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Abstract

Motivation: Predict whether a mutation is deleterious based on the custom 3D
model of a protein.

Methods: We have developed modict, a mutation prediction tool which is
based on per residue rmsd (root mean square deviation) values of superimposed
3D protein models. Our mathematical algorithm was tested for 42 described
mutations in multiple genes including renin, beta-tubulin, biotinidase,
sphingomyelin phosphodiesterase-1, phenylalanine hydroxylase and medium chain
Acyl-Coa dehydrogenase. Moreover, modict scores corresponded to
experimentally verified residual enzyme activities in mutated biotinidase,
phenylalanine hydroxylase and medium chain Acyl-CoA dehydrogenase. Several
commercially available prediction algorithms were tested and results were
compared. The modict perl package and the manual can be downloaded from
https://github.com/MODICT/MODICT.

Conclusion: We show here that modict is capable tool for mutation effect
prediction at the protein level, using superimposed 3D protein models instead of
sequence based algorithms used by polyphen and sift.

Keywords: prediction; 3D protein model; bioinformatics

1 Introduction
1.1 State of the art

As next generation sequencing (NGS) is advancing the field of molecular biology

today, more human protein variants are identified than ever before. One of the

greatest challenges in this field is to be able to predict whether the detected variants

are real disease-causing changes underlying the patients condition.

The current concept of mutation effect prediction heavily depends on the com-

posite algorithms that mainly implement a sequence-based blast search that tries

to identify a number of similar protein sequences above a preset threshold, then re-

late and combine several other parameters such as psic (Position-Specific Indepen-

dent Counts), known three-dimensional (3D) structures of similar proteins, surface

area, β-factor and atomic contacts. Some available algorithms (e.g.PolyPhen 2,

http://genetics.bwh.harvard.edu/pph2/, [1]) use all above whereas others use ei-

ther a portion or a more diverse set of parameters (e.g.sift (http://sift.jcvi-

.org/, [2]), mutation taster (http://www.mutationtaster.org/, [3]), provean

(http://provean.jcvi.org/index ), [4]). Nonetheless, the fact that these algorithms

take into account non-mutually exclusive (non-orthogonal) features, the method to
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correctly combine the results to derive a conclusive output remains ambiguous. One

recently described method uses weighted means obtained from false positive rates

and false negative rates of each distinct algorithm to approach a consensus score

(Condel: http://bg.upf.edu/condel/home [5]). Even after utilizing cancer-trained

methods, such integration of scores were not able to correctly classify all variants [6].

1.2 Hypothesis and problem definition

A high percentage of genomic variants in protein-coding genes were shown to modify

the tertiary structure of the coded protein sequence. These structural modifications

can be predicted by comparing the 3D structures of the wild type and mutant

protein (.pdb files). The 3D structures are generated in commercial or academic-only

servers and software (i-tasser, http://zhanglab.ccmb.med.umich.edu/I-TASSER/

[7, 8] , swiss-model http://swissmodel.expasy.org/ [9], modeller http://salilab-

.org/modeller/ [10], yasara http://www.yasara.org/) by supplying the raw amino

acid sequences in fasta format. The generated results have to be interpreted carefully

to find the structural changes in the mutant protein. However such interpretation

and analysis on the molecular dynamics is not straightforward and simple.

We have derived a simple algorithm called modict to predict the effect of muta-

tions on the structure of the protein. It is complementary to the protein modeling

tools mentioned above, as it requires the 3D protein structures predicted by these

tools. The algorithm takes into account the global structural changes in the 3D

protein model. These structural changes are measured in means of the change in

Root Mean Square Deviation (∆rmsd) and the corresponding residue number in

the protein sequence.

2 Methods
2.1 Algorithm

Let Ai denote the rmsd value of a given amino acid at ith position resulting from

comparison of two models in a cartesian space defined by V (i , Ai). Assuming the

entire length of a protein with N residues is 1 unit, then the unit area of the rectangle

enclosed by two consecutive amino acids can be approximated by:

Area
def
=

Ai +Ai+1

2
·
1

N
· 2 =

Ai + Ai+1

N
i ∈ (1, 3, 5 . . . ) (1)

If a given domain is enclosed by ith and jth amino acid residues then the area

spanned by the domain can be expressed as:

Area Domaini,j
def
=

j
∑

n=i

(

Ai +Ai+1

N
·Wi · Ci

)

i ∈ (1, 3, 5 . . . j) (2)

where Wi and Ci denote optional weight and conservation scores respectively

which are usually provided by the training and iteration modules (users can attain

as well). Of course the aforementioned area does not solely result from the mutation.

An error value can be expressed in terms of overall rmsd (rmsd;generated by swiss-

model):
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Area Errori,j
def
=

rmsd

N
· (j − i+ 1) ·Wi · Ci i ∈ (1, 3, 5 . . . j) (3)

A total area can be defined from equations 2 and 3 (ad=Area Domain, ae=Area

Error) :

∑

total
def
=

∑

ad+
∑

ae (4)

Above formula is a generalization for multiple domains. In case there is only one

domain between residues i and j, than the total area simply is adi,j +aei,j . A raw

score (Γ) can be expressed in terms of:

Γ
def
=

∑

total ·

∑
ad∑

total
√

(
∑

ad∑
total

)2 + (
∑

ae

total
)2

·
1

2
(5)

It is noteworthy that for a given interval, AD and AE are not guaranteed to be

equal, even if the regions taken into consideration spans the entire protein. While

AD is obtained from per residue rmsd, AE is obtained from rmsd. AD/TOTAL

and AE/TOTAL should be considered as 2 orthogonal vectors. modict is designed

to work with specific protein domains where i and j designate the start and end of a

domain. For modict to perform optimal, it is important that the domains which are

most critical for the functionality of the protein are chosen. This can be literature

findings or can be predicted by the iteration script which is included in the software

package (see section 2.3).

The difference (δ) between equations 2 and 3 is important to discern background

signal from actual effect:

δi,j = adi,j − aei,j (6)

The significance (γ) of the difference depends on the length of the domain and

the standard deviation of the individual rmsd values:

γi,j
def
= Z

(1− (j−i+1)
N

)
·
σrmsd

N
· (j − i+ 1) (7)

where Zx denotes the Z score of (100 · x)th percentile and σ denotes the standard

deviation. Assuming that the rmsd values are distributed in a Gaussian distribu-

tion, the Z-score derived significance score gives an idea about how much of the

domain residues account for the large rmsd values. From equations 6 and 7, a

coefficient of significance (κ) can be defined:
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κ
def
=

(1 +
∑

δ−
∑

γ
|
∑

δ|+|
∑

γ|)

2
(8)

In the equation 8 above,
∑

δ or
∑

γ denotes the total sum of δ or γ between all

specified domain intervals such as δi,j + δm,n + δu,w... . Equations 5 and 8 can be

combined to express a final score:

FinalScore
def
= Γ · κ (9)

The criteria of evaluating the score can be performed via 2 different approaches

as outlined in sections 2.2 and S1.2. In a fraction of cases, comparison of modict

scores requires calculating thresholds and these thresholds are calculated via a K

parameter. Beware that this is not the same coefficient as in equation 8. This pa-

rameter is a measure of the highest p-value attainable with a given accuracy. The

K parameter is calculated from known list of mutations listed in table S1. For more

information for the usage of this parameter refer to section S1.2.

