exact 

channel selections, at least when we analyze the high-level visual areas in this study.   

 What might mark these regions of strong Φ*-percept mapping? We reasoned that where information 

is integrated in response to a stimulus, its structure should map closely to the reported experience. In each of 

22 distinct conditions (six subjects, most with lateral and ventral ECoG installations, each of whom 

performed at least one of the visual tasks: not every subject completed every task, and not all had ventral 

electrodes; see Table 1 in Methods) we selected the searchlight location that generated the largest evoked 

Φ* regardless of stimulus/percept condition (the same criterion by which the location presented in Figures 

1-3 was selected). Figure 4b shows the AUC timecourse for each measure, averaged over the 22 conditions; 

average classification is best with |Φ*| and MIP structures. We used the post-stimulus onset AUC scores (z-

transformed) over all conditions (combinations of 6 subjects, 3 tasks, and two types of electrode installation; 

see methods) and using all structure types (Φ*, MIP, I, and H) as dependent measures in an ANOVA, with 

structure type, subject ID, task, and installation type as fixed factors and post-stimulus time point as a 

covariate. There was a main effect of structure type (F(3,703)=13.290, p<0.001), with significant 

(Bonferroni-corrected) post-hoc pairwise differences between AUC derived from Φ* versus I structures 

(p<.001), Φ* versus H structures (p<.001), and Φ* versus MIP structures (p=.006) (these comparisons 

reflecting differences between the post-stimulus time courses in Figure 4b). MIP-derived AUC was also 

significantly different from H-based AUC (p=.006). There were significant main effects of subject ID 

(F(5,703)=89.214, p<.001), task (F(2,703)=52.281, p<.001), and installation type (lateral/ventral; 

F(1,703)=68.851, p<.001). All factorial interactions were significant. Other (less theoretically-motivated) 

selection criteria that are aimed simply at identifying percept-informative cortical regions yield qualitatively 

similar results (Supplemental Figure S4). 

 

Discussion 

According to IIT, conscious experience is identical to a structure of intrinsic integrated information 

(Tononi, 2004); so, features of integrated information structure observed in a brain should correspond to 

features of the subjective experience of that brain. In this paper, we presented a tool – the integrated 

information measure Φ* – by which such equivalence can be investigated. We found that integrated 

information structure in human visual cortex naturally classified psychophysically determined perceptual 

contents, across task instructions and in conditions where physical stimuli are dissociated from perceptual 

experience. Importantly, Φ* structure maps more closely to perceptual states than do entropy and mutual 

information structures, despite their overlapping derivation. The advantage of Φ* over entropy and mutual 

information is likely due to Φ*’s isolation of integration. Entropy quantifies only the instantaneous 

uncertainty of the neural states, understandable as equal-time interactions (Oizumi, Tsuchiya, & Amari, 

2015). Mutual information quantifies time-lagged interactions in these distributions, i.e., how past states 
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affect future states, including both within and between channels (Figure 1B). Φ* also quantifies time-lagged 

interactions but only those that tie groups of channels together. Thus, our results can be summarized as 

showing that neither the structure of equal-time interactions (H) or of time-lagged self-interactions (I) 

contain as much information about conscious percepts as do time-lagged cross-interactions (Φ*). Thus, our 

results suggests a critical role of time-lagged interactions across the system, or integration, of neuronal 

activity for understanding how conscious phenomenology corresponds to neural systems. 

We observed integrated information structure whose emergence tracked closely with the 

experimentally controlled contents of consciousness. In the notable case of Subject 153, we observed a 

similar structure generated in different stimulus paradigms when the subject experienced a ‘face’ percept. 

The elements generating the structure – channels of neural activity in the right fusiform gyrus – have long 

been associated with face percepts on the basis of patterns of responsivity and perceptual consequence of 

electrical stimulation of the area (Grill-Spector, Knouf, & Kanwisher, 2004; Haxby, Hoffman, & Gobbini, 

2000; Parvizi et al., 2012; Tong et al., 1998). Here we have demonstrated that the neural activity in this 

region that reflects face awareness is irreducibly integrated across multiple hierarchical levels. Generalizing 

this finding, we have demonstrated in a number of subjects, stimulus paradigms, and cortical regions, that 

how the information is integrated (the Φ* structure) indeed reflects the nature of the percept evoked by a 

stimulus. The caveat, typical of ECoG recording in human patients, is that our data are influenced by large 

variability in electrode implantation locations and in each subject’s behavioral performance, which likely 

contributed to the variance in the quality of classification across condition (e.g., the outstanding result from 

patient 153, who was cognitively alert and whose electrodes seem to have been in exactly the right place). 

