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Abstract 48 

 We have used integrative genomics to determine if a common molecular mechanism underlies 49 

different clinical manifestations in systemic sclerosis (SSc), and the related conditions pulmonary 50 

fibrosis (PF) and pulmonary arterial hypertension (PAH). We identified a common pathogenic gene 51 

expression signature–an immune-fibrotic axis–indicative of pro-fibrotic macrophages (MØs) in multiple 52 

affected tissues (skin, lung, esophagus and PBMCs) of SSc, PF, and PAH. We used this disease-53 

associated signature to query tissue-specific functional genomic networks. This allowed us to identify 54 

common and tissue-specific pathology of SSc and related conditions. We rigorously contrasted the 55 

lung- and skin-specific gene-gene interaction networks to identify a distinct lung resident MØ signature 56 

(LR-MØ) associated with lipid stimulation and alternative activation. In keeping with our network results, 57 

we find distinct MØ alternative activation transcriptional programs in SSc-PF lung and in the skin of 58 

patients with an ‘inflammatory’ SSc gene expression signature. Our results suggest that the innate 59 

immune system is central to SSc disease processes, but that subtle distinctions exist between tissues. 60 

Our approach provides a framework for examining molecular signatures of disease in fibrosis and 61 

autoimmune diseases and for leveraging publicly available data to understand common and tissue-62 

specific disease processes in complex human diseases.  63 
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Author Summary 65 

Human disease in part arises from aberrant interplay between tissues and from the interactions 66 

of gene products in tissue-specific microenvironments. Recent efforts have utilized ‘big data’ to build 67 

functional maps that model these interactions. We used these tools to study systemic sclerosis (SSc), a 68 

rare and clinically complex disease characterized by multi-organ involvement, high mortality, pulmonary 69 

fibrosis, and pulmonary arterial hypertension, and related fibrotic conditions. We developed a novel 70 

procedure to assess which processes are affected across multiple fibrotic organs and tissues. We 71 

found that patients with severe disease share molecular patterns that are indicative of dysregulated, 72 

immune and fibrotic processes. Placing these patterns into the context of functional maps allowed us to 73 

study severe disease manifestations that occur in a subset of patients. This study not only offers the 74 

potential to identify shared pathology in SSc and fibrosis, but a ‘road map’ for the use of tissue-specific 75 

networks to describe complex human diseases. 76 

  77 
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Introduction 78 

 Integrative genomics has yielded powerful tissue-specific functional networks that model the 79 

interaction of genes in these specialized ‘microenvironments’ (1). These tools hold promise for 80 

understanding how genes may contribute to human diseases (2) that arise, in part, out of an aberrant 81 

interplay of cell types and tissues. Network biology has played a crucial role in our understanding of 82 

complex human diseases such as cancer (3,4), and more recently, in disorders where the interactions 83 

among multiple tissues are dysregulated (5).  84 

 Analytical approaches that leverage biological ‘big data’ can be especially fruitful in rare and 85 

heterogeneous diseases (6), in which the risk of mortality is significant and no approved treatments 86 

exist. We performed an integrative, multi-tissue analysis for systemic sclerosis (SSc; scleroderma), a 87 

disease for which all of these tenets are true, and included samples from patients with pulmonary 88 

fibrosis (PF) and pulmonary arterial hypertension (PAH). SSc is characterized by abnormal vasculature, 89 

adaptive immune dysfunction (autoantibody production), and extracellular matrix (ECM) deposition in 90 

skin and internal organs. The etiology of SSc is unknown, but it has complex genetic risk (7) and 91 

postulated triggers include immune activation by cancer (8), infection (9), or dysbiosis (10). SSc is 92 

clinically heterogeneous with some patients experiencing rapidly progressive skin and internal organ 93 

disease, while others have stable disease that is largely limited to skin. Understanding the drivers of 94 

disease in multiple affected organ systems is critical to understand the pathogenesis of SSc and other 95 

complications, such as PF and PAH, that co-occur in these patients. 96 

 These ‘big data’ approaches integrate individual experiments measuring hundreds of disease 97 

states and biological perturbations. Integration of these data holds promise for understanding how 98 

genes contribute to organ specific manifestations of human diseases (2). We previously developed 99 

mutual information consensus clustering (MICC) to identify gene expression that is conserved across 100 

multiple, disparate datasets (11). Here we expanded MICC to perform an integrative, multi-tissue 101 

analysis of SSc and related fibrotic conditions. Following MICC, we used the Genome-scale Integrated 102 

Analysis of gene Networks in Tissues (GIANT) tissue-specific functional genomic networks (1) to 103 

identify gene-gene interactions among those expressed consistently across affected tissues. These 104 
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GIANT networks are a detailed, genome-scale representation of the functional interactions between 105 

genes in different microenvironments. We included gene expression datasets from ten different cohorts 106 

representing four different affected tissues from patients with SSc. We identified a pathogenic signature 107 

– a common ‘immune-fibrotic axis’ – that is present in all tissues analyzed and is increased in the most 108 

severe disease complications, including PF and PAH.  109 

 The immune-fibrotic axis implicates alternatively activated MØs as central drivers of fibrosis in all 110 

solid organs studied. MØs are highly plastic cells implicated in a wide range of pathologic processes 111 

(12-14). Using tissue-specific functional networks (1), we analyzed the nature of the immune-fibrotic 112 

axis to understand the gene-gene interactions that underlie fibrosis across organ systems. Using 113 

differential network analysis, we were able to identify skin- and lung-specific gene-gene interactions 114 

relevant to MØ plasticity and SSc pathophysiology. We now propose a model that implicates 115 

alternatively activated MØs as part of the immune-fibrotic axis that may drive fibrosis in multiple tissues. 116 

 117 

Results 118 

 We performed an integrative analysis of ten independent gene expression datasets containing 119 

samples from patients with systemic sclerosis and associated co-morbidities (Table 1). A total of 573 120 

samples from 321 subjects recruited at seven independent centers were analyzed. These data 121 

represent samples from four different affected tissues derived from seven different clinic centers in the 122 

US and Europe. Data include SSc and control skin from a University of California, San Francisco cohort 123 

(15), a Boston University cohort (16) and a Northwestern University cohort (17). Many patients in the 124 

skin cohorts provided lesional (forearm) and non-lesional (back) skin biopsies; a subset of patients in 125 

the Northwestern skin cohort provided biopsies longitudinally over time as part of a clinical trial for 126 

mycophenolate mofetil (MMF). Peripheral blood mononuclear cell (PBMC) samples from patients with 127 

and without SSc-PAH, patients with idiopathic PAH (IPAH) and healthy controls were included from a 128 

Boston University cohort (18) and a University of Colorado PAH cohort (19). Lung data contained a 129 

cohort of late or end-stage patients that underwent lung transplant at the University of Pittsburgh (20) 130 

and a second cohort from open lung biopsies from early SSc-associated PF obtained in Brazil (21). The 131 
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lung biopsies included patients with SSc-associated PF, idiopathic PF (IPF), SSc-associated PAH, and 132 

idiopathic PAH (IPAH). Data on previously unpublished samples were also included in these analyses. 133 

These are two datasets of skin biopsies from patients with limited cutaneous SSc (LSSc) recruited from 134 

University College London (UCL) / Royal Free Hospital and Boston University Medical Center. Only 135 

data that were judged to be high quality were included in the analyses. To our knowledge, there was no 136 

overlap between the patient cohorts beyond 5 patients recruited at Northwestern that provided both 137 

skin and esophageal biopsies. We summarize all patient cohorts in S1 Table.  138 

 The primary goal of this study was to identify the fundamental processes that occur across end-139 

target and peripheral tissues of patients with SSc and related fibrotic conditions. Secondly, we aimed to 140 

identify the presence or absence of common gene expression patterns that underlie the molecular 141 

intrinsic subsets of SSc (15) in different organs. Analysis of multiple tissue biopsies from patients with 142 

skin fibrosis, esophageal dysfunction, PF and PAH, allowed us to determine in an unbiased analysis 143 

whether these tissues were perturbed in a similar manner on a genomic scale. 144 

 We applied MICC (11) to identify conserved, differentially co-expressed genes across all tissues 145 

in our SSc compendium. MICC is a ‘consensus clustering’ procedure, meaning that it identifies the 146 

shared co-clustering of genes present in multiple datasets. MICC identifies genes that are consistently 147 

coexpressed in multiple tissues. Procedurally, MICC clusters gene expression data into coexpression 148 

modules using weighted gene correlation network analysis (WGCNA) (Fig 1). Because this clustering is 149 

purely data-driven, coexpression modules derived from different datasets necessarily differ from each 150 

other. MICC integrates these coexpression modules across datasets by identifying significant overlaps 151 

between modules from different datasets and forming a ‘module overlap network’. MICC then parses 152 

the module overlap network to find sets of modules (communities) that are strongly conserved across 153 

many datasets (see Methods). These strongly overlapping modules correspond to molecular processes 154 

that are conserved across multiple datasets. 155 

 All datasets were partitioned into coexpression modules using WGCNA, resulting in 549 modules 156 