2.2 modict methodology

The algorithm of modict is based on rmsd values of superimposed wildtype and

mutant proteins. For calculating, rmsd values, a 3D protein model is required of

both the wildtype and mutant case, which is calculated by using the i-tasser and

phyre2 servers. After construction of the 3D models, the generated pdb files are

used as input for a script included in modict which will extract the necessary rmsd

values. For the purpose of testing modict, amino acid sequence of wildtype and

mutant renin, Tubb2b, Btd and Smpd1 proteins (uniprot id: P00797, Q9BVA1,

P43251, P17405) were submitted to the automated i-tasser and phyre2 servers.

PAH and ACADM (tables 1,2) were submitted to the automated phyre2 server. For

further details on specific settings, see section S1.1. modict can be supplied with

optional weight (min:0,default:10) and conservation(min:0,max:11,default:1) scores

which are both array vectors (single number per line in a text file). Multiplying all

entries of the weight and conservation file by a constant does not change the result.

Both files are optional and not mandatory for modict to work. However, they can

be used to give higher priority to certain regions. The default set up attains 1 to

both conservation and weight scores.

Conservation scores are generated by aligning reviewed sequences of the protein of

interest in different species from UniProt (http://www.uniprot.org/). It is a simple

text file of one conservation score per line and generated using the jalview utility.

modict requires a user generated per-residue rmsd file as well. We have developed

a script which can be supplied to swiss-pdb. This script extracts the rmsd values

from superimposed WT (wildtype) and MT (mutated) .pdb files to a file.

modict score interpretation makes use of a negative and positive control. As

negative control, a superimposition between the wildtype protein and a refined

model of the same wildtype protein (in some cases, a known benign mutation can

also be used instead of refined wildtype, see sections 2.4 and S1.2). For the positive
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control, superimposition between the wildtype protein and a known pathogenic

variant can be used. The scores for the negative and positive control can as such

be used as a scale for the modict result of the protein variant of interest. A more

mathematical approach to modict score interpretation is given in sections S1.2,

3.2, S1.3 and figure 7.

2.3 Training and Iteration

As will be described throughout the section 3, modict is designed to work with

distinct domains which are critical for protein functionality. Often however, this

information is not readily available. In order to meet these needs, modict comes

with a training and iteration module where a random number approach is used to

approximate a good candidate weight score combination as in figures 2, 4, 6, 8 and

9.

The training module accepts a list of paired modict scores and enzymatic activity

(or any measure of residual protein function that is determined experimentally). It

tries to find an optimal weight score combination for each residue that yields the

highest possible Pearson’s correlation (one would expect enzymatic activity and

modict scores to be negatively correlated). The user has control over the iteration

process by regulating several parameters such as the number of rounds to iterate.

Even then, improvement of initial correlation varies from protein to protein and

depends on the number of mutations to be trained with.

modict package also comes with an iterator module to identify regions of a protein

that contribute the most to the overall modict score (figures 2, 4 and 6). The

iteration algorithm automatically attains weight scores between 0 and 10 to residues:

the higher the weight score, the more the contribution of that residue pair to the

overall modict score. modict uses a random number approach to approximate

a significant combination. Although the computation process can be cumbersome

under certain conditions, current approach performs well with comparison of many

models simultaneously. Such an example is given in figure 10 where mutations that

preserve more than or equal to 50 percent of residual activity are compared to two

relatively more severe mutations.

When the iteration algorithm of modict is used, it generates an automatic and

interactable output as shown in figure 11. The user can choose to display amino

acids with certain properties or just visualize the change in regions that correspond

to a domain. The user may wish to know if residues with high modict score are

also conserved which can be seen from the color coding. For a more comprehensive

explanation of how to interpret iterator results please refer to modict documenta-

tion.

2.4 roc curve generation

One of the challenges to construct a receiver operating characteristic curve (roc)

for an algorithm that generates a continuous range of output rather than a quali-

tative output (deleterious or benign) is to build a parametric classification system.

This can be achieved by recalculating thresholds for a given set of mutations with

known outcome while varying the levels of stringency (a measure of how rigorous the

thresholds are constructed). Subsequently, this can be plotted against the p-value
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(a measure of how correctly the mutations are classified) In principle, mutations

are not only completely benign or deleterious but spread through a range of vari-

able residual protein activity/function. In addition to a negative control which is

usually ∆rmsd between wildtype and a refined wildtype model or wildtype and

a benign model, another score from ∆rmsd between wildtype and a given be-

nign/deleterious/partial model should be used. This allows the user to construct

a hypothetical distribution of scores and thus determine the likelihood of a test

score being benign, deleterious or partial. Such a script is included in the modict

package. The user can import his calculated scores from new models and update

the current roc plot shown in figure 12. Data used to generate the plot is listed in

table S1.

2.5 Output

modict, supplied with the rmsd file, gives as an output an algorithm score, which

is a float value without units.

3 Results
We have derived a simple algorithm modict to predict whether a mutation is

deleterious or not based on the rmsd obtained from superimposed mutated and

wildtype 3D structures. The 3D protein structures in this study were modeled by

i-tasser and phyre2, however other modeling algorithms can be used as well. The

mathematical model underlying modict can also incorporate the information from

conservation and weight scores. An iteration algorithm to determine the regions that

account the most for the calculated score is also available with modict. modict

is not only a prediction tool, but also a tool to scrutinize changes in the protein

structure independent of the score.

The algorithm was tested on 6 different proteins which belong to different pro-

tein families. The chosen mutations were of different nature in order to minimize

bias. modict scores were interpreted by two methods,either correlating them with

experimental metrics like enzymatic activities, or using the scores for ordinal clas-

sification (deleterious, benign, partially deleterious etc.). The first method requires

modict scores for at least 3 mutations with experimentally verified enzyme activ-

ities for predicting the effect of unknown mutation. Then, the modict scores and

the enzymatic activity of the known mutations are plotted in a scatter plot and a

trend-line is set by the least squares method. By observing the trend-line the en-

zymatic activity of your mutation of interest can be traced. The advantage of this

approach is the ability to use the training module on modict for a subset (or the

entire set) of mutations to increase the initial Pearson’s r correlation coefficient.

This method was applied on Btd, Pah and Acadm mutations (see tables 1,2 and

figure 3.3).

The second method is used when there are less than or equal to 2 mutations.

However a negative control modict score is required for comparison. This method

was applied on Renin, Tubb2b and Smpd1 mutations (see sections 3.1,3.2 and 3.4).

Regardless of the method, higher modict scores mean more deleterious.

Throughout this paper modict scores have both been used as ordinal classifiers

(benign, partially deleterious, deleterious etc.) and continuous variables to measure
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correlation. In all of the tested cases in this study whether conservation scores

and/or weight scores were used or not is indicated. Concerning the examples given

in this article, modict performs better without conservation scores.

Throughout the results section, output of the iteration algorithm (residues that

contribute the most to a modict score) was represented using I-PV as shown in

figs 2,4,6 and 10 [11].