Given the difficulty in conducting this type of experiment in epilepsy patients, it will be important to 

continue accumulating data to determine how the conclusions from this study extend to other patient 

samples.  

By using a measure of integrated information, we have applied several new concepts to the analysis 

of neural data. However, for our purposes it is the concept of integrated information structure that is most 

crucial, as this concept ties into the hierarchical, compositional nature of the contents of consciousness. The 

integrated information theory provides us with a detailed prediction that Φ* structure should have a close 

connection to specific conscious contents (Balduzzi & Tononi, 2009; Oizumi et al., 2014). A conscious 

experience is intrinsic, existing for itself, not some outside observer - Φ* measures how a system specifies 

its own state, not an external state; a conscious experience is integrated, irreducible, more than the sum of its 

parts - Φ* measures how the system as a whole specifies its own state, above and beyond its elements; and a 

conscious experience is compositional, just like the hierarchical Φ* structure. Based on these theoretical 

parallels, there is strong a priori reason to expect Φ* structures should closely correlate with perceptual 

experience. This type of theoretical background is lacking in many investigations of the neural correlates of 

consciousness; rather than the traditional search for correlates, our study can be seen as a test of a theory. 

Our results should be seen as a step in the direction of a new empirical research framework in 

consciousness science, where the degree of equivalence is assessed between the domain of conscious 
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experience and the domain of a theoretical construct, with empirical data as a bridge between domains 

(Tsuchiya, Taguchi, & Saigo, 2016) If the equivalence holds, similar experiences should map onto similar 

Φ* structures (or other, further developed constructs), and different experiences should translate to different 

structures, as we saw in this paper.  Looking forward, the IIT would say that for local Φ structure to be part 

of conscious experience, it must be a substructure of a vastly larger 'main complex' extending across 

multiple cortical regions. Measuring this superstructure in a paradigm where local perceptual structure can 

be simultaneously resolved seems a formidable task, but the difficulties may lie more in data type and 

availability than in computational complexity (as our results suggest). These difficulties will be addressed by 

future experiments and by further theoretical developments. With the methodological framework we 

provided here, it will be possible to test the theory with other datasets in other experimental manipulations 

combined with neural recording and stimulation, approaching ever closer to establishing the link between 

the mental and the physical worlds.  

 

Methods  

Subjects 

 We analyzed ECoG recordings obtained in six patients undergoing video EEG monitoring with 

intracranial electrodes. All patients had ‘grid’ arrays installed over the left (N=4) or right (N=2) lateral 

temporal lobes, and five also had two or more ‘strip’ arrays installed ventrally on the same side. Patients 

also had frontal and deep electrodes, which we did not 

include in our analyses. Recording was not performed 

within 48 hours of major seizures (Lachaux, Axmacher, 

Mormann, Halgren, & Crone, 2012). Subjects, 

experimental paradigms, and the cortical area that received 

electrode implantation for all 22 conditions considered. 

For the analysis reported in Figure 4, we regarded each 

row in Table 1 as an independent condition. 

 

Table 1. 

 

Psychophysics  

 Subjects performed psychophysics experiments 

while outfitted with the ECoG arrays. All subjects were 

naïve to the tasks, and generally received a block or two of 

practice trials before data collection began. Completed 

trial counts for all included subjects are listed in Table 1. 

