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Abstract

The standard models for genomic prediction assume additive polygenic

marker e�ects. For epistatic models including marker interaction e�ects,

the number of e�ects to be �tted becomes large, which require compu-

tational tools tailored speci�cally for such models. Here, we extend the

methods implemented in the R package bigRR so that marker interac-

tion e�ects can be computed. Simulation results based on marker data

from Arabidopsis thaliana show that the inclusion of interaction e�ects

between markers can give a small but signi�cant improvement in genomic

predictions. The methods were implemented in the R package EPISbi-

gRR available in the bigRR project on R-Forge. The package includes an

introductory vignette to the functions available in EPISbigRR.
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Introduction

Genomic prediction uses whole-genome marker information to predict unob-
served phenotypes and is extensively used in livestock breeding. The standard
GBLUP model [1] assumes additive polygenic marker e�ects. The model can
be presented either as 1) a linear mixed model with individuals as random ef-
fect where the correlation matrix between the random e�ects is given by the
genomic relationship matrix, or as 2) a linear mixed model with independent
random marker e�ects. The generalized ridge regression approach [2] imple-
mented in the bigRR package on CRAN [3] adds additional shrinkage to the
marker e�ects and the shrinkage can vary between markers. Nevertheless, the
bigRR package, as well as GBLUP, assumes that the e�ects are additive.

Interactions between markers may have an important e�ect on phenotypes
and has therefore been suggested to be an important component to be included
in models for genomic predictions [4]. Several attempts have been made to
perform genomic predictions including epistasis but the direct connection to
the �tted marker e�ects have been largely ignored, most probably because the
number of interaction e�ects becomes very large even for a moderate number of
markers.

In this paper, we present a computational tool that computes individual pre-
dictions (breeding values) as well as marker interaction e�ects. The EPISbigRR
package is available in the bigRR project on R-Forge. It extends the previously
published bigRR package [3] in R.

Material and Methods

Here, we describe the standard SNP-BLUP and GBLUP models, and how the
generalized ridge regression method in the bigRR package [2, 3] can be presented
in terms of the SNP-BLUP and GBLUP models. Thereafter, marker interaction
e�ects are introduced.

SNP-BLUP model

The SNP-BLUP model assumes that the trait y (length n) is a�ected by a linear
combination of random marker e�ects u. The lengh of u is equal to the number
of markers, p, and the random marker e�ects are assumed identically and in-
dependently distributed (iid) and normal, so that u ∼ N(0, Iσ2

u). Furthermore,
there may be �xed e�ects β and the residuals are iid, e ∼ N(0, Iσ2

e). Thus, the
linear mixed model is

y = Xβ + Zu+ e (1)

where X is a design matrix and Z is a scaled incidence matrix for the SNP
coding such

√
pZ has column means equal to 0 and column variances equal to
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1. The estimates of β and u are computed from the mixed model equations
(MME) (

X ′X X ′Z

Z ′X Z ′Z +
σ2
e

σ2
u
I

)(
β
u

)
=

(
X ′y
Z ′y

)
(2)

where the variance components, σ2
u and σ2

e are estimated using REML. Thus,
from this model we can compute the �tted e�ect of the i:th marker, ûi, and its
hat value hii [2].

GBLUP model

The GBLUP model is equivalent to the SNP-BLUP model. Here, the individual
random e�ects a (length n) are de�ned such that a = Zu, and we thereby have:

y = Xβ + a+ e (3)

where V (a) = Gσ2
u. Here G is the genomic relationship matrix and we have

G = ZZ ′. Thus, the MME are(
X ′X X ′

X I +
σ2
e

σ2
u
G−1

)(
β
a

)
=

(
X ′y
y

)
. (4)

Shen et al. [2] showed how the û can be computed given the �tted values â, and
also how the hat values can be transformed between the two models.

Generalized ridge regression implemented in the bigRR

package

The generalized ridge regression model implemented in the bigRR package al-
lows variable shrinkage for di�erent markers by introducing a diagonal matrix
Λ such that V (a) = ZΛ−1Z ′σ2

u in the GBLUP model, and the mixed model
equations for the SNP BLUP model is(

X ′X X ′Z

Z ′X Z ′Z + Λ
σ2
e

σ2
u

)(
β
u

)
=

(
X ′y
Z ′y

)
(5)

The generalized ridge regression model in bigRR computes the diagonal elements
of Λ as

Λii =
ûi

1− hii
(6)

and it is easy to compute the �tted marker e�ects û from the �tted individual
e�ects â making the computations fast.
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Epistasis

Below we present the SNP-BLUP interaction model corresponding to a GBLUP
model that uses a direct Hadamard product to compute the correlation between
individual random e�ects. We show that this model actually includes dominance
e�ects, and explain how the correlations due to dominance and marker interac-
tion e�ects can be separated.