3.1 Renin p.R33W

Renin is one of the main components that regulates the main arterial blood pressure

via the renin-angiotensin system and is initially secreted as a propeptide with a 67

amino acid long signal sequence [12]. Mature renin does not have this signal sequence

and is 37kDa long [13]. A novel heterozygous mutation c.58T>C (p.C20R) was

found in all affected members of a family with autosomal dominant inheritance of

anemia, polyuria, hyperuricemia and chronic kidney disease [14].

Another variant p.R33W suspected to be benign resides within the same signal

sequence (http://www.ncbi.nlm.nih.gov/projects/SNP/snp ref.cgi?rs=11571098;-

http://web.expasy.org/variant pages/VAR 020375.html). Several prediction algo-

rithms were tested on this variant previously [15]. In this example, conservation

scores generated by multiple sequence alignment of reviewed Ren (renin) sequences

were also used by the algorithm as an additional factor (section S1.3). Based on

domain annotations, residues that are involved in various interactions were also

given a weight score of 20 instead of default value (10, section S1.3). Figure 1C and

figure 2 show the algorithm results associated with these mutations.

We also provided wildtype and mutated Renin fasta files to automated phyre2

server and received models for the same variants. Wildtype Renin score was 0.328

whereas p.R33W and p.C20R scores were 3.816 and 4.128 respectively. Based on

these scores p.R33W variant should be classified as deleterious. As mentioned pre-

viously, the p.R33W is of unknown significance due to its low frequency (dbSNP,

<1%). Although a study has claimed that it significantly reduces Renin biosynthe-

sis (http://www.ashg.org/2014meeting/abstracts/fulltext/f140120880.htm), to our

knowledge it has not yet been published. The Renin example demonstrates that

modict scores are not totally independent from the models provided to it. For

more detailed explanation for using modict scores as an ordinal classifier, please

refer to the manual and section S1.3.

3.2 Tubb2b p.A248V and p.R380L

Tubulins are the main components of microtubules on which dynein and kinesin mo-

tor proteins bind. Together with intermediate filaments and microfilaments, they

form the cytoskeleton which plays a major role in intercellular trafficking, cell-cell

interactions, junctions and cellular migration [16]. Tubulins are ubiquitously ex-

pressed in all human tissues. However mutations in these proteins mostly affect

tissue types that rely on their functionality the most during development such as

cells of neuronal or glial origin [17, 18]. Almost all mutations in tubulins result in

Malformations of Cortical Development (MCD) [19]. Mutations in TUBB2B re-

sult in polymicrogyria spectrum of malformations. [20–26]. 2 de novo mutations

in Tubb2b, namely p.A248V and p.R380L in 2 unrelated patients of Turkish and
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Belgian origin and 1 patient of French-Canadian origin respectively were identified

and tested for their modict scores [21].

Figure 3 (C) and figure 4 show the algorithm results associated with these muta-

tions. Scores without weight and conservation parameters (section S1.4) for wild-

type, Tubb2bp.A248V and Tubb2bp.R380L were 1.843, 1.984 and 2.003 respectively.

Choosing the wildtype as control (SC) and Tubb2bp.R380L as known deleterious mu-

tation (SK), the threshold T1 was calculated as
SC+

2·SK+3.24·SC
5.24

2 ·3 ·κ/100 ·σ(SI ,SK).

The value for T1 was 1.945 which was lower than the Tubb2bp.A248V score (σ =

standard deviation, κ = 55). This means that the Tubb2bp.A248V mutation is in-

deed deleterious.

Wildtype and mutated fasta files were provided to the automated phyre2 server.

modict scores in the absence of weight and conservation parameters for wildtype,

Tubb2bp.A248V and Tubb2bp.R380L were 1.448, 4.203 and 3.459 respectively. Choosing

Tubb2bp.A248V as the known deleterious variant, the T1 threshold is 3.200 which is

lower than the Tubb2bp.R380L score. As a result, modict scores generated by both

i-tasser and phyre2 models agree on the nature of the variants.

3.3 Btd p.H447R and p.R209C

Biotinidase is an enzyme that is encoded by the BTD gene. Low enzyme activity

interferes with the cycling of biotin and if left untreated, it may lead to neurological

and cutaneous issues [27]. In this example, a case with experimentally verified results

from 2 patients will be used and compared with modict scores [28]. The genotype of

the patients in the aforementioned study were c.1330G>C (p.D444H)/c.1340A>G

(p.H447R)[patient 1] and c.557G>A (p.C186Y)/c.625C>T (p.R209C)[patient 2].

Both former mutations (c.1330G>C in patient 1 and c.557G>A in patient 2) were

null mutations meaning that the experimentally measured residual enzyme activity

belongs to the latter mutations [27,28]. The residual enzyme activity in the patients

were 61eu (enzyme units) and 91eu respectively (population mean 263eu). modict

scores were generated using 2 different modeling algorithms ( i-tasser, phyre2)

and results were compared with residual enzyme activity as shown in figure 5 [8,29].

Conservation scores were generated by aligning reviewed biotinidase sequences from

UniProt (Homo sapiens, Rattus norvegicus, Mus musculus, Bos taurus, Takifugu

rubripes) by using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) and

the resulting scores (min, 0; max, 11) corresponding to 1-543 residues of Btd were

given to modict [30]. Supplying or not supplying the conservation scores do not

significantly alter the scoremodict/enyzmatic− activity ratios as can be seen from

table S1.

The modict scores were generated by taking into account functionally important

regions (residues 57-363, 402-403 and 489-490; uniprot, P43251). These function-

ally important regions can generally be found in Uniprot. As seen in figure 5, both

phyre2 and i-tasser scores are proportional to corresponding enzymatic activi-

ties. Although there are only 2 mutations, taken together with the negative control

score, raw modict scores without any conservation or weight files correlate strongly

with enzymatic activity (phyre2: r = −0.805; i-tasser: r = −0.838).
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3.4 Mutations in Sphingomyelin phosphodiesterase-1

Sphingomyelin phosphodiesterase-1 is an enzyme (Uniprot ID: ASM HUMAN) lo-

cated in lysosomes and responsible for conversion of sphingomyelin to ceramide.

Deficits in enzyme activity or reduction in the enzyme concentration result in an

inborn error of metabolism grouped under the name Niemann-Pick disease (type A

and B) [31]. Several polymorphisms exist that are frequent amongst control popu-

lations. One example of such variant is the p.V36A located in the signal sequence.

Another variant that is often mistaken as deleterious is p.G506R [32]. Using phyre2

to model wildtype, figure 7 demonstrates the procedure of classifying the p.G506R

mutation. Since the known p.V36A variant is benign (with a score of SK), the SI

score is substituted directly by SK . Based on the calculated thresholds, the p.G506R

mutation was correctly classified as “partially deleterious or benign”. The procedure

to use modict as an ordinal classifier using thresholds is further elaborated in the

manual and in the discussion section.