Continuous flash suppression (CFS) is a dichoptic masking paradigm. In our experiment, a target 

face stimulus is presented to one eye, while distinct patterns of colorful Mondrian (shape noise) images are 

sub	  ID	   session	   area	   channels	   trials	  

147	  
BM	   lateral	   112	   234	  
CFS	   lateral	   172	   96	  

153	  

BM	  
ventral	   44	  

234	  
lateral	   112	  

CFS	  
ventral	   44	  

192	  
lateral	   112	  

UNM	  
ventral	   44	  

573	  
lateral	   112	  

154	  
	  

CFS	  
ventral	   44	  

48	  
lateral	   112	  

UNM	  
ventral	   44	  

297	  
lateral	   112	  

156	   BM	  
ventral	   44	  

117	  
lateral	   112	  

168	  
CFS	  

ventral	   44	  
96	  

lateral	   172	  

UNM	  
ventral	   44	  

200	  
lateral	   172	  

178	  
BM	  

ventral	   88	  
117	  

lateral	   172	  

UNM	  
ventral	   88	  

495	  
lateral	   172	  
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continuously flashed to the corresponding position in the other eye (Tsuchiya & Koch, 2005). In each trial, 

two temporal intervals were presented (Figure S1a). Each interval lasted 200msec, and the two intervals 

were separated by a random duration between 900 and 1100 msec. In one interval, the target face was 

presented to one eye; in the other interval, the blank gray field was presented. In both intervals, three distinct 

patterns of Mondrians were presented (each 66 ms, at 15Hz) to the other eye. Dichoptic view was achieved 

through a custom-made mirror scope consisting of 4 mirrors. 

After the two intervals, the subject was asked to report which interval contained the target face, and 

then to report the subjective visibility of the target (a 4-point scale ranging from ‘clearly visible’ to 

‘invisible’) (Ramsøy & Overgaard, 2004). Three target contrasts (either 50%, 25%, and 12.5% or 100%, 

50%, and 25%, depending on the subject) were interleaved from trial to trial. As a screening step (to ensure 

that included subjects understand the task and responded properly), we included only data from 

experimental sessions whose objective 2AFC hit rate increased with target contrast, and increased with 

reported visibility. If these criteria were met, we treated visibility levels where hit rate was near chance 

(50%) as “invisible targets”, and higher visibility levels as “visible targets”. For all included CFS subjects, a 

division of trials that separate trials with visibility ratings of 3 (mostly visible) or 4 (clearly visible) and 

ratings of 1 (complete guess) and 2 (nearly invisible) satisfied the above criteria. Summary measures of CFS 

performance for the included subjects are shown in Figure S2a. 

In the backward masking (BM) paradigm, a target face stimulus, whose emotional expression was 

either happy, angry, or neutral, was briefly flashed (17 msec) at one of four visual field locations (upper-left, 

upper-right, lower-left, lower-right), which was immediately replaced by a gray blank screen. The face was 

placed within an oval shaped mask within the 1/f noise.  The other three quadrants contained 1/f noise only. 

After a variable stimulus onset asynchrony (SOA), the stimulus array that included the target face was 

replaced with 1/f noise in all quadrants for 200 ms. SOAs varied from 17 to 200 msec. When the mask 

followed the target with a short SOA, the face was often rendered invisible. After each trial, subjects 

indicated the location and the emotion of the target face with two button presses. In absence of an explicit 

visibility judgment, we coded trials where subjects responded correctly for both location and emotion as 

“visible”, and trials where subjects incorrectly identified the location as “invisible”. Summary measures of 

BM performance are shown in Figure S2b. 

In the unmasked paradigms (UNM), stimuli were presented in a continuous train while subjects 

fixated the center of the display. Stimuli included upright faces, upside-down faces, houses, line drawings of 

tools, and Mondrian patterns used in CFS (but not flickering). Subjects indicated either the change of the 

fixation cross color (‘fixation task’) or, in separate experimental blocks, the repeat of stimulus category from 

trial to trial (‘one back task’). Since most trials did not require a response, UNM blocks were included for 

analysis if the subject made responses during the task, but no accuracy threshold was imposed. For the 

analyses in this paper, we did not distinguish between the fixation and one-back tasks. 
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Computing Φ* 

Φ* is a measure of integrated information in a candidate subsystem X,  derived via a sequence of 

four computations (I-IV). For the detailed mathematical derivation of Φ*, see (Oizumi, Amari, Yanagawa, 

Fujii, & Tsuchiya, 2015). 