(Table 2). We constructed the 10-partite module overlap network (Fig 2) and identified eight 157 

communities in the network using modularity-based community detection methods. Because the 158 

community structure of the module overlap network was hierarchical, we used a hierarchical labeling 159 
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scheme, where numerals denote large communities and letters denote smaller sub-communities (Fig 160 

2A). For each community, we used set theoretic formulae to derive a final gene set (‘consensus genes’) 161 

associated with the modules in that community (see Methods and S2 Table; consensus gene sets 162 

ranged from 64-9597 genes in size). The majority of the consensus gene sets pertain to biological 163 

processes that are not disease-specific. These include processes such as telomere organization (1A) 164 

and macromolecule localization (3A). Disease-specific consensus genes were identified by first 165 

determining which communities contained modules associated with pathophenotypes under study and 166 

then deriving consensus gene sets from those combined communities (see below). 167 

 168 
Severe pathophenotypes share a common immune-fibrotic axis 169 

 The module overlap network is agnostic to the clinical phenotypes corresponding to each biopsy. 170 

To associate communities in the module overlap network with SSc and fibrotic pathophenotypes, we 171 

tested each of the 549 modules for differential expression in relevant pathophenotypes (see Methods). 172 

For example, every lung module in the PAH cohorts was tested for differential expression in PAH. 173 

Clusters 4A and 4B in the module overlap network contain modules with increased expression in all 174 

pathophenotypes of interest: the inflammatory and proliferative subsets of SSc, PAH, and PF (Fig 2B). 175 

Thus, the modules in these communities correspond to a common, broad disease signal that is present 176 

in every pathophenotype under study. As with our prior studies, we did not find a strong association 177 

with autoantibody subtype and the co-expression modules identified here. 178 

 Edges in the module overlap graph represent overlap between coexpression modules in different 179 

datasets, so we identified the intersection of genes between adjacent modules. We then asked if these 180 

‘edge gene sets’ were similar to known biological processes by computing the Jaccard similarity 181 

between edges and canonical pathways from the Molecular Signatures Database (MSigDB; see 182 

Methods) (22). Edges in 4A encode immune processes such as antigen processing and presentation 183 

and cytotoxic T cell and helper T cell pathways (Table 3). This cluster also contains modules from all 184 

tissues, including PBMCs (Fig 2B). Altered immunophenotypes have been reported in SSc-PAH and 185 

SSc-PF (18-21). Here, we find that the immune processes with increased expression in these severe 186 

pathophenotypes have substantial overlap with each other, as well as with the inflammatory subsets in 187 
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esophagus and skin (Fig 2B and S1). Notably, 4A is composed of modules with increased expression in 188 

PAH in PBMCs and lung, and a module upregulated in end-stage PF (S1 Fig). This demonstrates a 189 

commonality of molecular pathways between the inflammatory component of SSc and the most severe 190 

end-organ complications at the expression level.  191 

 Edges in 4B encode pro-fibrotic processes including ECM receptor interaction, collagen 192 

formation, and TGF-β signaling (Table 3). Cluster 4B consists of skin inflammatory and fibroproliferative 193 

subset-associated modules as well as lung PAH-, late PF- and early PF-associated modules (Fig 2B 194 

and S1). These results validate and expand what we have found in our prior meta-analysis of skin data 195 

alone (11): the immune-fibrotic axis observed in the SSc intrinsic subsets are connected to and, 196 

furthermore, are found in all other tissues and SSc-associated pathophenotypes. 197 

 To understand how the immune-fibrotic axis and these phenotypes are functionally related, we 198 

identified the consensus genes in the combined 4A and 4B clusters (see Methods; 2079 unique genes; 199 

S4 Table). Using a conservative measure, these consensus genes are enriched for genes with 200 

increased expression in all disease manifestations (Significance Analysis of Microarrays or SAM (23), 201 

FDR <5%) (PF in both lung datasets p < 2.2e-16; PAH lung, p = 7.88x10-5; PAH in both PBMC 202 

datasets, p = 3.20x10-15, Fisher’s exact test). This demonstrates that the tissue consensus genes are 203 

highly relevant to all disease manifestations in this study. The tissue consensus gene sets allow us to 204 

rigorously extrapolate from this conservative set a substantially broader, disease-associated signal. 205 

This extrapolation is especially important for tissue studies that are underpowered to detect a large 206 

number of significantly differentially expressed genes (see Discussion). We took the union of the tissue 207 

consensus gene sets as a set of ‘immune-fibrotic axis consensus genes’ that are informative about 208 

pathology in every tissue. 209 

 210 

The lung functional genomic network reveals a coupling of immune and fibrotic processes211 

 The GIANT functional networks infer functional relationships between genes by integrating 212 

publicly available data including genome-wide human expression experiments, physical and genetic 213 

interaction data, and phenotype and disease data (1). In these networks, genes are nodes and edges 214 

are weighted by the estimated probability of a tissue-specific relationship between genes. GIANT 215 
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contains networks for multiple tissues, including skin and lung. To investigate the function of the 216 

immune-fibrotic axis consensus genes in pulmonary manifestations of SSc, we extracted the 217 

subnetwork of the GIANT whole genome lung network corresponding to the immune-fibrotic axis 218 

consensus genes – the lung network (Fig 3 and S3). Similar to our previous analysis of SSc skin, we 219 

find interconnected functional modules related to both immune (interferon (IFN)/antigen presentation 220 

and innate immune/NF-κB/apoptotic processes) and fibrotic (response to TGF-β and ECM 221 

disassembly/wound healing) processes (Fig 3A). This demonstrates that, like skin, there is functional 222 

coupling between inflammatory and pro-fibrotic pathways in lung. 223 

 224 

The lung network distinguishes early and late events in SSc lung disease 225 

 Our analysis includes two lung datasets derived from both early SSc-PF (open lung biopsies 226 

obtained for diagnostic purposes (21)) and end-stage or late disease (SSc-PF patients that underwent 227 

lung transplantation (20)). In addition to the differences in disease stage between these two datasets, 228 

there is also some difference in the histological patterns of fibrosis in these cohorts. In the Bostwick 229 

lung dataset (20), all patients with SSc-PF had usual interstitial pneumonia (UIP). This study used lung 230 

tissues from patients who underwent lung transplantation (late disease). The Christmann lung dataset 231 

(21) contains 5 patients with non-specific interstitial pneumonia (NSIP) and 2 patients with centrilobular 232 

fibrosis (CLF). This study looked at early SSc-PF patients, used open lung biopsies, and specifically 233 

avoided honeycombing areas.  234 

 Although NSIP and UIP have distinct clinical outcomes, they have been shown to be nearly 235 

indistinguishable at the gene expression level (24). Furthermore, these datasets have overlapping 236 

coexpression patterns as demonstrated by their shared community membership in the module overlap 237 

network. Comparison of different datasets allows us to determine how genes with increased expression 238 

at these different stages and histological subtypes of lung disease are distributed throughout the lung 239 

network and to suggest an order of molecular events in SSc-PF progression. Genes overexpressed in 240 

SSc-PF (SAM, PF vs. Normal comparison, FDR < 5%) are distributed throughout the lung network and 241 

therefore are predicted to participate in all of the molecular processes identified in the network. 242 

Quantification of the distribution of SSc-PF differentially expressed genes throughout the consensus 243 
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lung network (Fig 3B) demonstrates that molecular processes can be associated either with a disease 244 

stage or transition between stages. The cell cycle module contains only early SSc-PF genes, the innate 245 

immune response/NF-κB/apoptotic processes module contains more late SSc-PF genes, and the 246 

response to TGF-β module contains genes from both disease stages (Fig 3A-B).  247 

 248 

Hub and bridge genes are highly relevant to the pathogenesis of pulmonary fibrosis 249 

 Certain genes occupy privileged positions within molecular networks and these genes often have 250 

critical biological function (25). Module hub genes are connected to a significant fraction of genes within 251 

a functional module, whereas bridge genes are genes that connect to multiple functional modules and 252 

thus ‘bridge’ them. We identified the hub and bridge genes within the lung network for their possible 253 

roles in PF pathogenesis. We highlight the hubs and bridges of the lung network in Fig 3C-E and Fig 254 

3F, respectively. The hubs of several of the functional modules in the consensus lung network show 255 

increased expression at different disease stages (Fig 3C-E). For instance, LAMC1 shows increased 256 

expression in early SSc-PF and is highly connected within the response to TGF-β module (Fig 3C). The 257 

gene Niemann-Pick disease, type C2 (NPC2) is upregulated in early disease and is connected to 258 

cathepsins L and B (CTSL, CTSB) and GLB1 in the lung network (Fig 3D). We tabulate information on 259 

selected genes from the lung network in Table 4.  260 

 The innate immune response/NF-κB signaling/apoptotic process module contains genes that are 261 

highly expressed in late SSc-PF, including the hub genes CYR61 and TM4SF1 (Fig 3A-B and S3). The 262 

hub gene TNFAIP3 (A20), which is increased in late SSc-PF (Fig 3E), is a negative regulator of NF-κB 263 

signaling and inhibitor of TNF-mediated apoptosis. The innate immune response/NF-κB 264 

signaling/apoptotic process and IFN/antigen presentation modules are bridged by TNFSF10, also 265 

known as TRAIL (TNF-related apoptosis inducing ligand, Fig 3F). These results suggest that the 266 

balance of apoptosis is altered in late SSc-PF. The upregulation of genes with anti-apoptotic function 267 

was not reported in the original study (20), which demonstrates the strength of both the MICC method 268 

and the study of functional interactions. 269 

 CD44 and PLAUR (uPAR) bridge multiple functional modules in the lung network (Fig 3F) and 270 

have been implicated in IPF (26,27). Because these genes link modules important in regulating disease 271 
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progression, therapeutic targeting of CD44 and uPAR may be an effective strategy in combatting SSc-272 