3.5 Mutations in Medium Chain Acyl-CoA Dehydrogenase

Medium chain acyl-coa dehydrogenase (MCAD, Uniprot ID: P11310, NP 000007.1)

is an enzyme encoded by the ACADM gene. MCAD deficiency is one of the most

common deficits in mitochondrial β-oxidation. MCAD is the enzyme responsible

for breaking down medium-chain fatty acids. Deleterious mutations that reduce

the enzyme activity result in clinical symptoms such as hypoglycemia, hepatic and

neuronal dysfunction [33]. Enzymatic activity data of homozygous/compound het-

erozygous patients carrying 2 deleterious mutations have been adapted from Sturm

et al. as shown in table 2 [33]. Mutated proteins were modeled using phyre2 and su-

perimposed on wildtype MCAD which was generated by submitting wildtype fasta

file to the phyre2 server. For each mutation pair the modict score was the aver-

age of the modict score of individual mutations (direct summation without average

only expands the graph on one axis). Rather than using modict as a classifier, the

main goal was to see if the modict scores correlates with the real experimental

measurements. modict scores correlated negatively with the enzymatic activities

as shown in figure 8.

Because higher modict scores denote more deleterious effect, as the residual ac-

tivity increases, it’s well expected for modict scores to go down which results in

negative correlation. As shown in figure 8, the initial Pearson’s correlation coef-

ficient was -0.488. Although not very strong, it is important to underscore that

modict is the first attempt to achieve such degree of correlation between predic-

tion and experimental outcome from user generated 3D protein models. Figure 8

also compares correlation of polyphen2 scores with enzymatic activity which did

not yield significant concordance with experimental results.

Figure 8 also depicts the use of the training module of modict. Table 2 lists

the compound heterozygous mutations used for correlations in figure 8. Eight of

the mutation pairs in table 2 share a near-null deleterious p.K329E mutation where

homozygotes for this variant has five percent residual activity. Thus, we have trained

modict with these eight mutations and then used the trendline (calculated by least

squares method) to guess the enzymatic activity of other remaining mutation pairs

in table 2. As shown in figure 8 (lower right), modict was able to achieve 91 percent
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accuracy. The MCAD example demonstrates the possibility of developing an enzyme

specific panel without the need of very large datasets for training of modict.

3.6 Mutations in PAH

The last example is about pheynlketonurea (PKU), an enzymatic defect that mani-

fests itself with the deficiency in phenylalanine hydroxylase (PAH), a phenylalanine

to tyrosine converter with the aid of tetrahydrobiopterin (BH4). It is an autosomal

recessive disease with both copies of PAH carrying deleterious mutations. The am-

ple decrease in PAH activity results in elevated phenylalanine blood concentration.

If the elevated phenylalanine concentration is left untreated, it can lead to mental

retardation with structural brain changes visible on a MRI. Deleterious mutations

in PAH affects variably the level of enzymatic activity. Data regarding such muta-

tions can be found in several studies [34,35]. Comparison of the generated modict

scores after excluding outliers shows that the scores of individual mutations were

negatively correlated with residual enzyme activities as shown in figure 9 (Pearson’s

r = -0.494). Similarly, polyphen2 scores correlated negatively with experimental

measurements but to a lesser degree (Pearson’s r = -0.417). Using the training

module for the 14 mutations in figure 9 further improved the initial correlation

coefficient from -0.494 to -0.722.

4 Availability and Future Directions

Discussion

modict is an algorithm which predicts whether a mutation is deleterious or not.

This is based on the rmsd obtained from superimposing mutated and wildtype

3D protein structures. Modeling was done here by using i-tasser and phyre2,

although alternatives can be used as well. The mathematical model underlying

modict can also incorporate the information from conservation and weight scores.

An iteration algorithm to determine the regions that account the most for the

calculated score is also available with the package.

There are two ways to make use of modict scores. The first way is to convert the

scores into an ordinal classification system, which requires a negative control. The

second way is to correlate experimental results with modict scores as shown in the

BTD, MCAD and PAH examples. The bottleneck in this approach is to find several

known mutations in the protein of interest with available enzymatic activities or

an equivalent measurement. However, this method allows an extrapolation between

modict scores and residual protein activity. By using the MODICT training mod-

ule, one can further optimize the linear relationship between modict scores and

residual enzyme activities. Although overall rmsd values and significance is taken

into account by the algorithm, modict’s accuracy still depends on the models gen-

erated by the user. Unlike polyphen2 and sift, modict scores are not normalized

and vary depending on the length of protein, rmsd values between residues, overall

rmsd, regions that are taken into account etc. Therefore individual modict scores

should not be seen as values indicative of deleterious or benign nature, but should

always be interpreted in relation to their negative/positive controls or in relation

to known enzyme activities.
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Reporting results with Modict

When reporting results using modict, users should provide the parameters they

used together with the tool. Several of these parameters are key factors in repro-

ducibility of the results. One of these parameters is the modeling algorithm used

(phyre2, i-tasser etc.) and the sequence of the protein submitted to the server.

The other parameter is the regions that are taken into account (residue numbers,

domains etc.) when calculating the modict score. The user should also indicate

the conservation and the weight scores used, if any. If the training algorithm is

used, than the mutations used for training and the output weight score combina-

tion should be reported as well. If the user has followed the ordinal classification

method, then she/he should also indicate how the negative control score was gen-

erated. Lastly, the users should also indicate the superimposition method used for

generating the rmsd values. For example, superimposition based on alpha carbon

has been used throughout this article.

Limitations

modict is a tool that is not independent on the models generated by the modeling

algorithm of choice. The Renin case is a good example for this where models gener-

ated by phyre2 and i-tasser gave different modict scores. Moreover, consistency

in superimposition techniques used between models and the portion of the protein

that is actually modeled (full length protein modeling is usually more reliable than

partial modeling of distinct domains) significantly affect the outcome. Many mod-

eling servers also include a confidence key together with the results which are useful

to judge the quality of starting models. In general, since the wildtype model will

be the main model where test and known mutated models are superimposed on, a

low quality model will make it harder to discern between scores. Another issue is

that many modeling servers have amino acid limits on submitted fasta files which

are generally below 2000. This might make the evaluation of large proteins harder.

As modeling algorithms advance, several of these issues will be resolved. Another

drawback is that all structural deviations from a given wildtype model is perceived

towards the deleterious spectrum whereas in reality there are also gain of function

mutations. In that case, it is possible to modify the range of weight scores to include

negative values as well.