I.  The states of a subsystem at time t, which we denote as X(t), is an n-dimensional vector, where its ith 

dimension specifies the bipolar re-referenced voltage for the ith channel. To estimate the uncertainty about 

the states of the mechanism, we employ the concept of entropy, under an assumption of Gaussian 

distribution of these states (Barrett & Seth, 2011; Oizumi, Amari, et al., 2015): 

(1) , 

where Σ(X) is the covariance matrix of X, estimated over the time interval [t-T/2, t+T/2] (T=200ms 

throughout the paper). The [i,j]th element of Σ(X) is the covariance between channel i and j of X over the 

time interval. |Σ(X)| is the determinant of Σ(X), known as the generalized variance (Barrett, Barnett, & Seth, 

2010), as it describes the n-dimensional spread of instantaneous states of Xt. The more different states X 

takes over the time interval, the more uncertain we are about its states at any time t within the interval.  

 

II.  Next, we estimate reduction in uncertainty about the mechanism's states at t (=Xt) given its past states 

(=Xt-τ, τ>0) using the concept of mutual information I:  

(2) I Xt;Xt−τ( ) = H Xt( )−H Xt Xt−τ( ) , 

where H(Xt|Xt-τ) is the conditional entropy of the mechanism X across the delay τ. Under the Gaussian 

assumption, the conditional entropy is given by 

(3) .   

The covariance matrix of the conditional distribution,  Xt|Xt-τ, is given as 

(4) ,  

where Σ(Xt,Xt-τ) is the cross covariance matrix between Xt and Xt-τ, whose element Σ(Xt,Xt-τ)ij is given by 

covariance between i-th element of Xt and j-th element of Xt-τ. 

 

The way we use mutual information here is the same as auto-mutual information (Brenner, Strong, Koberle, 

Bialek, & Steveninck, 2000; Gómez, Hornero, Abásolo, Fernández, & Escudero, 2007; Julitta et al., 2011).  

I(Xt; Xt-τ) is a measure of the information that current states has about its own past states.  

 

III. Integrated information Φ* over the subsystem X is information that cannot be partitioned into 

independent parts of X  (For simplicity, we remove t and t-τ from X for the explanation of Φ* here). To 

identify integrated information in a subsystem, we estimate the portion of the mutual information that can be 

isolated in parts of X. The process consists of first defining the parts of X (a ‘partition’) and then estimating 

H X( ) = 1
2
log Σ X( )( )+ 12 n log 2πe( )

H Xt | Xt−τ( ) = 1
2
log Σ Xt | Xt−τ( )( )+ 12 n log 2πe( )

Σ Xt | Xt−τ( ) = Σ Xt( )−Σ Xt,Xt−τ( )Σ Xt−τ( )−1Σ Xt,Xt−τ( )T
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the fictitious mutual information assuming that the parts of a subsystem are independent. An estimate of 

‘disconnected I’ is called mismatched information and denoted as I* (Oizumi, Amari, et al., 2015; Oizumi et 

al., 2010). 

We compute I* for every possible partition of X. For a subsystem of n channels, there are Bell(n)-1 

partitions, where Bell(n) is the n-th Bell number (Bell, 1934). As an example, if X is made up of four ECoG 

channels, Bell(4) is 15, and thus there are 14 possible partitions of the subsystem (e.g. {a|bcd}, {ab|cd}, 

{ab|c|d},{a|b|c|d}, etc.), excluding the ‘trivial partition’ where all n elements are together in a single part 

(e.g. {abcd}). For each partition, we obtain Φ* = I – I*. We select the partition P that minimizes the 

normalized Φ* value, as defined in (Balduzzi & Tononi, 2008):  

(5)  

(6) ,  

where m is the number of partitions and Mk is the kth part of the system X. The normalization term NP 

counterbalances inevitable asymmetries introduced by computing Φ* across variable numbers of partitions 

of unequal size (Balduzzi & Tononi, 2008). The partition that minimizes normalized Φ* is called the 

‘Minimum Information Partition’, or ‘MIP’. The MIP reveals the weakest link between the parts of X, the 

connections across which persists only information that is not reducible into parts. 

IV. The integrated information of the subsystem is defined across the MIP as  (throughout 

this paper, Φ* refers to ). 

In our study, for stable estimation of covariance and cross-covariance, we used a shrinkage approach 

(Schäfer & Strimmer, 2005). By computing covariance and cross-covariance matrices separately for each 

trial and averaging these before computing the entropy, we estimated Φ* for bins of trial data. For the 

classification analyses, bins consisted of 3 trials each (randomly selected from a given percept/stimulus 

category); for the Φ* structure illustrations in Figures 3 and 4, all trials belonging to a particular 

stimulus/percept category were used to produce averaged covariance and cross-covariance matrices 

underlying the Φ* computations. 

