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Abstract

Expression analysis and variant calling workflows are employed to iden-
tify genes that either exhibit a differential behaviour or have a significant
functional impact of mutations. This is always followed by pathway anal-
ysis which provides greater insights and simplifies explanation of observed
phenotype. The current techniques used towards this purpose have some se-
rious limitations. Only a small number of genes which satisfy certain thresh-
olds are used for pathway analysis. All the shortlisted genes are treated as
equal ignoring the differences in p-values and fold changes. These genes
are treated as independent entities and interactions among them are ignored
for statistical pathway analysis. Hence, there is serious disconnect between
the techniques employed and networked nature of the data. Various Pathway
databases have great degree of discordance on structure of pathway graphs.
Many of the pathways are still far from complete. Current algorithms don’t
take into account this uncertainty. In this paper, we propose a theoretical
framework Prius to overcome many limitations of current techniques. Prius
perturbs the gene expression fold changes through interaction network and
generates an ordered list of affected pathways. Thus, it integrates the net-
worked nature of the data and provides facility to weigh each gene differ-
ently and in the process we do away with the need of arbitrary cut-offs. This
framework is designed to be modular and provides the researchers with flex-
ibility to plug analytical tools of their choice for every component. We also
demonstrate effectiveness of our approach for personalized and cohort anal-
ysis of cancer gene expression samples with PageRank as one of the modules
in the framework. The R package for Prius is available on GitHub.
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1 Introduction

Gene expression analysis and structural variants detection tools are used to iden-
tify genes that are significantly affected in a given disease condition. Tools ranging
from earlier generation microarrays to Next Generation Sequencing like RNAseq,
DNAseq and Exomeseq are often used to achieve this task. Microarray and RNAseq
gene expression experiments are performed to measure changes in gene expression
levels across conditions like normal vs tumor. Statistical analysis of this data usu-
ally results in p-value and fold change for each gene. Cutoffs are applied on both
p-value (usually less than 0.05) and absolute fold change (usually greater than 2)
to declare some of the genes as statistically significant. Structural Variant analysis
workflows detect the variants in the given sample and various tools like SIFT [1],
PolyPhen2 [2] and MutationAssessor [3] are employed to identify the functional
impact of the mutations. Sometimes these are converted to gene level p-values
and some genes are shortlisted based on certain thresholds. However, a list of sig-
nificant genes alone does not provide necessary explanatory power owing to the
complex interaction network of these genes. Therefore, these significant genes are
further used to detect significantly affected pathways. Pathways are essentially
groupings of genes based on their interactions and functions. Each pathway repre-
sents a subgraph of the gene interaction network and represents a specific cellular
functionality. Techniques such as Over-Representation Analysis [4], Functional
Class Scoring [5] and Pathway Topology based analysis are used to identify signif-
icantly affected pathways[6].

1.1 Need For a New Pathway Analysis Framework

Though a great variety of methodologies are available for pathway analysis, there
are serious inconsistencies in these current approaches. Two recent papers by Kha-
tri et al. [6] and by Mitrea et al. [7] provide a detailed review of various analytical
approaches along with their shortcomings. The following are some recurring issues
-

1. The p-value depends on the nature of the test performed, type of multiple
testing correction and more importantly degrees of freedom.

2. Reliable tests are not available for personalized analysis using a normal tu-
mor sample pair.

3. The cutoffs are rigid and therefore a lot of information is lost. For example, a
gene of p-value 0.05 and fold change 2 qualifies to be statistically significant
whereas gene with p-value 0.051 and fold change 4 is not considered for
further downstream analysis.

4. All the significantly expressed genes are treated equally for their pathways
analysis irrespective of differences in their fold change values.
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5. Pathways analysis treats and tests each pathway independently. However
pathways interact with each other and many genes are part of more than one
pathway.

6. Many of the current pathway databases do not concur on the graph structure
of the pathways and the interactions graphs are far from complete. This
uncertainty is not modeled by current algorithms

To summarize, the current methodologies use ad-hoc cutoffs, use only part of the
information and do not model the interactive nature of the data.

2 A Novel Approach

To address the problems mentioned in the previous section, we propose a new
approach Prius which accommodates information of every single gene in the ex-
periment and models the network of interactions of the genes. Following are three
abstract components of the model.

1. A measure of gene’s affectedness which is treated as disturbance. This could
be fold change for expression experiments or functional impact of mutations.

2. A mechanism for perturbation of the disturbance through the interaction net-
work. This mechanism needs to converge in finite number of steps and pro-
vide a ranking of genes.

3. A mechanism to calculate pathway’s deviation in terms of rank changes of
constituent genes. This mechanism is expected to order pathways by devia-
tions.