PF. Indeed, anti-CD44 treatment reduces fibroblast invasion and bleomycin-induced lung fibrosis (26), 273 

and inhibition of uPAR ligation significantly reduces motility of pulmonary fibroblasts from patients with 274 

idiopathic PF (28). These results are consistent with our identification of these genes as key genes in 275 

the lung network.  276 

 277 

The lung microenvironment provides a distinct milieu for pro-fibrotic processes 278 

 Pulmonary fibrosis is histologically distinct from skin fibrosis and occurs in a subset of patients 279 

with SSc. We hypothesized that the lung microenvironment may have a distinct organization of 280 

immune-fibrotic axis consensus genes when compared to skin. Indeed, for interactions (edge weight > 281 

0.5) that are present in both the lung and skin networks, there are gene pairs that are much more likely 282 

to interact in one tissue than the other (Fig 4A). In other words, the skin and lung networks are ‘wired 283 

differently’. To identify highly lung-specific and highly skin-specific interactions, we performed a 284 

differential network analysis that identified gene pairs that are strongly predicted to interact in one 285 

tissue but not the other (see Methods).  286 

 These highly specific interactions are displayed in Fig 4B, where a cell is red if it is lung-specific 287 

or blue if it is skin-specific (cf. S4 Fig). The number of tissue-specific edges in each functional module is 288 

quantified in Figs 4B and 4C, which illustrate that most functional modules in lung have fewer 289 

interactions than in skin, with the exception of the cell cycle module. Of particular interest is the 290 

relationship between the phagolysosome/ECM disassembly genes and response to TGF-β genes, as 291 

strong differential connectivity can be observed in this module (Figs 4B and 4C). Thus, even though 292 

ECM disassembly and TGF-β module genes are coordinately differentially expressed in both lung and 293 

skin, they are differentially connected to each other suggesting that the microenvironment strongly 294 

determines the functional consequences of upregulating these pro-fibrotic genes. 295 

 To summarize lung-specific biological processes in the immune-fibrotic axis, we clustered the 296 

lung-specific interactions (differential lung network) to identify lung-specific pathways (S5 Fig). We 297 

identified 23 clusters corresponding to biological processes such as type I IFN signaling (cluster 10), 298 

antigen processing and presentation (cluster 4), REACTOME Cell surface interactions at the vascular 299 
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wall (cluster 22), and mitotic cell cycle (cluster 16, shown in Fig S5B). Taken together, this suggests 300 

that within the immune-fibrotic axis we find innate immune and cell proliferation processes that are 301 

highly lung-specific. One of the largest of these clusters (cluster 13, Fig 4D and S5C) includes NPC2, 302 

S100A4, and CTSB, which encode protein products that are highly expressed in normal lung-resident 303 

MØs (LR-MØs) (29,30).  304 

 NPC2, is a hub of the ECM disassembly/wound healing module in the full lung network (Fig 3); 305 

many of the genes in cluster 13 also belong to the ECM disassembly/wound healing module in the 306 

whole network, including the cathepsins CTSB and CTSL. Alveolar MØs are the main source of 307 

cathepsins in bleomycin-induced fibrotic lung tissue (31). Additional genes associated with 308 

development and maintenance of alternative MØ activation include TGFBI (32), NEU1 (33), PRCP (34), 309 

and DAB2 (35). Genes that are specifically associated with alternative activation of lung MØs include 310 

PLP2 (36) and IFITM1 (37) (Fig 4D and S5C). Based on these genes and the complete lung network in 311 

Figure 3, we identified an LR-MØ signature. These findings are consistent with previous reports of 312 

alternative MØ activation in SSc (21,38).  313 

 To explore this signature further, we examined some genes from this cluster along with genes 314 

identified in the Christmann, et al. study (21). Consistent with the primary publication (21), some 315 

heterogeneity in SSc-PF gene expression is observed and is likely due to tissue sampling from various 316 

lobes of the lung as well as the inclusion of patients with centrilobular fibrosis (Fig 5A, right dendrogram 317 

branch). Nevertheless, the LR-MØ signature comprises genes that are highly correlated with canonical 318 

markers of alternatively activated MØs that were validated by either PCR or immunohistochemistry in 319 

the original study (e.g., CD163 and CCL18) (21). 320 

 The LR-MØ cluster in the differential lung network also contains a number of genes implicated in 321 

lipid storage disorders, including HEXB, GLB1, and NPC2. Several other LR-MØ cluster genes have 322 

been shown to be important for regulating cholesterol trafficking genes in an animal model of obesity, 323 

including CTSB, CTSL, and NPC2 (39). It has been noted that lipid metabolism genes are upregulated 324 

in lung MØs relative to other tissue-specific MØs (36). Furthermore, in the bleomycin injury mouse 325 

model of pulmonary fibrosis, lipid-laden MØs have been observed to increase expression of markers 326 

associated with alternative MØ activation and to secrete TGF-β (40).  327 
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 328 

Distinct MØ gene expression programs are elevated in lung and skin 329 

 We hypothesized that early SSc-PF lung samples may have evidence of both alternatively 330 

activated and lipid-stimulated MØs and that this may differ from what is observed in skin. The presence 331 

of alternatively activated MØs in the inflammatory subset of skin was inferred in our single tissue 332 

analysis (11). To test this hypothesis, we used gene sets associated with classical activation of MØs, 333 

alternative activation of MØs, or stimulation of MØs with a variety of activation stimuli, including free 334 

fatty acids, taken from Xue, et al. (12). To summarize the expression of each MØ gene set (12) and 335 

compare across tissues in these data, we computed the average expression of all genes in each gene 336 

set (see Methods; see S5 Table for a mapping between Xue, et al. modules and our naming scheme). 337 

Results are displayed for control and SSc-PF lung, as well as control and SSc-inflammatory skin (Fig 338 

5B). As shown in Figure 5B, there is evidence of an increase in alternatively activated and free fatty 339 

acid stimulated gene sets in SSc-PF and SSc-inflammatory skin. These data do not show statistically 340 

significant differences in expression of gene sets associated with classical MØ activation between 341 

controls and SSc-PF or SSc-inflammatory skin (see S6 Table for p-values of all modules tested). 342 

 The discovery of IFN (IFN)-related genes among the consensus genes indicates that these 343 

pathways are increased in pathophenotypes of interest (e.g., SSc-PF and the skin inflammatory 344 

subset). Christmann, et al. also noted a strong IFN-related gene signature in SSc-PF samples, although 345 

the cellular compartment responsible for this signature was not described (21). Because stimulation 346 

with IFN results in classical activation of MØs, we examined the expression of genes from CL 1, as it is 347 

most strongly associated with IFN-γ treatment (“classical activation”) in human MØs (12). However, CL 348 

1 genes’ expression is not different between disease and controls in either skin or lung (Wilcoxon p = 349 

0.76 and 0.80, respectively; Fig 5B). This result is consistent with our inability to discern differences in 350 

classical MØ activation markers between controls and SSc-PF and inflammatory skin and suggests that 351 

classically activated MØs are not the source of the reported IFN signature. 352 

 Modules ALT 1 and ALT 2 are both associated with IL-4 and IL-13 treatment, which are stimuli 353 

associated with alternative activation of MØs (12). These two gene sets are non-overlapping 354 

coexpression modules and therefore represent two “parts” of the alternatively activated MØ 355 
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transcriptional program. We performed functional enrichment analysis for ALT 1 and 2 to understand 356 

which biological processes underlie these transcriptional signatures (see Methods). Module ALT 1 is 357 

enriched for genes involved in oxidative phosphorylation (KEGG, p < 0.0001) and the citric acid cycle 358 

(REACTOME, p < 0.0001) pathways. In lung, ALT 1 expression is higher in SSc-PF than in controls 359 

(Wilcoxon p = 0.0046). There is no difference between healthy controls and the inflammatory subset in 360 

skin (Wilcoxon p = 0.41). Module ALT 2 shows an opposite trend is enriched for genes implicated in the 361 

positive regulation of response to wounding (GO BP, p = 0.027) and defense response (GO BP, p = 362 

0.00035); this module includes alternatively activated MØ markers such as CD14 and CCL26 (41,42). 363 

ALT 2 expression is increased in the inflammatory subset in skin (Wilcoxon p = 0.041) and trends 364 

toward decreased expression in SSc-PF lung (Wilcoxon p = 0.16). Together, these pathways suggest a 365 

metabolic “switch” associated with alternative activation in lung that is not found in skin (for review see 366 