Future directions

It is important to underline that modict has no universal training dataset. This

means that the algorithm itself (without any weight or conservation parameters) is

able to reflect and capture portion of the physio-chemical interactions that deter-

mine the outcome of pathogenicity, at least for the proteins demonstrated in this

article. In later stages the conservation scores or more importantly the weight scores

can be used to train modict on a protein basis. For instance certain combinations of

weight scores that yield a higher correlation coefficient for a given enzyme panel can

be generated. We planning to train modict on variety of proteins and upload the

trendlines for each modeling algorithm so the end user would only have to upload

his/her mutation’s modict score without having to train the algorithm manually.
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A systematic database of modict scores could be very beneficial for additional

variant filtering in Next Generation Sequencing analysis as the utilization of pro-

tein structures files is not adequately implemented. We are planning to store user-

submitted modict scores for this purpose. modict is a fully automated algorithm

that comes with a variety of scripts to analyze the effects of mutations on protein

structure. Unlike most other mutation predictors, modict uses . pdb files and can

simultaneously compare multiple models for differences in topology. All the models

used for this article can be downloaded together with the modict package from

https://github.com/MODICT/MODICT.
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Figures

Figure 1 3D models of wildtype and mutated Renin. A. Wildtype (blue) and Renp.C20R (red)
models are superimposed with the cysteine residue (green, Van der Waals) marked with arrow.
Models generated with different modeling algorithms are indicated. B. Another variant in the
signal sequence, Renp.R33W (red) does not result in a change to the same extent as Renp.C20R .
The wildtype arginine residue (green, Van der Waals) is marked with arrow. Graphical
representation of algorithm scores, C. Absolute values of modict scores obtained from pairs;
negative control (left, light gray; score: 0.455), wildtype against Renp.R33W (middle, light gray;
score: 0.670) and positive control (right, light gray; score: 2.570). Algorithm scores with or
without conservation (c) and weight (w) scores are also indicated (dark gray, black, see table S1).
For comparison, algorithm scores generated using models from phyre2 is also indicated. Like
black bars, these are raw modict scores generated without conservation and weight parameters.
Sequence logo of the renin signal peptide. D. Residues 1-40 of reviewed renin sequences in
UniProt database have been aligned. Note that both R33 and C20 are highly conserved, however
algorithm scores significantly differ in case of i-tasser. modict scores were generated taking into
account the main chain (residues 67-406, uniprot, P00797). (W = wildtype, WR = refined
wildtype)
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Figure 2 Plot showing conformational differences in reninC20R. Outermost layer indicates
reported SNVs (Single Nucleotide Variants; gray, not validated; red, non-synonymous; green,
synonymous) from dbSNP 138. A. Conservation scores represented as a histogram (blue, signal
peptide; green, propeptide; red, domain). These values are generated as described in section 2.2
and are not related to modict score. B and C. Amino acid sequences with residues colored
according to their property (positively charged, red triangle; negatively charged, blue triangle,
non-polar, gray circle; polar, pink circle; aromatic ring, green hexagon). D. Iterative modict

scores of individual residue pairs (algorithm, Eq.1) resulting from comparison with reninWT and
reninR33W . Each blue histogram bin designates the contribution of a residue pair to the overall
modict score (Higher bars mean more contribution as well as more the adverse effect of that
residue pair on structural stability). These histogram bins are generated by iterative modict

algorithm and are colored according to conservation. E. Important regions, SNVs and Indels
(insertion-deletions) are marked with boxes. Red boxes represent SNVs whereas pink boxes
represent Indels. Gray bordered boxes represent unvalidated changes. (S-S = disulphide bond)
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Figure 3 3D models of wildtype and mutated tubulin molecules, A. Superimposition of wildtype
(blue) and Tubb2bp.A248V (red) models. The alanine residue is rendered with Van der Waals radii
(green, gray arrows). Models generated with different modeling algorithms are indicated. B.
Structural comparison between wildtype (blue) and Tubb2bp.R380L (red) models. The arginine
residue rendered with Van der Waals radii (green, gray arrows). Graphical representation of
algorithm scores. C. Absolute values of algorithm scores obtained from pairs; negative control
(left, light gray; score: 2.129), wildtype against Tubb2bp.A248V (middle, light gray; score: 2.485)
and wildtype against Tubb2bp.R380L (right, light gray; score: 3.721). For comparison, algorithm
scores generated using models from phyre2 is also indicated. Like black bars, these are raw
modict scores generated without conservation and weight parameters. D. Sequence logo of
conserved Tubb2b regions. Residues 91-100 and 139-144 of Tubb2b have been conserved since
their divergence from the FtsZ proteins. Consequently, during algorithm calculations they have
received a weight score of 20 instead of default value. Scores with/without conservation or weight
attributes are indicated in C. modict scores were generated taking into account the entire
backbone (residues 1-445,uniprot, Q9BVA1). (W = wildtype, WR = refined wildtype, c =
conservation, w = weight score)
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Figure 4 Plot showing conformational differences in Tubb2bA248V and Tubb2bR380L .
Outermost layer indicates reported SNVs (gray, not validated; red, non-synonymous; green,
synonymous) from dbSNP. A. Conservation scores represented as a histogram. These values are
generated as described in section 2.2 and are not related to modict score. B and C. Amino acid
sequences with residues colored according to their property (positively charged, red triangle;
negatively charged, blue triangle, non-polar, gray circle; polar, pink circle; aromatic ring, green
hexagon). D. Iterative modict scores of individual residue pairs (algorithm, Eq.1) resulting from
comparison with Tubb2bWT . Top layer belongs to Tubb2bA248V whereas bottom layer belongs to
Tubb2bR380L. Each blue histogram bin designates the contribution of a residue pair to the overall
modict score (Higher bars mean more contribution as well as more the adverse effect of that
residue pair on structural stability). These histogram bins are generated by iterative modict

algorithm and are colored according to conservation. E. Important regions, SNVs and Indels are
marked with boxes.
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Figure 5 3D models of wildtype and mutated biotinidase. A. 3D biotinidase model generated by
i-tasser (A, left). Pink residues (57 -363) designate the CN-Hydrolase domain whereas the blue
residues (1-41) designate the signal peptide. Effect of p.R209C and p.H447R mutations on
protein structure (A, middle, right). BtdWT (left) is compared to p.R209C (middle) and
p.H447R (right) in means of changes in secondary structure (no change, black; helix to strand,
light green; strand to helix, dark green; helix to coil, light red; strand to coil, dark red; coil to
strand or helix, green). The mutated R209 and H447 residues are depicted with blue Van Der
Waals radii and their polyphen2/sift scores and residual enzyme activity are indicated.
Comparison of modict scores and residual enzyme activity, B. modict scores from models
generated by i-tasser (negative control, 0.096 ; p.R209C, 0.266 ; p.H447R, 0.584 ) and phyre2

(negative control, 0.301 ; p.R209C, 0.504 ; p.H447R, 1.102 ) were compared with experimentally
measured enzyme activity (wildtype 263eu, p.R209C, 91eu, p.H447R, 61eu) scaled to 1. Ratios of
modict scores and [1/enzyme activity] are in concordance with each other. (W = wildtype, WR