Prius uses the PageRank algorithm [8] as perturbation mechanism. PageRank
has a proven mathematical foundation [9] and has been successfully applied to
variety of network analysis problems across domains including biology [10].
The model is very general and each component can be modeled in a variety of
different ways depending on nature of the task at hand. We illustrate this with
some examples for each component in section 4.
We first define the notation that we use in our paper, followed by the description of
PageRank. We then discuss the model - the components and their interpretation.

2.1 Notation

Table 1 shows the notation that we follow in this paper.
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α scalar quantity
V set
|V | size/cardinality of a set
x vector
||x|| length of a vector
x̂ unit vector
1d a d-dimensional vector of 1’s i.e {1, 1, 1, ...}
xi ith element of vector x
A a square matrix
Aij jth element from ith row of matrixA
Ai ith row of matrixA
AT transpose of matrixA

Table 1: Notation

Small letters are used to denote scalar quantities. Uppercase letters are used to
denote sets. We use bold type faces to denote matrices and vectors. Bold upper-
case letters are used to represent a matrix while bold lowercase letters are used to
represent vectors. Subscripts are used to denote individual components.

2.2 PageRank

Given a directed, weighted graph G(V,E) consisting of the set of edges E which
represent the interactions between vertices (genes) in the set V , the PageRank vec-
tor measures the importance of each vertex.
Each element of the adjacency matrix of the graph G is given by -

Aij =

{
wi,j weight of the interaction if gene i interacts with gene j
0 otherwise

If the weights of the interactions are not available, the matrix Aij reduces to a
boolean matrix with wij = 1 for each interaction.
The PageRank vector is computed on the normalized adjacency matrix M of the
graph, where each entry is divided by the sum of its row (also called the outdegree
of the vertex). The properties of M are -

1. 0 ≤Mij ≤ 1

2. Mij = 0 if gene i does not interact with gene j

3.
∑n

j=1Mij = 1

The |V |-dimensional PageRank vector r is computed iteratively as the solution to
following equation

r = (1− α)ŝ+ αMTr (1)

PageRank and personalized PageRank are illustrated using a toy 11-vertex network
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Figure 1: Illustrative example using differential sized vertices based on PageRank

in Figure 1. The vertices are sized according to their PageRank
The PageRank vector can be interpreted as the probability of landing at a given
node by a random walker who jumps from vertex to vertex at each iteration. The
random walker can with a certain probability α choose to teleport at random to
any vertex in the graph instead of following an edge. The unit vector ŝ of the |V |-
dimensional personalization vector s gives the probability of landing at a vertex if
the walker teleports. α is known as the damping factor, and is a tunable parameter
between 0 and 1.
The algorithm to compute the PageRank vector is described in Algorithm 1.

Algorithm 1: PageRank
Input : Adjacency matrixA

personalization vector s,
damping coefficient α

Output: A |s|-dimensional vector of PageRanks r
begin
d←−

∑
iAij ;

D ←− diagonal matrix on d;
M ←− AD−1;
ŝ←− s

||s|| ;
while not converged do

r ←− (1− α)ŝ+ αMTr;
end
;

end
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2.3 Pathway Analysis Model

Our model uses an available gene-gene interaction network. In this new approach,
we treat gene scores such as fold changes or functional impacts as the extent to
which the gene is disturbed and determines the personalization vector. Hence,
each iteration of the page rank algorithm represents the propagation of disturbance
through the gene interaction network. These are the components of our model

1. G(V,E) = The gene-gene interaction network, consisting of the set of inter-
actions E between the set of genes V .

2. p = |V |-dimensional vector of gene p-values.

3. f = |V |-dimensional vector of gene fold changes.

4. φ(p,f) = a vector valued function that assigns weights to given vector of
genes;

5. α = damping factor; 0 ≤ α ≤< 1

6. r = rank vector, computed using the PageRank algorithm using the quantities
G(V,E), the personalization vector computed on the basis of φ(p,f) and α
as input.

The interpretations of the components are as follows

• φ determines the personalization vector s, which indicates the bias of inter-
action of network towards various genes. The bias is directly proportional to
s.

• α = damping factor serves dual purpose [11]. It can be interpreted as our faith
in current graph structure and it can also be used to adjust the bias induced by
personalization vector. A very small value (close to zero) indicates that we
don’t trust the current graph structure and any gene would randomly interact
with any other gene in the network irrespective of the edges in the graph. The
magnitude of α also affects the rate of convergence of the algorithm. The
rate of convergence is inversely proportional to the magnitude of α. α can
also be used to model uncertainty and incompleteness of the gene interaction
network. Most networks use value of around 0.85. We would recommend
a values smaller than that (in range of 0.7 to 0.75) to compensate for the
incompleteness of the interaction graph-structure.

• r= rank vector represents the final extent to which each gene is affected.