SNP-BLUP model including marker interaction e�ects

The SNP-BLUP model can be extended to include marker interaction e�ects [5]

y = Xβ + Zu+Wv + e (7)

v marker interaction e�ects, and the matrix W is constructed so that Wj =
Zi � Z with subscript giving column index with j = (i− 1)p+ i where p is the
number of columns in Z and � is the direct Hadamard product. Thus, W has
n rows and p× p columns.

GBLUP model including epistasis

The equivalent GBLUP model is

y = Xβ + a+ e (8)

with V (a) = Gσ2
u + Hσ2

v . By putting H = G � G, the GBLUP model in-
cluding epistasis becomes equivalent to the SNP BLUP model including marker
interaction e�ects.

It should be noted though, that the way we have de�ne W it actually also
includes dominance e�ects, and so does the GBLUP model when we let H =
G�G. This is because W includes interactions e�ects between column i and i,
ie a dominance e�ect.

Excluding dominance e�ects from the interaction e�ects model

In eq. (7), W was constructed such that it includes the pair-wise interactions
twice and also the dominance interaction e�ects. As Xu [5] points out, however,
the columns in W should be constructed so that Wj = Zi�Z(i+1):p. Hence, the
interaction of a locus with itself (i.e. dominance) should not be included and
each pair-wise interaction is only accounted for once. The equivalent covariance
matrix for the epistatic e�ects is constructed as

H =
G�G− ZdZ ′d

1− 1
p

(9)

where Zd = Z�Z is the model matrix for the dominance e�ects. As the number
of SNPs is typically very large, i.e. large p, the denominator can be ignored.
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What has been added to EPISbigRR?

In EPISbigRR the extra shrinkage is computed from the estimates of v and
their associated hat values, such that V (a) = ZΛZ ′σ2

u +WDW ′σ2
v where D is

a diagonal matrix with diagonal elements Djj =
v̂j

1−hjj
for interaction e�ect j.

In order to �t the epistatic e�ects model (7), EPISbigRR includes some new
features compared to bigRR: more than one variance component can be �tted,
and the shrinkage can be controlled separately for the di�erent variance compo-
nents. The hugeRR and hugeRR_update functions stores matrices temporarily
using the DatABEL format of the GenABEL [6] which makes the computations
feasible for a large number of markers. The EPISbigRR package includes a
vignette illustrating the available functions.

Results

The Arabidopsis data including 84 individuals available in the bigRR package
was used to evaluate the advantage of including epistasis to genomic predictions.
Estimates of marker interaction e�ects are found in the EPISbigRR package vi-
gnette, and here we focus on the prediction accuracy of the genomic predictions.

500 cross-validation replicates where performed where 70 out of the 84 pheno-
types were sampled for the training set and 14 for the test set. Phenotypes were
simulated for the parameters σ2

u = 0 , σ2
v = 1 and σ2

e = 1. The epistatic GBLUP
model was compared to the ordinary GBLUP model, and the comparsion was
simply made using the hglm function [7]. For 276 out of the 500 replicates the
epistatic GBLUP model outperformed the ordinary GBLUP model. A small
but signi�cant improvement (P = 0.009).

Discussion

We have developed a tool that makes it computationally feasible to compute
marker interaction e�ects for genomic predictions. An interesting future devel-
opment, which seems rather straightforward, would be to parallelize the com-
putations. This should be rather easy since the computations are performed
in parts and intermediate results stored in seprate �les (in DatABEL format)
using the hugeRR and hugeRR_update functions.

We have also clari�ed the di�erence between the model speci�ed by Xu
[5] and the epistatic GBLUP model using G � G as covariance matrix for the
epistatic e�ects (e.g. [4]). The correct covariance matrix to be used is easily
constructed as G � G − ZdZ

′
d where Zd is the scaled model matrix for the

dominance e�ects (see eq. (9)).
For the interaction e�ects model, the number of pair-wise marker e�ects

to be �tted becomes enormous. Our tool makes these computations feasible in
time but since we have an extreme n�p problem the e�ects are �tted with great
uncertainty and the generalized ridge regression estimates will be sensitive to
the hat values being close to 1.
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Hill [8] and Crow [9] explain that epistasis will have no substantial e�ect
on the response from recurrent selection, because the genetic gain induced by
epistasis arises from the gametic disequilibrium among the epistatic loci. Never-
theless, the importance of epistasis is still a matter of debate [10] and is expected
to be so far into the future.

The developed package should be useful for further studies of the importance
of epistasis in genomic predictions.
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