= refined wildtype)
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Figure 6 Plot showing conformational differences in BtdR209C and BtdH447R . Outermost layer
indicates reported SNVs (gray, not validated; red, non-synonymous; green, synonymous) from
dbSNP. A. Conservation scores represented as a histogram (blue, signal peptide; green,
CN-hyrolase domain). These values are generated as described in section 2.2 and are not related
to modict score. B and C. Amino acid sequences with residues colored according to their
property (positively charged, red triangle; negatively charged, blue triangle, non-polar, gray circle;
polar, pink circle; aromatic ring, green hexagon). D. Iterative modict scores of individual residue
pairs (algorithm, Eq.1) resulting from comparison with BtdWT . Top layer belongs to BtdR209C

whereas bottom layer belongs to BtdH447R . Each blue histogram bin designates the contribution
of a residue pair to the overall modict score (Higher bars mean more contribution as well as more
the adverse effect of that residue pair on structural stability). These histogram bins are generated
by iterative modict algorithm and are colored according to conservation. Only scores belonging to
domain regions re shown. E. Important regions, SNVs and Indels are marked with boxes. (A.site =
active site)
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Figure 7 Classification of Smpd1G506R. A. Wildtype (blue), Smpd1G506R (red) and
Smpd1V 36A (orange) models are shown. The original position of glycine in wildtype, the
substitution site in Smpd1G506R and the alanine 36 in Smpd1V 36A are marked with gray arrows.
Models have been further refined using the modrefiner. A negative control score was generated
by superimposing the refined wildtype on the initial wildtype whereas a known benign score was
generated by superimposing the refined Smpd1V 36A on the initial wildtype. A score for the test
mutation was generated in the same manner. modict scores were generated taking into account
the entire backbone (residues 1-629). B. Thresholds were calculated as shown in the right and the
G506R mutation was classified based on the calculated score bracket as shown in the left. The
value of kappa can be updated using the roc.pl script.(σ = standard deviation of SI and SC)
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Figure 8 modict scores of ACADM mutations. A. Mutation pairs were plotted based on their
enzymatic activity and the average of their modict scores. modict scores or residual activities
that are 2 standard deviations away from the data average was excluded which corresponded to
exclusion of only 1 data point (residual activity 60, modict score 53.5). The remaining data points
had a correlation coefficient of -0.488 with a p-value of 0.044 according to 1 tailed t-distribution.
B. Same mutations were plotted with polyphen2 scores instead which yielded a positive
correlation coefficient of 0.211 with p-value of 0.244. C. 8 out of 14 mutation pairs in table 2
harbored a p.K329E variant where homozygotes for this mutation only had 5 percent of wildtype
activity. Assuming significant portion of residual activity coming from the other variants, these 8
variants (lower left) were used as a training dataset for modict. After training, modict was able
to find a weight score combination with a correlation coefficient of -0.959 (lower mid). Using the
trendline obtained by least squares method, the residual activity of 6 other mutation pairs (that
did not include the trained mutations) were guessed. modict was able to achieve 91 percent
accuracy (lower right).(∗∗ = p < 0.05; ∗ ∗ ∗ = p < 0.001)
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Figure 9 modict scores for partially deleterious PAH mutations. Top Left. Mutations with
residual activity in PAH with their respective modict scores are plotted. Triangles indicate data
points that are 2 standard deviations apart from the mean (both residual activity and modict

score) of rectangle data points. Top Right. Outliers that are two standard deviations apart from
the mean are removed and the correlation coefficient is calculated. modict scores are negatively
correlated with residual activity (r=-0.494). The exact p-value of the correlation coefficient is
0.036 based on 1-tailed t-distribution. Middle Left. The same comparison was applied to
polyphen2 scores. Triangle data points indicate the outliers. Middle Right. Likewise, polyphen2
scores were negatively correlated with residual activity (r=-0.417). However, the exact p-value of
the correlation coefficient was 0.062 based on 1-tailed t-distribution. Lower Left. The training
module of modict were used on the same mutations. Lower Right. The training module of
modict was able to achieve a weight score configuration that yielded a more significant p-value of
0.002. (∗ = p < 0.1; ∗∗ = p < 0.05)
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Figure 10 Plot showing conformational differences in PAHE390G, PAHV 245A, PAHD415N ,
PAHR408Q, PAHY 414C and PAHR241C . Outermost layer indicates reported SNVs (gray, not
validated; red, non-synonymous; green, synonymous) from dbSNP. A. Conservation scores
represented as a histogram (blue, ACT domain; green, catalytic domain). These values are
generated as described in section 2.2 and are not related to modict score. B and C. Amino acid
sequences with residues colored according to their property (positively charged, red triangle;
negatively charged, blue triangle, non-polar, gray circle; polar, pink circle; aromatic ring, green
hexagon). D. Iterative modict scores of individual residue pairs (algorithm, Eq.1) resulting from
comparison of mutations with residual enzyme activity less than 50 percent (more severe) against
mutations with residual activity greater than 50 percent (less severe, table 1). Each blue
histogram bin designates the contribution of a residue pair to the overall modict score (Higher
bars mean more contribution as well as more the adverse effect of that residue pair on structural
stability). These histogram bins are generated by iterative modict algorithm and are colored
according to conservation. Single residue pairs with high blue bars are much less significant than
consecutive ”blocks” of high blue bars. Scarcity of these blocks in topmost layer (label: all) points
to the fact that different regions are affected in each mutation. PAHY 414C and PAHR241C are
compared to less severe mutations individually (middle and bottom layers). Note the differences in
regions that are affected the most in each mutation. E. Important regions, SNVs and Indels are
marked with boxes.
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Figure 11 Automatically generated interactable output of iterative modict scores. Individual
modict scores of residue pairs are plotted along the protein with an interactable interface.
Annotation data is automatically stored with the use of modict. Histograms are automatically
colored according to conservation data. Amino acids with different properties can be displayed
separately. Pink regions highlights the functional domain. Data is taken from comparison of
PAHY 414C against PAHE390G, PAHV 245A, PAHD415N and PAHR408Q. Only the amino
acids with aromatic ring is displayed. Mouse over amino acids (209 I and 210 F) are highlighted.
For a more comprehensive explanation of how to interpret iterator results please refer to modict

documentation.
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Figure 12 roc curve. Trio groups (negative control, test, positive control) are tested for
decreasing levels of stringency measured as a parameter depending on the standard deviation of
the negative controls and the positive controls. There is a trade off between the p-value and the
stringency. As stringency decreases, accuracy increases, however the increase in accuracy can be
explained progressively less by the measurements of the algorithm (increasing p-value and
decreasing significance). The data used to generate the above plot is indicated in table S1. The
script for generating the data above is included in modict package.
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Tables

Table 1 Mutations in PAH.

Mutation Residual Activity Score

Y414C 28 0.112
R241C 25 0.136
A403V 32 0.125
R261Q 30 0.071
E390G 75 0.086
R68S 98 0.157
I65T 29 0.153
V245A 50 0.126
L48S 39 0.247
F39L 96 0.136
D415N 72 0.072
A395P 15 0.139
A104D 26 0.091
R408Q 55 0.063
P211T 72 0.185
V388M 43 0.15
R241H 23 0.131
I306V 39 0.161

Mutations in PAH with their residual enzyme activity and modict scores are listed. modict scores
are generated taking into account the catalytic domain (143-410; [34]).

Table 2 Mutations in ACADM.