Thus, the page rank model takes into account the interconnected nature of the data
and it can compensate for the incompleteness of the interaction graph structures.
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Algorithm 2: Prius-Page Rank based Pathway Analysis Algorithm
Input : Graph of gene-gene interactions G(V,E),

set of pathways P ,
damping coefficient α,
gene weight function φ,
divergence measure D(a, b)

Output: A |P |-dimensional vector of disturbance scores x
begin
A←− Adjacency Matrix of G;
d←−

∑
iAij ;

u←− 1|V |;
sD ←− φ ∗ d;
sN ←− u ∗ d;
rD ←− PageRank(A, sD, α);
rN ←− PageRank(A, sN , α);
for each pathway Pi ∈ P do

rDPi
←− subvector of rDcorresponding to the genes in Pi;

rNPi
←− subvector of rNcorresponding to the genes in Pi;

xi ←− D(rNPi
, rDPi

);
end
;

end

3 Prius - An Algorithm for Pathway Analysis

Here, we present an approach Prius for pathway analysis which differs from cur-
rent enrichment based approaches. We would order the pathways based on how
distribution ranks of the genes in a given pathway changes compared to itself and
in overall context. For this purpose, we compute two different page ranks. These
correspond to the following two scenarios

1. The term 1|V | corresponds to a situation where the network has no bias.

2. The term φ(p,f) decides the extent to which each gene is disturbed and
creates proportionate bias.

3. For both of the vectors, each entry is multiplied by the outdegree of the corre-
sponding gene in the graph. The resulting vectors sN and sD are used as the
personalization vectors for the normal and diseased condition respectively.

(a) sNi = sNi di.

(b) sDi = sDi di.
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(c) This makes sure that the affected genes with higher outdegrees disturb
the graph more. Without this correction, the disturbance caused by a
gene with higher degree gets diluted.

Here, we use the same interaction matrix M and damping factor α in both these
scenarios. Corresponding to the personalization vectors sN and sD we get two
rank vectors rN and rD respectively. Now, we compute the distance of these two
vectors for each pathway using an appropriate distance metric. The pathways are
sorted in descending order of absolute distance to quantify relative affectedness of
the pathways. This provides the appropriate prioritization of the affected pathways.
We prefer not have any cutoff to remove pathways. In order to compute relative
affectedness, we can compute divergence value of each pathway and sort pathways
in descending order of pathways. A p-value can be computed from KL divergences
if necessary. The entire procedure is summarised in Algorithm 2.

4 Illustrations for fine tuning of various components

Following are the components which one can fine tune

1. φ(p,f) : following are some possible definitions

(a) φ = |f | - This uses absolute value of fold change

(b) φ = (1− p) ∗ |f | - where 1 denotes vector of all ones. This uses both
p-value and fold change.

(c) φ = 1− p - Here we ignore fold change and use only p-values

(d) φ = −log(p) - This formulation will introduce nonlinear exaggeration
of p-values while deciding weights.

(e) φ = −log(p) ∗ |f | - This uses both p-value and fold change but non-
linearly exaggerates impact of p-value.

In short, one can combine multiple linear and nonlinear combinations of p-
values and fold changes to decide weights of genes in personalization vector.

2. Divergence - Consider a pathway P with k genes g1, g2, ..., gk, and
let rN1 , r

N
2 , ..., r

N
k be their respective values in rank vector rN and

rD1 , r
D
2 , ..., r

D
k be their respective values in rank vector rD.

(a) KL divergence - We can compute impact of disease on pathway p as
Kullback–Leibler (KL) divergence of disease pathway vector rD from
normal pathway vector rN . KL divergence is used to calculate distance
between two probability distributions. In the given context, impact of
disease on a pathway can be measured as

DKL(rN ‖ rD) =
k∑

i=1

rNi ln(
rNi
rDi

) (2)
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Where DKL(rN ‖ rD) is divergence of rD from rN . KL divergence
is a asymmetric measure. In certain scenarios, a symmetric measure
might be desirable. Jensen–Shannon divergence can be used in these
scenarios.

(b) Mean Absolute Deviation (MAD): average of absolute fold changes of
rank values of disease to normal.

DMAD(rN , rD) =

∑k
i=1

∣∣rN − rD∣∣
k

(3)

3. Interaction adjacency matrix M:

(a) We have chosen to weigh all types of interaction equally. Different
interactions (that is graph edges) can be assigned different weights de-
pending on rate of interaction.

(b) We have used unsigned matrix. However, one can model the interac-
tions as signed edges. In such scenarios, variations of page rank from
social network analysis based on trust and distrust propagation [12] can
be used to compute rank.

(c) M can represent heterogeneous graph that includes more cellular enti-
ties which can provide much more comprehensive model. In addition
to genes, the following are some of the entities one can add

i. miRNAs can be added to the interaction network. Here, miRNAs
can be connected to their targets. Edges could be signed.

ii. The promoters can be added and connected with corresponding
gene. This can be useful to model impact of methylation.