(43); Fig 5B). 367 

 We also analyzed modules associated with free fatty acids (FFA) stimulation, which are relevant 368 

to the question of lipid signaling or exposure in SSc tissues (FFA 1, 2, and 3). We first performed 369 

functional enrichment analysis for these modules to gain biological insight into these transcriptional 370 

programs. FFA 1 is enriched for genes involved in the Unfolded Protein Response (REACTOME, p = 371 

0.025). FFA 2 is enriched for Antigen processing-Cross presentation genes (REACTOME; p = 372 

0.00101). FFA 3 is enriched for genes in the ER-Phagosome Pathway (REACTOME, p = 0.0076). 373 

Expression of FFA 1 and 2 is significantly increased in lung (FFA 1: Wilcoxon p = 0.046; p = 0.97 in 374 

skin; FFA 2: Wilcoxon p = 0.0013; p = 0.63 in skin), whereas FFA 3 is upregulated in SSc-PF lung 375 

(Wilcoxon, p = 0.0013) and the SSc inflammatory subset in skin (Wilcoxon, p = 0.00056). These results 376 

suggest that LR- MØs may have a distinct lipid exposure that strongly diverges from that in skin.  377 

 The differential network analysis (Fig. 4) allowed us to identify highly lung-specific interactions in 378 

the immune-fibrotic axis that implicated lipid signaling as a distinct functional process in lung. The 379 

higher expression of multiple free fatty acid-associated modules in lung suggests that the role of lipid 380 

signaling in MØs may be more important in this tissue than in skin, consistent with what we would 381 

predict based on highly lung-specific gene-gene interactions, and based on prior biomedical literature in 382 
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related conditions (36,40). Thus, a major difference between the lung and skin networks can be 383 

attributed to the presence of a distinct MØ phenotype in lungs.  384 

 385 

Discussion 386 

 SSc is a systemic disease that affects multiple internal organs but, to our knowledge, no one has 387 

shown if there are distinct or common deregulated pathways between these organ systems, or their 388 

relationship to other fibrotic conditions. In recent years, gene expression data have been collected for 389 

multiple tissues. However, these data often have issues that are common to many diseases. First, SSc 390 

is rare and patients with particular disease manifestations are still rarer, so there is a limit to the amount 391 

of biopsy material available for study. Second, for practical and ethical reasons, internal organ biopsies 392 

are seldom taken from healthy subjects making comparisons difficult. Thus, lung, esophagus, and other 393 

affected internal organs are more difficult to study than blood and skin tissue. Therefore, there is a 394 

critical need to leverage our biological prior knowledge with our understanding of well-studied tissues – 395 

like blood and skin – to make plausible inferences about pathogenesis in tissues that are more difficult 396 

to study.  397 

 The clinical heterogeneity of SSc, particularly the difficulty of predicting internal organ 398 

involvement, raises an important question: are the fibrotic processes observed in multiple organs 399 

derived from a common disease process, or is each organ manifestation effectively a distinct disease? 400 

Our analyses demonstrate that there is a common gene expression signature underlying all severe 401 

organ manifestations of SSc – the immune-fibrotic axis – in solid organs. The immune-fibrotic axis 402 

underlies both SSc pulmonary manifestations of PF and PAH, and the intrinsic subsets of skin and 403 

esophagus. Moreover, coexpression modules from peripheral blood, a mixture of innate and adaptive 404 

immune cells, have significant overlap with modules associated with all pathophenotypes studied. 405 

Thus, while fibrotic processes were largely associated with solid tissues, the inflammatory component 406 

of the immune-fibrotic axis is only found in peripheral blood. 407 

 The presence of a common gene expression signature across multiple tissues suggests a 408 

common disease driver, but it does not resolve the possible tissue-specific processes that contribute to 409 
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disease in the internal organs. Indeed, there are many layers of biological regulation between gene 410 

expression and whole tissue phenotypes. Resolving the relationship between molecular profiles and 411 

phenotypes is a difficult biological problem underlying most biomedical inquiry. However, these 412 

relationships have been approximated by integrating high-throughput genomic data into tissue-specific 413 

functional networks using ‘big data’ machine learning strategies (1). We addressed tissue-specificity in 414 

SSc pathology by interpreting the common expression signal – the immune-fibrotic axis – within these 415 

tissue-specific functional networks. These networks allowed us to identify critical genes that occupy 416 

important positions in molecular pathways in lung. It is clear from this work that the coupling of immune 417 

and fibrotic processes is a hallmark of SSc that occurs in SSc-PF and SSc-PAH as well as skin. 418 

However, we also find subtle, lung-specific functional differences that we attribute, in part, to the 419 

plasticity of the myeloid cell lineage. 420 

 421 

The plasticity of the myeloid lineage may drive tissue-specific SSc disease processes 422 

 By performing a combined analysis of SSc gene expression in multiple tissues, we are able to 423 

observe and infer, in a genome-wide manner, commonalities in the complex mixture of cell types in a 424 

tissue at the time of biopsy. Overwhelmingly, we detected a MØ signature associated with severe 425 

disease. In the module overlap network, we find that PAH-associated modules from PBMCs (18,19) 426 

have significant overlap with SSc inflammatory subset-associated modules from skin and esophagus 427 

(Fig 2). Indeed, in Pendergrass et al. (18), we observed that PBMCs from lcSSc patients have 428 

significant enrichment in myeloid- and MØ-related gene sets as compared to healthy controls. 429 

Christmann et al. (44) expanded on this, showing that highly expressed transcripts in lcSSc-PAH 430 

CD14+ monocytes were induced in IL-13-stimulated cells, i.e. that PAH monocytes are alternatively 431 

activated. We assert that this MØ polarization is a significant part of the immune-fibrotic axis we find in 432 

these data and, therefore, is likely a common driver of the complex pathophysiology of SSc. In support 433 

of this, an independent study also identified MØs and dendritic cells (DCs) as possible sources of an 434 

“inflammatory” signature in lesional SSc skin (45).  435 

 We found evidence for the contribution of LR-MØs to SSc-PF pathobiology, consistent with the 436 

alternative activation of MØs and TGF-β production. In our prior analysis of skin, we inferred 437 
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alternatively activated MØs as modulators of the SSc inflammatory intrinsic subset in skin (11). Our 438 

current study identifies a LR-MØ signature within the functional relationships of immune-fibrotic axis 439 

consensus genes in lung (Fig 4D and 5A). We posit that the differences in fibrotic responses of skin 440 

and lung tissue are due, in large part, to innate differences between tissue-resident MØs that have 441 

been observed (46,47), as well as the interactions between infiltrating monocytes and tissue-resident 442 

cell types (e.g., alveolar epithelial cells vs. keratinocytes). Because MØ phenotype and function are 443 

plastic and readily modulated by the local tissue microenvironment, it is likely that differential activation 444 

of MØs in these tissues is the result of exposure to distinct cytokine milieu. Indeed, we show that 445 

distinct alternative activation gene expression programs have increased expression in SSc-PF lung and 446 

inflammatory SSc skin (Fig. 5). In particular, there were multiple lipid-related signatures elevated in 447 

SSc-PF lung alone. 448 

 We cannot rule out that the MØ changes we observe are a secondary response to the affected 449 

organ pathology. Regardless, therapies that target MØ effectors such as IL6R have shown promise in 450 

clinical trials (48) and MØ chemoattractants have been shown to be important in animal models of SSc 451 

inflammatory disease (49), suggesting that MØs play a central role in SSc pathogenesis. We also 452 

cannot rule out that DCs contribute to our results, as plasmacytoid DCs are observed to be important in 453 

the Stiff Skin Syndrome mouse model (50). However, some skin-resident DCs have been shown to be 454 

transcriptionally similar to peripheral blood monocytes in humans (51). We speculate that the circulation 455 

of peripheral myeloid cells contributes to the multi-organ nature of SSc. Future studies may use in silico 456 

and cell sorting techniques to deconvolve SSc expression data to identify changes in cell proportion 457 

and transcriptome throughout disease course and to finely phenotype myeloid cells from SSc patient 458 

tissue samples. 459 

 460 

An overview of SSc-PF disease processes 461 

 The study of two different lung datasets that sampled early- and late-stage SSc-PF allows us to 462 

describe differences between the disease processes found in these two datasets. The two datasets 463 

each contained patients with different types of interstitial pneumonia (see Methods), which may limit 464 

interpretation of these results. However, as stated in the results, we and others (24) find evidence of 465 
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highly similar gene expression patterns between UIP and NSIP. We do not have treatment information 466 

for patients in these studies and acknowledge that late-stage patients are more likely to be treated with 467 

immunosuppressive therapy. With these caveats in mind, we can nevertheless draw non-intuitive 468 

conclusions through the combination of our data-driven approach and mechanistic insight from 469 

disparate literature. We provide an overview of disease processes in Fig 6. 470 

 Christmann and coworkers identified an increase in IFN- and TGF-β-regulated genes in biopsies 471 

from early SSc-PF (21). It was also noted that there was more CCL18 at the protein-level and a higher 472 

level of CD163 transcript in SSc-ILD lungs, suggestive of the presence of alternatively activated MØs 473 