 

Channel set selection procedure 

 We reasoned that where a stimulus evokes information integration, the structure of the integration 

should identify the percept, especially in visual areas. To test this hypothesis, we carried out the following 

procedure for each specific experimental setting (a particular stimulus task, as viewed through a particular 

brain region of electrode implantation – either ventral or lateral regions – in a particular subject). We 

identified the τ value and local set X̂  of four channels that contained the subsystem where the largest 

average Φ* was evoked (averaged over all 3-trial bins for all stimulus/percept categories):  

NP = m−1( ) ⋅min
k

H M k( ){ }

MIP = argmin
P

ΦP
*

NP

"
#
$

%
&
'

ΦMIP
* = I − IMIP

*

ΦMIP
*
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7) X̂,τ{ }= argmax
X,τ

Φ̂* X,τ( )( ) , 

where Φ̂*  was the largest average evoked Φ* in a channel set X for a particular τ: 

 8) Φ̂* X,τ( ) =max
i

Φi
* X,τ( )( ) , 

and the mean evoked Φi
*  was the difference between the mean post-stimulus and mean pre-stimulus Φ* 

structures for the i-th subsystem within a channel set X for a particular τ : 

 9) Φi
* = − Φi

*

t=−300

−100
∑ t( )+ Φi

*

t=100

300
∑ t( ) . 

In 9), t is the center of a 200msec interval of ECoG data, and the Φ* estimates are averaged over all 3-

trial bins for all stimulus/percept categories. Candidate channel sets included all positions of a 

rectangular searchlight in each subject’s lateral and ventral electrode arrays (a square searchlight for 

lateral arrays, and a slanted rhombus window for the ventral arrays). For the lateral arrays, most 

searchlight locations shared some 2nd-order subsystems with other overlapping locations, allowing some 

flexibility in the subsystem membership of the sampled Φ* structures; for the narrow ventral strips, the 

square searchlight shape did not allow any overlap, so the rhomboid shapes were added to allow for 

flexibility in subsystem membership. If the highest evoked Φ* value was located in more than one 

overlapping structure, the tie was resolved by the next highest evoked Φ* in the tied structures. 

 The ‘max evoked Φ*’ location X̂  for each condition was included in the ANOVA and AUC 

timecourse (Figure 4b) described in the results. Evoked Φ* at each searchlight location (for clarity, 

excluding the closely overlapping ventral rhombuses), for each condition, is plotted in Figure S3. The ROI 

in Figures 1-3 was the max evoked Φ* system for S153’s ventral BM condition (the highest overall evoked 

Φ* over three stimulus paradigms). The max evoked Φ* system for the CFS condition was next to the 

depicted system as is clear from the figure. 

 Although Figure 4a shows the advantage of Φ* and MIP over I or H in most systems in the ventral 

and lateral cortex, using the above procedure to select ROIs for statistical analysis may seem to give 

AUC(Φ*) an unfair advantage over AUC(I) and AUC(H). In fact, AUC(Φ*) is correlated with evoked Φ*. 

To evaluate this problem, we also measured evoked I and H (both as ‘evoked maximum’ and ‘evoked 

minimum’, since entropy and mutual information tended to decrease after stimulus onset), and correlated all 

evoked measures with AUC, over all searchlight locations in all conditions. As shown in Figure S4A, while 

evoked I (and H) do correlate with AUC computed for I and H structures, they correlate as strongly or more 

strongly with AUC computed on Φ* structures. So, among the tested selection criteria (all of which, to some 

extent, are identifying regions of stimulus-evoked neural response), the highest AUC will tend to be 

obtained with Φ* structures. The Φ* AUC advantage even persists when we select single systems from each 

condition based on the minimal evoked I or H (Figure S4B,C) (rather than based on the maximal evoked 

Φ*, as in Figure 4b), although the overall level of classification tends to be poorer than when the criterion is 

based on Φ*. 
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Multi-dimensional analyses for assessing the similarity of informational structures   

 In Figure 4, we used an unsupervised classification analyses for all available subjects within each 

stimulus paradigm and within recording locations (either lateral or ventral temporal surface), comparing the 

classification performance across the 4 measures (|Φ*|, MIP, I and H). As input features to the clustering, we 

reduced the dimensionality of the input features into the first 4 multidimensional scaling coordinates, and 

used the nearest-neighbor algorithm for percept classification (see below for details). |Φ*|, I and H 

coordinates were derived from (Pearson) correlation-distance matrices (Kriegeskorte et al., 2008); for a 

distance measure between MIP structures, we simply counted the proportion of subsystems with identical 

MIPs in the two compared structures. 