Mutation Pair Residual Activity Score

K329E/I78T 0 46.5
K329E/M328V 0 59.5
K329E/D345Y 3 57
K329E/M155T 3 51
K329E/K329E 5 53
K329E/L409F 6 56.5
Y337S/Y337S 8 56
G267R/G267R 15 55
K329E/R206C 12.5 59.5
M326T/I233T 15 57
G267R/K178T 20 48
G267R/Y67H 30 47.5
K329E/Y67H 35 46.5
K329E/E43K 60 53.5

Mutation pairs in ACADM with their residual enzyme activity and modict scores are listed. The
residual enzyme activities are adapted from Sturm et. al., figure 1. modict scores are generated
taking into account the main chain (26-421; Uniprot ID, ACADM HUMAN; [33]).
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Supplementary Section

S1.1 3D protein models and annotation

Amino acid sequences of wildtype and mutant renin, Tubb2b, Btd and Smpd1 proteins (uniprot id: P00797,

Q9BVA1, P43251, P17405) were submitted to the automated i-tasser and phyre2 servers. PAH and ACADM

(tables 1,2) were submitted to the automated phyre2 server with the intensive mode selected (including wildtype

fasta files). The obtained 3D models of renin, Tubb2b, Btd and Smpd1 were energy minimized on

deepview-swiss-pdbviewer (http://www.expasy.org/spdbv/ [9,10]) via 2 cycles of steepest descent consisting of 50

steps each and 1 cycle of conjugate gradient consisting of 200 steps with a minimum energy difference(∆E) of

0.01kJ/mol together with a harmonic constraint of 100 kJ/mol. Models were further refined using modrefiner

(http://zhanglab.ccmb.med.umich.edu/ModRefiner, [36]). For each query a trio pair was constructed by comparing

the ratio of the final scores between wildtype/wildtype-refined, wildtype/test and wildtype/mutated where the first

and last components serve as negative and positive controls respectively. Images were post-processed with pov-ray

v3.6 (http://www.povray.org ). Models can be downloaded together with the modict package. The annotation of

mutations in this article is in concordance with the Human Genome Variation Society

(HGVS,http://www.hgvs.org/).

S1.2 Using modict scores

There are two ways to make use of modict scores. The first way is to convert the scores into an ordinal

classification system, which requires a negative control. A negative control score is made by superimposing

WT-refined over WT pair (see section S1.1). For the first way, the negative control score can be generated by

resubmitting your wildtype model to a refinement server such as modrefiner. Or the user can use his own in-silico

pipeline for model refinement. After refinement, the user should superimpose the refined wildtype model on the

wildtype one to generate a negative control score. The important point here is to apply the same refinement

procedure to mutated models before superimposing them on the wildtype. However, to justify the use of this

system, the user has to have only 2 mutations (one with known effect) with no enzymatic activities to correlate

with. The reason is, if there are multiple known mutations, then there will be multiple thresholds. The second

approach yields higher resolution and alleviates the problem of multiple thresholds. Supposing you have 3 modict

scores (negative control: SC , test: ST , any score from known mutation: SK), it is possible that your known

mutation might be deleterious, partially deleterious or benign. The first two cases requires you to reverse calculate

an hypothetical benign (SI) such that
SC+SI

2 + 3 · σSC,SI
= SK (σx,y = standard deviation of x and y) for a

deleterious SK ,
SC+SI

2 + 3
2 · σSC,SI

= SK for a partially deleterious SK and simply SI = SK for a benign

SK . Than the critical value can be expressed as SCrit =
SC+SI

2 + 3 · κ · σSC,SI
. If ST is greater than SCrit,

than the query mutation is classified as deleterious. If the difference (
ST −

SC+SI
2

σSC,SI

) is between 3κ and 1.5κ

standard deviations than the mutation is classified as partially deleterious and finally if the difference is less than

1.5κ, than the mutation is classified as benign. The value of κ is determined from the roc (receiver operating

characteristic; refer to section 2.4) plot with the data listed in table S1 and the current value is 0.55.

The second way is to correlate experimental results with modict scores as shown in BTD, MCAD and PAH (see

sections 3.3, 3.5 and 3.6) examples. The bottleneck in this approach is to find several mutations in the protein of

interest with available enzymatic activities or an equivalent measures.

S1.3 Renin p.R33W

Conservation scores were generated by multiple sequence alignment of reviewed Ren (renin) sequences (Uniprot

Entry names: reni1 mouse (Mus musculus), reni canfa (Canis familiaris), reni macmu (Macaca mulatta),

reni sheep (Ovis aries), reni2 mouse (Mus musculus), reni human (Homo sapiens), reni pantr (Pan

troglodytes), reni calja (Callithrix jacchus), reni macfa (Macaca fascicularis), reni rat Rattus norvegicus).

Domain annotation was based on databases of prosite (http://prosite.expasy.org/), interpro

(http://www.ebi.ac.uk/interpro/) [37,38] and UniProt.

Using modict as an ordinal classifier requires calculating thresholds. Figure 1 scores are given for algorithm results

generated taking into account weight and conservation scores. To focus on results generated solely by modict,

scores generated without weight or conservation scores will be used which are indicated in table S1 and as black

bars in figure 1C. To calculate thresholds, a κ value is also necessary which is generated based on the examples in

table S1. Current value of κ is 55 (based on the mutations tested in this article). Users can update table S1 with

additional data. In principle, more data points (mutations with known effect) will output a more realistic κ value.

Taking the negative control score (SC) as 0.396, the known mutation score (SK) as 2.491, an imaginary benign

score (SI) is calculated as
(2·SK+3.24·SC)

5.24 . Next, the T1 threshold is calculated as

(
SI+SC

2 ) · 3 · κ/100 · σ(SI ,SC) which in this case is 1.705 (σ = standard deviation). If your test score is larger

than this value, then your mutation is classified as deleterious. The value of p.R33W (0.684) is smaller than this

value which requires calculation of threshold T2 given by (
SI+SC

2 ) · 3/2 · κ/100 · σ(SI ,SC). The value of T2 for

this case is 1.247 which the p.R33W score is below and thus classified as benign. If the score would be larger than

T2 but below T1, the variant would be considered as partially deleterious. Values of κ below 66 also enable

calculation of T3 threshold which divides partially deleterious mutations into 2 classes: partially deleterious or

benign and partially deleterious. For this example T3 calculation is not necessary.

S1.4 Tubb2b p.A248V and p.R380L

Conservation scores were generated by aligning reviewed Tubb2b (Homo sapiens, Mus musculus, Rattus norvegicus,

Bos taurus, Xenopus laevis), Tuba1a (Homo sapiens, Mus musculus, Rattus norvegicus, Sus scrofa, Pan troglodytes,

Cricetulus griseus), Tubb3 (Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, Macaca fascicularis,

Arabidopsis thaliana) and FtsZ (M. jannaschii, S. aureus, E. coli) sequences from UniProt. Moreover, weight scores
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were attained based on alignment of FtsZ (M. jannaschii, S. aureus, E. coli) sequences with Tubb2b as shown in

figure 3 (D).

S1.5 Additional comments

As shown in figures 1 and 3, it is relatively clear to classify ReninR33W compared to ReninC20R, however differences in

the tubulin dataset are relatively small and thus calculation of score brackets is necessary. As a general rule of

thumb, proteins that are evolutionarily conserved across species are more sensitive to missense mutations and this

fact is reflected on the data by exhibition of closer modict scores between different mutations. This phenomenon

can be observed by elevation of negative control scores like in figure 3 for the Tubb2b protein.