(21). However, it was unclear which cell types were responsible for the IFN signature or if there was 474 

evidence of distinct subpopulations of MØs. We found that gene signatures that are upregulated in 475 

alternatively-activated human MØs and MØs treated with free fatty acids are enriched in early SSc-PF 476 

patients and that there is no evidence for enrichment of a pro-inflammatory, IFN-stimulated MØ 477 

signature (Fig 5) (12).  478 

  The LR-MØ signature identified in our differential network analysis consisted of genes with 479 

increased expression in early SSc-PF that participate in lipid and cholesterol trafficking (Figs 4D, S6, 480 

differential lung network). The expression of these genes is correlated with “canonical” MØ genes 481 

identified in the primary publication (21) (Fig 5). We find elevated gene expression programs associated 482 

with MØ alternative activation (specifically metabolic “reprogramming”) and lipid exposure in this 483 

dataset (Fig 5). In the bleomycin injury mouse model of pulmonary fibrosis, lipid-laden MØs, or foam 484 

cells, have been observed to upregulate markers associated with alternative MØ activation and to 485 

secrete TGF-β (59). Oxidized phospholipid treatment also causes alternative activation and TGF-β 486 

secretion in human MØs (40). Consistent with this report, recent work demonstrates that foam cell 487 

formation in vivo favors the development of a pro-fibrotic MØ activation profile (52,53). These studies, 488 

along with our results, suggest that lipid exposure or uptake in MØs may be important. 489 

 TGF-β signaling is a hallmark of fibrotic disease, and was noted in the initial analysis of both lung 490 

datasets (20,21). Similarly, we find genes from both datasets in the response to TGF-β module of the 491 

lung network. However, we also find evidence that the type I IFN signature is present in the Bostwick 492 

dataset(Fig 3). The functional module most strongly associated with late stage disease/UIP is the 493 
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innate immune, NF-κB, and apoptotic processes module. This module is connected to the TGF-β 494 

module through components of the fibrinolysis pathway such as PAI-1 (SERPINE1) (Fig 3). PAI-1 is 495 

upregulated in late stage SSc-PF and is known to be important in pulmonary fibrosis (54-56). One 496 

mechanism by which fibrinolysis may contribute to the resolution of fibrosis is through the induction of 497 

fibroblast apoptosis (57). Both TGF-β1 and PAI-1 have been shown to inhibit lung fibroblast apoptosis 498 

(57). 499 

 We found evidence for a shift in the balance of apoptosis in the Bostwick dataset, perhaps in 500 

myofibroblasts (58), in our network analyses (Fig 6). Long-lived myofibroblasts are thought to 501 

continually deposit collagen and contribute to persistent fibrosis (59). This apoptotic-resistance 502 

phenotype is related to the stiffness of the matrix (60), suggesting that a shift in apoptotic processes 503 

may occur once the deposition of excess collagen begins. Moreover, impaired phagocytosis of 504 

apoptotic cells, or efferocytosis, has been observed in the alveolar MØs of IPF patients (61). We find 505 

genes involved in efferocytosis, specifically in receptors (CD44) and endocytic machinery associated 506 

with this process, in the lung network (Figs 3, 6) (62). If the shift in apoptosis and efferocytosis occurs, 507 

we speculate that the fibrotic and inflammatory processes in our network will also be altered. 508 

Efferocytosis by alveolar MØs plays a key role in the resolution of inflammation in the lung through the 509 

subsequent release of TGF-β (63). We hypothesize that following initial injury, TGF-β signaling, 510 

antifibrinolytic factors, and the disruption of apoptosis and efferocytosis may contribute to progressive 511 

fibrosis in SSc-PF (Fig 6). 512 

 513 

Conclusions 514 

 In this study, we have utilized data from multiple tissues to examine the systemic nature of SSc. 515 

Our integrative analysis allowed us to leverage well-studied tissues to inform us about SSc 516 

manifestations that are under-studied molecularly. This study rigorously tests the notion that patients 517 

with severe disease have shared immunological and fibrotic alterations. The common immune-fibrotic 518 

axis shows evidence for alternatively activated MØs in multiple SSc tissues. However, there are subtle 519 

differences in the MØ gene expression programs detected in skin and lung. Different 520 

microenvironments likely provide distinct stimuli to infiltrating MØs that determine the pro-fibrotic 521 
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character of these cells. The plasticity of this lineage is likely central to the divergence of fibrotic 522 

processes in multiple SSc-affected tissues and is a central component of an immune-fibrotic axis 523 

driving disease. 524 

525 
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Methods 526 

Patients and datasets 527 

 Eight out of 10 datasets included in this study were previously published (see Table 1) and 528 

descriptions of the patient populations and criteria for inclusion can be found in those publications. We 529 

used the patient disease label (e.g., PAH) as published in the original work for all of these sets. In Table 530 

S1, we summarize the patient information to which we had access on a per array basis as that is what 531 

is required for comparison to the expression data. Below, we note some important characteristics (for 532 

the purposes of this work) of the included patient populations. As noted in the Results section, the two 533 

lung datasets contained patients with different histological patterns of lung disease. Some patients 534 

included in the PBMC dataset, including those with PAH, also had interstitial lung disease, though 535 

exclusion of these patients does not significantly change the interpretation as put forth in (18). As 536 

illustrated in S1 Table, two datasets (ESO, LSSc) did not contain healthy control samples and three 537 

datasets (UCL, LSSc, and PBMC) were comprised entirely of lcSSc patients. 538 

 539 

Ethics statement on previously unpublished datasets 540 

 The LSSc and UCL studies are previously unpublished. The samples from the LSSc dataset were 541 

obtained at Boston University Medical Center (BUMC)/Boston Medical Center (BMC); the BUMC/BMC 542 

Institution Review Board approved this study. The samples from the UCL dataset were obtained at 543 

University College of London; the London-Hampstead NRES Committee approved this study. The 544 

Dartmouth College CPHS approved this work. All subjects gave informed consent. All research 545 

conformed to the principles expressed in the Declaration of Helinski. 546 

 547 

 548 

Microarray dataset processing 549 

 This work contains 10 datasets on multiple microarray platforms. Agilent datasets (Pendergrass, 550 

PBMC, Milano, Hinchcliff, ESO, UCL, LSSc) used either Agilent Whole Human Genome (4x44K) 551 

Microarrays (G4112F)(Pendergrass, PBMC, Milano, Hinchcliff, ESO, UCL) or 8x60K (LSSc). Data were 552 
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Log2-transformed and lowess normalized and filtered for probes with intensity 2-fold over local 553 

background in Cy3 or Cy5 channels. Data were multiplied by -1 to convert to Log2(Cy3/Cy5) ratios. 554 

Probes with >20% missing data were excluded. The Illumina dataset (Bostwick, HumanRef-8 v3.0 555 

BeadChips) was processed using variance-stabilizing transformation and robust spline normalization 556 

using the lumi R package. Dr. Christmann provided the raw data in the form of .CEL files. Dr. Feghali-557 

Bostwick provided Illumina BeadSummary files. Affymetrix datasets (Risbano, HGU133plus2; 558 

Christmann, HGU133A_2) were processed using the RMA method as implemented in the affy R 559 

package. Batch bias was detected in the ESO dataset. To adjust these data, missing values were 560 

imputed via k-nearest neighbor algorithm using a GenePattern (64) module with default parameters and 561 

the data were adjusted using ComBat (65) run as a GenePattern module to eliminate the batch effect. 562 

 To compare datasets in our downstream analysis, duplicate genes must not be present in the 563 

dataset and must be summarized in some way. First, we annotated each probe with its Entrez gene ID. 564 

Agilent 4x44K arrays were annotated using the hgug4112a.db Bioconductor package. LSSc was 565 

annotated using UNC Microarray Database with annotations from the manufacturer. Probes annotated 566 

to lincRNAs (A19) were removed from the analysis. The Illumina dataset was annotated by converting 567 

the gene symbols (provided as part of the BeadSummary file) to Entrez IDs using the org.Hs.eg.db 568 

package. The Risbano PBMC dataset was annotated using the hgu133plus2.db package. The 569 

Christmann dataset was annotated using an annotation file from the manufacturer. NAs and probes that 570 

mapped to multiple Entrez IDs were removed in all cases. Probes that mapped to the same Entrez ID 571 

were collapsed to the gene mean using the aggregate function in R, followed by gene median 572 

centering. 573 

 574 

Clustering of microarray data and statistical tests for phenotype association 575 

 The collapsed datasets were used to find coherent coexpression modules. We used Weighted 576 

Gene Co-expression Network Analysis (WGCNA), a strong clustering method, which allows us to 577 

automatically detect the number of coexpression modules and remove outliers (66). Each dataset was 578 

clustered using the blockwiseModules function in WGCNA R package using the signed network option 579 

and power = 12; all other parameters were set to default. The number of arrays and resulting co-580 
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expression modules are summarized in Table 2. Using the WGCNA coexpression modules also 581 

reduces the dimensionality of the dataset, as it allows us to test for genes’ association with, or 582 

differential expression in, a particular pathophenotype of interest on the order of tens, rather than 583 

thousands using the module eigengene. The module eigengene is the first principal component, and 584 

represents the expression of all genes in a module and an idealized hub of the coexpression module. 585 