 Measurement of percept classification began with defining percept categories for each experimental 

stimulus interval. The percept categories were Visible Face and Visible Mondrian (including face-absent and 

masked-face intervals) for CFS, Visible Face and Visible Noise (including masked-face and face-absent 

‘catch’ trials) for BM; for UNM there were four possible percepts: Faces (including upright and inverted 

faces), Houses, Mondrians, and Tools). For BM and CFS data, the assignment of trial intervals to percept 

categories was based on psychophysical responses as described in the earlier section; so, ‘face’ bins were 

labelled according to visibility judgments and objective accuracy.   

We assessed the clustering with a cross-validation procedure. First, using 70% of randomly sampled 

trials within each percept category as a training set, we determined the center of gravity for each category. 

Second, using the remaining 30% of trials as a test set, we computed receiver-operating characteristic (ROC) 

curves for each class by gradually extending a criterion distance from the category center; we then averaged 

the area under the curve (AUC) over all categories as the measure of the classification accuracy. We varied 

the criterion radius for each category from the mean estimated from the training set, counting the number of 

same-category bins within the radius as ‘Hit’ and other-category bins as ‘False Alarm’. By smoothly varying 

the radius from 0 to infinity, the proportion of both Hit and False Alarm changes from 0 to 1. ROC curves 

connect the dots from [0,0] to [1,1]. The procedure was repeated 20 times, with random resampling of 

train/test bins. For statistical analysis, each AUC value was converted into z-scores. 
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Figure S1. Paradigms for stimulus presentation. A. Continuous flash suppression (CFS) task. Each trial 
consisted of a temporal sequence of two stimulus intervals, separated by a random inter stimulus interval 
(ISI, 900-1100ms). In one eye, each interval contained three flashes of colorful Mondrian patterns; in the 
other eye, one interval contained a face image of variable contrast. These conditions result in stochastic trial-
to-trial visibility of the target face; sometimes the face is consciously seen, sometimes it is not. The subjects’ 
task was to select which interval contained the face, and to indicate how visible it was on a scale of 1 to 4. B. 
Backward masking (BM) task. After a random fixation delay, subjects saw an array of four noise patches, 
one of which contained a face image (the upper left, in the illustration), for 13 msec. After a variable 
stimulus onset asynchrony (SOA), another array of noise patches was presented to reduce the visibility of 
the face. The subject’s task was to identify the location of the face target among 4 possible locations, and 
also to identify its emotional expression among 3 possible labels (happy, fearful and neutral). C. Unmasked 
conditions included a one-back memory task, in which subjects paid attention to the category of the stimuli, 
or a fixation task, in which they ignored the category of the stimuli. In both tasks, faces and other objects 
were presented for 500 msec without any masks, with trials separated by a blank interval (500ms for the 
fixation task, 1000 msec for the one-back task). D. From subjects’ performance on a task (correct/incorrect, 
ratings of visibility, identification of expression), we can reasonably infer what their percept was likely on 
each trial of an experiment. We used subjects' performance to divide trials into the percept categories shown 
here: faces (and inverted faces), houses, tools, Mondrians, and noise. 
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Figure	  S2.	  Behavioral	  performance	  on	  the	  masking	  tasks,	  by	  two	  groups	  of	  four	  patients	  (indicated	  by	  
colors/number	  IDs).	  Upper	  panels	  show	  proportion	  correct	  for	  respective	  targets	  in	  CFS	  (A)	  and	  BM	  
(B)	  tasks.	  Lower	  panels	  show	  the	  number	  of	  trials	  at	  each	  trial	  type.	  A)	  Proportion	  correct	  for	  four	  CFS	  
subjects,	  as	  a	  function	  of	  visibility	  rating.	  Trials	  rated	  as	  ‘3’	  or	  ‘4’	  were	  treated	  as	  ‘visible’	  in	  the	  
classification	  analyses.	  B)	  Proportion	  correct	  for	  BM	  subjects,	  as	  a	  function	  of	  (binned)	  backward-‐
mask	  SOA.	  Trials	  where	  subjects	  were	  correct	  on	  both	  4AFC	  location	  and	  3AFC	  emotion	  judgments	  
(here	  coded	  as	  ‘correct’)	  were	  treated	  as	  ‘visible’	  in	  the	  classification	  analyses.	  
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Figure	  S3	  (in	  two	  parts).	  Max	  evoked	  Φ*	  searchlight	  and	  ROI	  selection.	  For	  each	  of	  22	  conditions	  
(combinations	  of	  6	  subjects	  with	  ventral	  and/or	  lateral	  electrode	  implantation,	  and	  3	  stimulus	  
paradigms,	  as	  represented	  by	  the	  rows	  and	  columns	  of	  the	  figure),	  we	  computed	  the	  average	  Φ*	  
structure	  (over	  all	  experiment	  trials)	  for	  every	  ‘closed’	  4-‐channel	  system	  (square	  and	  elongated	  
rhombuses	  where	  each	  vertex	  is	  adjacent	  to	  the	  next),	  at	  each	  of	  four	  τ	  values	  (1.5,	  3,	  6,	  and	  12	  msec).	  
As	  an	  ROI	  for	  further	  analysis,	  we	  chose	  one	  channel	  set	  that	  contained	  the	  subsystem	  with	  the	  
highest	  Φ*	  regardless	  of	  stimulus/percept	  (see	  Methods	  for	  details).	  The	  selected	  regions	  for	  
classification	  analysis	  (Figures	  1,	  2,	  3,	  and	  4b)	  are	  marked	  in	  red.	  Marker	  colors	  encode	  the	  maximal	  
evoked	  Φ*	  at	  the	  centroid	  of	  each	  system	  (values	  above	  0.1	  are	  all	  given	  the	  color	  yellow).	   	  