As previoulsy stated, there are two ways to make use of modict scores. The first way is to convert the scores into

an ordinal classification system, which requires a negative control. The second way is to correlate experimental

results with modict scores as shown in BTD, MCAD and PAH examples. The bottleneck in this approach is to find

several known mutations in the protein of interest with available enzymatic activities or an equivalent

measurements. The advantage of this method is to be able to omit the negative control score as the linear trendline

(assessed by least squares method) becomes the main means of calculating predicted enzymatic activities. Another

advantage is to be able to use the training module for modict. Training modict on subset of mutations increase

the linear relationship between residual enzyme activities and modict scores. Consequently the new trendline can be

used to remap enzymatic activities of new mutations as shown in MCAD example, figure 8.

modict should be seen as a tool rather than an ”all in one” program to predict a variant’s pathogenicity. It is an

attempt to standardize the usage of user generated 3D models for predicting the effect of mutations. modict is

licensed under GPL and is composed of 7 scripts and 2 modules which ultimately aim to relate extracted rmsd

values from mutated proteins with experimental results. Although overall rmsd values and significance is taken into

account by the algorithm, modict’s accuracy still depends on the models generated by the user. Unlike polyphen2

and sift, modict scores are not normalized and vary depending on the length of protein, rmsd values between

residues, overall rmsd, regions that are taken into account etc. Therefore individual modict scores should not be

seen as values indicative of deleterious or benign nature; modict scores are unit-less. Rather than a universal

threshold, the relationship between modict scores are important in their interpretation. The two methodologies for

interpretation (ordinal classification and correlation) have been shown throughout this article. Comparison of

modict scores are always done within the same protein. Therefore using large number of mutations from different

family of proteins for bench-marking is not relevant in case of modict as opposed to mainly sequence-based

predictors like polyphen2 and sift. This does not mean that information in sequence is obsolete, on the contrary,

it means that modict allows users to approach the prediction process from a different angle.
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Table S1 roc curve data.

Wildtype Given Test Conditiontest Conditiongiven Conservation Algorithm Protein Mutationgiven Mutationtest

0.467 0.704 2.696 deleterious benign alignment I-TASSER† renin R33W* C20R

0.467 2.696 0.704 benign deleterious alignment I-TASSER† renin C20R R33W*

0.396 0.684 2.453 deleterious benign default I-TASSER† renin R33W* C20R

0.396 2.453 0.684 benign deleterious default I-TASSER† renin C20R R33W*

2.158 2.491 3.401 deleterious deleterious alignment I-TASSER† Tubb2b A248V R380L

2.158 3.401 2.491 deleterious deleterious alignment I-TASSER† Tubb2b R380L A248V

1.843 1.984 2.003 deleterious deleterious default I-TASSER† Tubb2b A248V R380L

1.843 2.003 1.984 deleterious deleterious default I-TASSER† Tubb2b R380L A248V

0.092 0.267 0.619 partial partial default I-TASSER† Btd R209C H447R

0.092 0.619 0.267 partial partial default I-TASSER† Btd H447R R209C

0.1 0.272 0.599 partial partial alignment I-TASSER† Btd R209C H447R

0.1 0.599 0.272 partial partial alignment I-TASSER† Btd H447R R209C
6.2 160.269 162.143 deleterious benign alignment I-TASSER tmem A198V G212V
6.2 162.143 160.269 benign deleterious alignment I-TASSER tmem G212V A198V

2.919 67.783 68.283 deleterious benign default I-TASSER tmem A198V G212V
2.919 68.283 67.783 benign deleterious default I-TASSER tmem G212V A198V

0.489 2.176 2.775 deleterious deleterious alignment I-TASSER† ACADM E43K K329E

0.489 2.775 2.176 deleterious deleterious alignment I-TASSER† ACADM K329E E43K

0.467 2.147 2.605 deleterious deleterious default I-TASSER† ACADM E43K K329E

0.467 2.605 2.147 deleterious deleterious default I-TASSER† ACADM K329E E43K
0.33 1.127 0.514 partial partial alignment PHYRE2 Btd H447R R209C
0.33 0.514 1.127 partial partial alignment PHYRE2 Btd R209C H447R
0.325 1.175 0.562 partial partial default PHYRE2 Btd H447R R209C
0.325 0.562 1.175 partial partial default PHYRE2 Btd R209C H447R
14.127 217.87 307.33 benign benign alignment PHYRE2 Smpd1 V36A G506R
14.127 307.33 217.87 benign benign alignment PHYRE2 Smpd1 G506R V36A
8.56 120.85 135.93 benign benign default PHYRE2 Smpd1 V36A G506R
8.56 135.93 120.85 benign benign default PHYRE2 Smpd1 G506R V36A

Each line constitutes a trio composed of a negative control (wildtype), a positive

control (given) and a test. The results of all mutations are previously known and are

written under conditions column. Different modeling algorithms are used to minimize

bias and they are indicated. Proteins functional in its entirety are tested along the

protein backbone whereas proteins with known domain annotations are tested for

specific regions. (*= Clinical significance unknown;no study in favor of adverse

functional affect has been published in a scientific journal during the time of this

project. †= Also modeled with phyre2 as demonstrated in the results section.)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2016. ; https://doi.org/10.1101/038992doi: bioRxiv preprint 

https://doi.org/10.1101/038992
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S2 Mutations in renin and tubulin.

Algorithm Mutation Prediction Website

aligngvgd ReninC20R Less likely to interfere http://agvgd.iarc.fr/agvgd input.php
ReninR33W Less likely to interfere

Tubb2bA248V Less likely to interfere
Tubb2bR380L Most likely to interfere

mupro ReninC20R INCREASED STABILITY http://www.ics.uci.edu/˜baldig/mutation.html
ReninR33W INCREASED STABILITY

Tubb2bA248V INCREASED STABILITY
Tubb2bR380L INCREASED STABILITY

panther ReninC20R Pdeleterious: N/A http://www.pantherdb.org/tools/cnspScoreForm.jsp
ReninR33W Pdeleterious: N/A

Tubb2bA248V Pdeleterious: 0,37152
Tubb2bR380L Pdeleterious: 0,83443

pmut ReninC20R N/A http://www.mmb2.pcb.ub.es:8080/PMut/
ReninR33W N/A

Tubb2bA248V PATHOLOGICAL
Tubb2bR380L PATHOLOGICAL

polyphen2 ReninC20R POSSIBLY DAMAGING http://genetics.bwh.harvard.edu/pph2/
ReninR33W POSSIBLY DAMAGING

Tubb2bA248V BENIGN
Tubb2bR380L POSSIBLY DAMAGING

sift ReninC20R TOLERATED http://sift.jcvi.org/
ReninR33W Deleterious

Tubb2bA248V Deleterious
Tubb2bR380L Deleterious

mutpred ReninC20R Gain of Disorder (P=0.0401) http://mutpred.mutdb.org/
ReninR33W Gain of ubiquitination at K37 (P = 0.0653)

Tubb2bA248V Loss of helix
Tubb2bR380L Loss of MoRF binding (p=0,0172)

snps&go ReninC20R DISEASE-RELATED http://snps-and-go.biocomp.unibo.it/snps-and-go/
ReninR33W NEUTRAL

Tubb2bA248V NEUTRAL
Tubb2bR380L DISEASE-RELATED

mutationtaster ReninC20R Disease-causing http://doro.charite.de/
ReninR33W Disease-causing

Tubb2bA248V Disease-causing
Tubb2bR380L Disease-causing

Mutations in renin and tubulin were tested with different commercially available

prediction algorithms. (N/A = not available)
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