We used the moduleEigengenes function in the WGCNA R package to extract the eigengenes. A 586 

module was considered to be pathophenotype-associated if the module eigengene was significantly 587 

differentially expressed in or significantly correlated with a pathophenotype of interest. Only 2-class 588 

categorical variables were considered using a Mann-Whitney U test (i.e., all pulmonary fibrosis and 589 

pulmonary arterial hypertension patients were grouped together regardless of underlying etiology). We 590 

used Spearman correlation for continuous values. P-values were Bonferroni-corrected on a per 591 

phenotype basis. See S1 File for complete output. In the main text, we discuss categorical 592 

pathophenotypes, as these were enriched at the consensus cluster level. We do find instances 593 

coexpression modules that are associated with continuous pathophenotypes, such as pulmonary 594 

function test measurements, but these were not apparent at the consensus cluster level of abstraction. 595 

 596 

Module overlap network construction and community detection 597 

 The 10-partite ‘module overlap network’ was constructed as in Mahoney et al. (23), where it was 598 

called the ‘information graph’ due to its relationship to information theory. We describe the method here 599 

in brief and refer to (11) for motivating details. The modules from different datasets have no a priori 600 

relationship to each other. The module overlap network encodes the pairs of modules that significantly 601 

overlap. Specifically, for each pair of modules (Ci and Cj) we compute an overlap score 602 

 

		 
Wij =

Ci ∩C j

N
log

Ci ∩C j N

Ci C j

 (1) 603 

where N is the total number of genes shared between the two datasets. The overlap scores can be 604 

positive, negative, or zero, indicating that the modules overlap more, less, or the same as expected at 605 

random, respectively. As shown in Mahoney, et al. (11), the overlap scores can be naturally 606 
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thresholded using information theory to yield a sparse network of significant overlaps. This is the 607 

module overlap network. 608 

 The module overlap network is highly structured. For example, a module representing an 609 

inflammatory process in skin often significantly overlaps inflammatory modules in other tissues. Thus, 610 

the structure of the module overlap network corresponds to the biological processes that are common 611 

to multiple datasets. We can identify these processes by clustering the module overlap network itself. 612 

To detect clusters in the module overlap network, we used two methods of community detection in the 613 

iGraph R package (67). First, we used fast-greedy modularity optimization (68), which yielded large, 614 

diffuse communities. We call these ‘top-level’ communities. To find smaller, more densely connected 615 

sub-communities, we used spin-glass community detection (igraph R package implementation, 616 

gamma.minus = 0.125, all other parameters were set to default) (67,69). We call these ‘bottom-level’ 617 

communities. The community/sub-community structure of the module overlap network demonstrates 618 

that there is a hierarchy of biological processes that are common across datasets, where large 619 

communities contain smaller ones (Fig. 2). To display this hierarchical community structure, we first 620 

sorted by top-level community label, and then within each community we sorted by bottom-level label. 621 

The adjacency matrix of the module overlap network and its node attributes (including dataset of origin 622 

and community labels) are supplied in S2 File. 623 

 We also tested each top-level community in the module overlap network for enrichment of 624 

pathophenotype-associated modules for each phenotype of interest using a Fisher’s exact test followed 625 

by Bonferroni correction (Table 5). This test takes into account both modules that had increased and 626 

decreased in pathophenotypes under study. 627 

 628 

Functional and pathphenotype annotation of the module overlap network 629 

 The module overlap network contains rich information about the biological processes that are 630 

active in each tissue under study. We functionally annotated the module overlap network by finding 631 

pathways that strongly correlate to each community. Because an edge in the module overlap network 632 

corresponds to a significant overlap between coexpression modules from different datasets, we can 633 
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think of an edge ‘encoding’ that overlap as a gene set. For each pair of coexpression modules Ci and 634 

Cj, we define an ‘edge gene set’, Eij, as the overlap between the in two datasets 635 

 (2) 636 

To annotate this edge gene set with biological pathways, we computed the Jaccard similarity of an 637 

edge gene set E and a pathway P  638 

 (3) 639 

We used biological pathways from the Kyoto Encyclopedia of Genes and Genomes (70), BioCarta, and 640 

Reactome (71) obtained from Molecular Signatures Database from the Broad Institute 641 

(software.broadinstitute.org/gsea/msigdb). The Jaccard similarity between the edge and pathway will 642 

be equal to one, if all of the genes shared between two modules are exactly the same set of genes 643 

annotated to the pathway, or zero if no genes are shared between the two sets. To functionally 644 

annotate a community in the information graph, we compared the Jaccard similarities of the edges 645 

within the community to edges outside of the community using a Mann-Whitney U test (with Bonferroni 646 

adjustment). The full results of this analysis are included as S3 File. 647 

 648 

Tissue consensus gene sets 649 

 To understand how the immune and fibrotic responses in these phenotypes are functionally 650 

related, we found the consensus genes in the combined 4A and 4B clusters. Tissue consensus gene 651 

sets were derived by considering all modules within 4A and 4B, finding their unions within their dataset, 652 

and then computing their intersection across datasets from the same tissue of origin. For example, the 653 

lung consensus gene set (CClung) was derived by computing the union of the Christmann (denoted c) 654 

and Bostwick (denoted b) modules in 4AB separately, and then computing the intersection across these 655 

two datasets: 656 

		 
CClung = c

c∈C4 AB

∪
⎛

⎝
⎜

⎞

⎠
⎟ ∩ b

b∈B4 AB

∩
⎛

⎝
⎜

⎞

⎠
⎟ (4) 657 

 658 

! Eij =CiCj

!! 
J(E ,P)=

EP

EP
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 As each tissue was considered separately (limited skin and diffuse skin were considered 659 

separately), 5 tissue consensus gene sets were generated; the union of these tissue consensus 660 

datasets was used to query the functional genomic networks and is referred to as the ‘immune-fibrotic 661 

axis consensus’ gene set or genes throughout the text. For all genes in modules in clusters 4A and 4B, 662 

we calculated the Pearson correlation to their respective module eigengene (kME). We compared the 663 

kME of consensus genes to that of non-consensus genes using a Mann-Whitney U test. S3 Table 664 

contains the tissue consensus genes from 4AB or the ‘IMMUNE-FIBROTIC AXIS consensus genes.’ 665 

 666 

Querying GIANT functional networks, single tissue network analysis, and network visualization 667 

 The GIANT functional genomic networks were obtained as binary (.dab) files and processed 668 

using the Sleipnir library for computational functional genomics (72). We queried all networks (lung, 669 

skin, ‘all tissue’) using the immune-fibrotic axis consensus gene sets (as Entrez IDs) and pruned all low 670 

probability (< 0.5) edges. All networks are available for download from the GIANT webserver 671 

(giant.princeton.edu) (1). For each single tissue analysis (consensus lung and consensus skin 672 

networks), we considered only the largest connected component of each network and performed spin-673 

glass community detection as implemented in the igraph R package (67) to obtain the functional 674 

modules. We annotated functional modules using g:Profiler (73) using all genes in a module as a query. 675 

All networks in this work were visualized using Gephi (74). The network layout was determined by 676 

community membership, the strength of connections between communities, and finally the interactions 677 

between individual genes.  678 

 679 

Differential network analysis 680 

The tissue-specific networks from GIANT allow for the analysis of the differing functional connectivity 681 

between genes in different microenvironments. In order to understand the specific immune-fibrotic 682 

connectivity in lung relative to skin, we performed a differential network analysis (Fig 4). To compare 683 

networks we retained only nodes common to consensus skin network and consensus lung largest 684 

connected components (see above). We define the ‘differential lung network’ as the network with 685 

adjacency matrix:  686 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2016. ; https://doi.org/10.1101/038950doi: bioRxiv preprint 

https://doi.org/10.1101/038950
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 

		Adiff =max(Alung −max(Askin ,Aglobal ),0)  (5) 687 

where Alung, Askin, and Aglobal are the lung, skin, and global (all tissues) adjacency matrices from GIANT. 688 

The differential lung network is thus the lung network minus the maximum edge weight from the skin 689 

and lung networks, where all edges that are stronger in skin or the global network are set to zero. Thus, 690 

the differential lung network contains only highly lung-specific interactions. Functional modules in the 691 

lung differential network were found using spin-glass community detection (see above) within the 692 

largest connected component of the network. 693 

 694 

Differential expression and MØ gene set analysis 695 

 To identify genes that were differentially expressed in SSc-PF, SSc-PF samples were compared 696 

to normal controls in both datasets using SAM (23) (1000 permutations, implemented in samr R 697 

package). Genes with an FDR < 5% were considered further. The MØ gene sets used in this study are 698 

WGCNA modules taken from a study of human MØ transcriptomes (12). The z-score of each genes’ 699 

expression (Eqn. 6) was computed in the collapsed Christmann and Hinchcliff datasets (as described in 700 