 
Figure S4. A) Correlation over all searchlight locations of classification accuracy AUC for different 
information structures (Φ*, MIP, I, and H) with different structure properties (maximum evoked Φ*, 
maximum evoked I or H, or minimum evoked I or H). For the main analyses in the paper, we selected 
cortical regions where we observed the largest average increase in Φ* in response to all stimulus conditions. 
Evoked Φ* correlates with AUC, most strongly with AUC(Φ*) and AUC(MIP), reflecting the result shown 
in Figure 4b. However, Φ* advantage is not due to the selection criterion; minimum evoked I or H both 
correlate with classification accuracy – but the correlation is still best for Φ* and MIP structures, meaning 
that if we choose a region for analysis based on the greatest decrease in mutual information, the best 
classifier in that region will still tend to be the Φ* structure, not the I (or H) structure. B,C) Selecting 
systems based on a “minimal mutual information or entropy” criterion still picks out systems where Φ* is a 
better classifier, although peak AUC is not as high as when the criterion is max evoked Φ* (as in Figure 
4b). 
	  
	  
	  
	  
Video	  1:	  4-‐channel	  Φ*	  structure	  (from	  Figures	  2	  and	  3),	  rotated	  through	  three	  dimensions	  to	  clearly	  
illustrate	  its	  construction.	  The	  x-‐y	  coordinates	  are	  arranged	  for	  aesthetic	  purposes,	  to	  illustrate	  the	  
layout	  of	  the	  Hasse	  graph	  that	  connects	  all	  the	  subsystems.	  The	  z-‐coordinate	  is	  the	  magnitude	  of	  Φ*	  
for	  each	  subsystem.	  This	  structure	  is	  generated	  by	  a	  system	  of	  four	  channels	  over	  subject	  153’s	  
posterior	  fusiform	  gyrus.	  
	  
Video	  2:	  4-‐channel	  Φ*	  structures	  for	  visible	  BM	  faces	  (left	  structure),	  visible	  CFS	  faces	  (middle	  
structure),	  and	  invisible	  CFS	  faces	  or	  Mondrians	  (right	  structure).	  Similar	  structures	  from	  the	  same	  
subject	  153,	  are	  shown	  in	  Figure	  4.	  
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