‘Microarray dataset processing’ section of Methods). The z-score z of gene g in the ith array/sample is 701 

computed as: 702 

	
zgi =

xgi − µg

σ g

 (6) 703 

where xgi is the gene expression value in array/sample i, is the µg gene mean, and σg is the gene 704 

standard deviation. The average z-score of genes in a set (module from Xue, et al. (12)). computed for 705 

an array/sample to summarize gene set expression. Mann-Whitney U tests were used to compare 706 

average z-scores between groups (Fig 5). 707 

 708 

 709 

 710 

 711 
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Figure Legends 935 

Fig 1. Schematic overview of analysis pipeline. Four datasets are shown for simplicity. Each gene expression dataset was 936 

partitioned using WGCNA independently to obtain coexpression modules. Module eigengenes were tested for their differential 937 

expression in pathophenotypes of interest. Modules were compared across datasets using MICC to form the ‘module overlap 938 

graph’ and community detection algorithms were used to identify communities and subcommunities in the graph. These 939 

communities correspond to molecular processes that are conserved across datasets. Each community was examined for 940 

enrichment of pathophenotype-associated modules and edge overlap with canonical biological pathways. Gene sets derived 941 

from these communities were used to query GIANT functional genomic networks. The resulting networks allow for tissue-942 

specific interrogations of the gene sets. Differential network analysis was performed to compare the lung and skin networks. 943 

 944 

Fig 2. The multi-tissue module overlap graph demonstrates that severe pathophenotypes have similar underlying 945 

expression patterns. (A) The full adjacency matrix of the module overlap graph sorted to reveal hierarchical community 946 

structure. A darker cell color is indicative of a higher W score or larger edge weight. Communities (numbered) and sub-947 

communities (lettered) are indicated by the annotation tracks above and on the right side of the matrix, respectively. 948 

Coexpression modules with expression that is increased in a phenotype of interest are marked by the annotation bar on the 949 

left side of the matrix. If a module was up in SSc as well as another pathophenotype of interest, the other pathophenotype 950 

color is displayed. (B) The adjacency matrix of sub-communities 4A and 4B indicates that these clusters contain modules that 951 

are up in all pathophenotypes of interest and show that there are many edges between the two sub-communities. Sub-952 

community 4A contains modules from all tissues whereas 4B contains mostly solid tissue modules as indicated by the tissue 953 

annotation track to the left of the matrix. 954 

 955 
Fig 3. Genes that are overexpressed in late and early SSc-PF are distributed throughout the consensus lung network. 956 

(A) The lung network shows functional connections between inflammatory and fibrotic processes. Genes in the largest 957 

connected component were clustered into functional modules using community detection. Biological processes associated 958 

with the functional modules are in boxes next to the modules. Genes are colored by whether they are over-expressed in late 959 

SSc-PF (red), early SSc-PF (blue), both (‘SSc-PF’, purple), or neither if they are grey. Gene symbols in bold have putative SSc 960 

risk polymorphisms. Node (gene) size is determined by degree (number of functional interactions) and edge width is 961 

determined by the weight (probability of interaction between pairs of genes). The layout is determined by community 962 

membership, the strength of connections between communities, and finally the interactions between individual genes in the 963 

network. A fully labeled network is supplied as a supplemental figure intended to be viewed digitally (S3). (B) Quantification of 964 

differentially expressed genes in each of the five largest functional modules. C-E. Hubs of the consensus lung network; only 965 

the first neighbors of the hub that are in the same functional module are shown. (C) LAMC1 is a hub of the response to TGF-966 

beta module. (D) NPC2 is a hub of the ECM disassembly, wound healing module. (E) TNFAIP3 is a hub of the innate immune 967 
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response, NF-κB signaling, and apoptotic processes module. (F) Bridges of the consensus lung network. First neighbors of 968 

PLAUR, CD44, TNFSF10, and TGFBI are shown. 969 

 970 
Fig 4. The lung and skin network structures indicate distinct tissue microenvironments influence fibrosis. The skin 971 

and lung networks were compared by first finding the giant component of the lung network and then collapsing to nodes only 972 

found in both the skin and lung networks (which are termed the common skin and common lung networks). (A) A scatterplot of 973 

high probability edges (> 0.5 in both networks) illustrates that pairs of genes with a higher probability of interacting in skin than 974 

lung exist and vice versa. Edges are colored red if the weight (probability) is 1.25x higher in lung or blue if it is 1.25x higher in 975 

skin. (B) The differential adjacency matrix where a cell is colored if the edge weight in a given tissue is over and above the 976 

weight in the global average and tissue comparator networks. For instance, a cell is red if the edge weight was positive 977 

following the successive subtraction of the global average weight and skin weight. Community detection was performed on the 978 

common lung network to identify functional modules; common functional modules largely recapitulate modules from the full 979 

lung network. Representative processes that modules are annotated to are above the adjacency matrix. The annotation track 980 

indicates a genes functional module membership. Nodes (genes) are ordered within their community by common lung within 981 

community degree. A fully labeled heatmap is supplied as a supplemental figure intended to be viewed digitally (S4). (C) 982 

Quantification of tissue-specific interactions in each of the 5 largest functional modules. (D) The lung-resident MØ module 983 

found in the differential lung network (consists only of edges in red in panel B). 984 

 985 
Fig 5. Evidence for alternative activation of MØs in SSc-PF lung that is distinct from . (A) Genes identified by differential 986 

network analysis and inferred to be indicative of lung-resident MØs are correlated with canonical markers of alternatively 987 

activated MØs such as CCL18 and CD163 in the Christmann dataset. (B) Summarized expression values (mean standardized 988 

expression value) of gene sets (coexpression modules) upregulated in various MØ states from the Christmann and Hinchcliff 989 

datasets - Module CL1: classical activation (IFN-γ); Modules ALT 1 and 2: alternative activation (IL-4, IL-13); Modules FFA 1, 990 

2, and 3: treatment with free fatty acids. Taken from (12). 991 

 992 

Fig 6. Overview of SSc-PF disease processes. (A) Network-centric overview (B) Cell type-centric overview. 993 

 994 
  995 
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Table 1. Datasets included in this study. 996 
 997 
Dataset 
label Tissue Phenotypes of 

interest Citation(s) GEO Accession 

Milano Diffuse skin Inflammatory subset, 
Proliferative subset Milano et al. (15) GSE9285 

Pendergrass Diffuse skin Inflammatory subset, 
Proliferative subset 

Pendergrass et 
al. (16) GSE32413 

Hinchcliff Diffuse skin Inflammatory subset, 
Proliferative subset 

Hinchcliff et al. 
(17) 
Mahoney et al. 
(11) 

GSE45485, 
GSE59785 

LSSc Limited skin N/A Present study GSE76806 
UCL Limited skin N/A Present study GSE76807 

Christmann Lung SSc-PF Christmann et al. 
(21) GSE76808 

Bostwick Lung SSc-PF, IPF, IPAH, 
SSc-PAH Hsu et al. (20) GSE48149 

Esophagus Esophagus 
Inflammatory subset, 
Proliferative subset, 
SSc-PAH 

Taroni et al. (75) GSE68698 

PBMC PBMC SSc-PAH Pendergrass et 
al. (18) GSE19617 

Risbano PBMC IPAH, SSc-PAH Risbano et al. 
(19) GSE22356 

Abbreviations: PBMC – Peripheral blood mononuclear cells, PAH – Pulmonary arterial 
hypertension, PF – Pulmonary fibrosis 
 998 
Table 2. Number of arrays and WGCNA coexpression modules in each of the datasets included 999 
in this study. 1000 

 1001 
Datasets Number of Arrays Number of Coexpression Modules 

Milano 75 39 
Pendergrass 89 38 
Hinchcliff 165 62 
LSSc 24 39 
UCL 15 98 
Christmann 18 56 
Bostwick 62 54 
Esophagus 33 71 
PBMC 54 38 
Risbano 38 54 
 1002 
 1003 
 1004 
 1005 
 1006 
 1007 
 1008 
 1009 
 1010 
 1011 
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Table 3. Selected pathways that are similar to overlapping coexpression patterns in consensus 1012 
clusters in the information graph.  1013 
 1014 
 1015 

Consensus cluster Summary of selected pathways 

1A 

DNA repair 
Cell cycle 
RNA metabolism 
Transcription 

2 
Cell-cell junction organization 
Aquaporin mediated transport 
Tight junctions 

3A 
Endocytosis 
mRNA processing 
Metabolism of proteins 

4A 
T cytotoxic & helper pathway 
Antigen processing and presentation 
Allograft rejection 

4B 

ECM receptor interaction 
Collagen formation 
ECM organization 
TGF-beta signaling 
Signaling by PDGF 

5 
G2 M checkpoint 
Unwinding of DNA 
Cell cycle 

6 Notch signaling 
Nuclear receptors in lipid metabolism and toxicity 

7 
Steroid biosynthesis 
Fatty acid metabolism 
PPAR signaling pathway 

8 Keratin metabolism 
FGFR ligand binding and activation 

 1016 
 1017 
Legend: We calculated the Jaccard similarity index between edges in the information graph and 1018 
canonical pathways and used a Mann-Whitney U test to assess whether a particular pathway was more 1019 
similar to edges within a consensus cluster than outside the consensus cluster. 1020 
 1021 
  1022 
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Table 4. Selected genes in the consensus lung network. 1023 
 1024 

Functional Module Gene 
symbol Description 

Netwo
rk 

Positi
on 

Up in Function/Potential Role in Disease 

cell cycle 

BUB3 
BUB3 Mitotic 
Checkpoint Protein - Early SSc-PF 

Encodes a mitotic cell cycle checkpoint protein 
that regulates the onset of anaphase. 

CDC7 Cell Division Cycle 7 - - Regulates MCM complex. 

MCM3 

Minichromosome 
Maintenance 
Complex Component 
3 - Early SSc-PF 

Subunit of minichromosome maintenance 
(MCM) complex 

MSH6 MutS Homolog 6 - Early SSc-PF Participates in DNA mismatch repair. 

ECM 
disassembly/wound 

healing 

CD44 
CD44 Molecule 
(Indian Blood Group) Bridge - 

A hyaluronic acid receptor that can interact with 
many other ligands found in the ECM. Primary 
idiopathic PF fibroblasts exhibit an invasive 
phenotype that was abrogated with treatment 
with anti-CD44 (26). 

CD63 CD63 Molecule - - Has been observed to interact with TIMP1 (76) 

CTSB Cathepsin B - - 

Regulates NPC2 secretion, TNF-alpha 
production, and cholesterol trafficking genes in 
an animal model of obesity (39)  

CTSL Cathepsin L - - 

Regulates NPC2 secretion, TNF-alpha 
production, and cholesterol trafficking genes in 
an animal model of obesity (39)  

GLB1 Galactosidase, beta 1 - Early SSc-PF 

Mutations in this gene can lead to GM1-
gangliosidosis, a manifestation of which 
includes foam cell accumulation in the lungs 
(77). 

NPC2 
Niemann-Pick 
disease, type C2 Hub Early SSc-PF 

Mutations in this gene result in a lipid storage 
disorder. Functions in the regulation of 
cholesterol trafficking through the lysosome by 
binding to cholesterol released from low density 
lipoproteins taken up by cells. 

TGFBI 
Transforming Growth 
Factor, Beta-Induced Bridge Late SSc-PF 

Induced by phagocytosis of apoptotic debris in 
monocyte-derived MØs and regulates collagen 
turnover (32) 

TIMP1 

TIMP 
Metallopeptidase 
Inhibitor 1 - Early SSc-PF 

Has been observed to interact with CD63 and 
overexpression has been noted to inhibit 
apoptosis in a CD63-dependent manner (76) 

innate immune 
response/NFkB 

signaling/apoptotic 
process 

BIRC3 

Baculoviral IAP 
repeat-containing 
protein 3 - Late SSc-PF 

Has antiapoptotic activity through interactions 
with caspases as well as the TNF superfamily 
members TRAF1 and TRAF2 (78,79). 

CYR61 

Cysteine-Rich, 
Angiogenic Inducer, 
61  Late SSc-PF 

Also known as CCN1. Implicated in apoptosis 
in fibroblasts (80). Has been shown to play a 
role in Fas-mediated and TRAIL-induced 
apoptosis (81,82). 

DUSP6 
Dual Specificity 
Phosphatase 6 - Late SSc-PF 

Plays a role in the positive regulation of 
apoptosis (83) 

FAS 
Fas Cell Surface 
Death Receptor - Early SSc-PF Cell surface death receptor. 

NFKBIE 

Nuclear Factor Of 
Kappa Light 
Polypeptide Gene 
Enhancer In B-Cells 
Inhibitor, Epsilon - - Negative regulator of NFkB signaling 

PLAUR 

Plasminogen 
Activator, Urokinase 
Receptor Bridge Late SSc-PF 

Also known as uPAR. Contains an SSc risk 
SNP. Pulmonary fibroblasts from patients with 
idiopathic PF over express uPAR and that 
uPAR ligation results in a hypermotile 
phenotype (28). 

PLSCR
1 

Phospholipid 
Scramblase 1 - - Regulates phospholipid membrane asymmetry. 

TNFAIP
3 

Tumor Necrosis 
Factor, Alpha-Induced 
Protein 3 Hub  

Also known as A20. Contains an SSc risk SNP 
(also associated with other autoimmune 
conditions). Negative regulator of NFkB 
signaling.  

TNFSF
10 

Tumor Necrosis 
Factor (Ligand) 
Superfamily, Member 
10 Bridge - 

Also known as TRAIL. Elevated in serum of 
SSc patients (84) 

TNFRS Tumor Necrosis - Late SSc-PF Also known as TRAILR2. 
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F10B Factor Receptor 
Superfamily, Member 
10b 

IFN/antigen 
presentation 

HLA-E 

Major 
Histocompatibility 
Complex, Class I, E - - Class I MHC molecule. 

HLA-F 

Major 
Histocompatibility 
Complex, Class I, F - - Class I MHC molecule. 

IFITM1 

IFN Induced 
Transmembrane 
Protein 1 - SSc-PF IFN signaling. 

IFITM2 

IFN Induced 
Transmembrane 
Protein 2 - Early SSc-PF IFN signaling. 

IFITM3 

IFN Induced 
Transmembrane 
Protein 3 - Early SSc-PF IFN signaling. 

IRF1 
IFN Regulatory Factor 
1 - Late SSc-PF Activator of type I IFN signaling. 

OAS1 

2'-5'-Oligoadenylate 
Synthetase 1, 
40/46kDa - Early SSc-PF 

Involved in innate immune response to viral 
infection. 

response to TGF-
beta 

CAV1 Caveolin 1 - - Contains an SSc risk SNP. 

CTGF 
Connective tissue 
growth factor - - 

Also known as CCN2. Has been shown to play 
a role in Fas-mediated and TRAIL-induced 
apoptosis (81,82). 

DAB2 

Dab, Mitogen-
Responsive 
Phosphoprotein, 
Homolog 2 
(Drosophila) - SSc-PF 

Required for the epithelial to mesenchymal 
transition induced by TGF-beta in mouse and 
for type II TGFbR recycling (85,86) 

FN1 Fibronectin 1 - - Extracellular matrix protein. 

LAMC1 
Laminin gamma1 
chain Hub Early SSc-PF 

Expression of this gene is essential for the 
development of basement membranes (87). 

THBS1 Thrombospondin 1 - - 

Mediates cell-to-cell and cell-to-matrix 
interactions. Putative biomarker of modified 
Rodnan skin score (88). 

 1025 
 1026 
Table 5. Bonferroni-corrected p-values, Fisher’s exact test pathophenotype-associated modules 1027 
in top-level communities in the module overlap graph. 1028 
 1029 
Top-level 
community 

‘In SSc’ p-
value 

‘In Inflammatory’ 
p-value 

‘In Proliferative’ 
p-value 

‘In PAH’ p-
value 

‘In PF’ p-value 

1 1 0.02 1 1 1 
2 0.71 0.07 1 1 1 
3 0.09 0.27 1 0.77 0.29 
4 8.56E-07 6.30E-12 1 0.30 1 
5 1 1 0.03 1 1 
6 1 1 1 1 1 
7 1 0.64 1 0.03 1 
8 1 1 1 1 1 

 1030 
 1031 
  1032 
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Supporting Information Captions 1033 
 1034 
S1 Fig. Network view of consensus clusters 4A and 4B in the information graph. 1035 

S2 Fig. Density plot of correlation to respective module eigengene (kME). Tissue consensus 1036 

genes have significantly higher kME and are therefore more ‘hub-like’ than non-consensus genes. 1037 

Mann Whitney U, p < 2.2x10-16 reported by R 1038 

S3 Fig. Fully labeled version of the consensus lung network (Fig 3A). This file is intended to be 1039 

viewed digitally. 1040 

S4 Fig. Fully labeled version of the differential adjacency matrix in Fig 4B. This file is intended to 1041 

be viewed digitally. 1042 

S5 Fig. The differential lung network. The highly lung-specific network (minus global network and 1043 

skin network) contains functional modules. 1044 

S1 Table. Table describing clinical characteristics of cohorts included in this study. 1045 

S2 Table. Consensus gene set sizes. 1046 

S3 Table. Immune-fibrotic axis consensus genes. 1047 

S4 Table. Mapping of Xue, et al. module numbers to our module names (Figure 5B). 1048 

S5 Table. P-values of all Xue, et al. modules tested. 1049 

S1 File. Tables - pathophenotype associations with WGCNA co-expression modules. 1050 

S2 File. Information graph adjacency matrix and module consensus cluster membership. 1051 

S3 File. Full output of edge-pathway (Jaccard) similarity Mann-Whitney U tests. 1052 

S4 File. Functional network edge lists and node attribute files (networks from Figures 3 and 4). 1053 

The “common lung network” tab provides the module membership information for Fig 4B. 1054 

S1 Text. Glossary of terms. 1055 

S2 Text. Additional results about pathophenotype-associated consensus clusters in the 1056 

information graph. 1057 

 1058 
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