(d) M can even represent interactions among transcripts instead of genes.
A gene can give rise to multiple transcripts and each transcript can code
for different protein. With RNAseq, it is possible to estimate transcript
description accurately. A transcript graph would provide finer level of
information.

5 Materials and Methods

We use Reactome pathway database (Version 2015) to generate gene-gene interac-
tion network. We use publicly available data from TCGA and GEO for our analy-
sis. We demonstrate results of two analysis scenarios. The tool can be downloaded
from https://github.com/bhatturam/prius

1. Personalized Analysis

2. Cohort Analysis

Damping factor is set at α = 0.7. For nodes that do not exist in the expression
analysis, a default value of 1 was assumed. We use mean absolute deviation (Equa-
tion (3)) of the rank values to calculate pathway level disturbances.
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5.1 Personalized Analysis

This analysis considers only a single patient’s data. Hence, a normal-tumor breast
cancer sample pair (TCGA-BH-A0H7-11A-13R-A089-07, TCGA-BH-A0H7-01A-
13R-A056-07) gene expression data is analyzed.

Here,φ(p,f) = |f | . Only the absolute fold change values are used for person-
alization. No p-value is calculated or used in this analysis. Top twenty pathways
from this analysis are presented in Table 2.

Reactome ID Pathway
R-HSA-5638302 Signaling by Overexpressed Wild-Type EGFR in Cancer
R-HSA-5638303 Inhibition of Signaling by Overexpressed EGFR
R-HSA-1251932 PLCG1 events in ERBB2 signaling
R-HSA-388479 Vasopressin-like receptors
R-HSA-417973 Adenosine P1 receptors
R-HSA-190370 FGFR1b ligand binding and activation
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants
R-HSA-1643713 Signaling by EGFR in Cancer
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer
R-HSA-5637810 Constitutive Signaling by EGFRvIII
R-HSA-5637812 Signaling by EGFRvIII in Cancer
R-HSA-2023837 Signaling by FGFR2 amplification mutants
R-HSA-8853333 Signaling by FGFR2 fusions
R-HSA-2033519 Activated point mutants of FGFR2
R-HSA-1253288 Downregulation of ERBB4 signaling
R-HSA-2214320 Anchoring fibril formation
R-HSA-444473 Formyl peptide receptors bind formyl peptides and many other ligands
R-HSA-3000471 Scavenging by Class B Receptors
R-HSA-8849469 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1
R-HSA-182971 EGFR downregulation

Table 2: Personalized Analysis - Breast Cancer

5.2 Cohort Analysis

This analysis is performed on small cell lung carcinoma samples. Microarray gene
expression data from 60 pairs of normal and tumor is analyzed. This data is ob-
tained from GEO( Dataset Record: GDS3837, Data Accession Series: GSE19804)
. p-value is obtained using a paired t-test.

Here, a personalization function based on both the computed p-values and the
fold changes is used - φ(p,f) = f ∗ (1 − p). Top twenty pathways from this
analysis are presented in table 3
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Rank Pathway
R-HSA-417973 Adenosine P1 receptors
R-HSA-8851708 Signaling by FGFR2 IIIa TM
R-HSA-442745 Activation of CaMK IV
R-HSA-170660 Adenylate cyclase activating pathway
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat
R-HSA-72086 mRNA Capping
R-HSA-6803529 FGFR2 alternative splicing
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE
R-HSA-170670 Adenylate cyclase inhibitory pathway
R-HSA-997269 Inhibition of adenylate cyclase pathway
R-HSA-1839126 FGFR2 mutant receptor activation
R-HSA-111932 CaMK IV-mediated phosphorylation of CREB
R-HSA-113418 Formation of the Early Elongation Complex
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex
R-HSA-203927 MicroRNA (miRNA) biogenesis
R-HSA-168325 Viral Messenger RNA Synthesis
R-HSA-5655253 Signaling by FGFR2 in disease
R-HSA-111957 Cam-PDE 1 activation
R-HSA-444473 Formyl peptide receptors bind formyl peptides and many other ligands

Table 3: Cohort Analysis - Lung Cancer

6 Related Work

As explained in earlier sections, PageRank attempts to propagate an entity (belief,
disturbance, perturbation- depending on the application) across the edges of the
graph until steady state is achieved. The convergence is guaranteed if adjacency
matrix is non negative. Certain variants model it for signed graphs, however due to
lack of convergence they perform some maximum number of iterations and accept
the final vector as rank vector. There are some examples of PageRank and its
variants being used in NGS and pathway analysis in general. We briefly explain
two such examples this section.

SPIA [13] combines both over representation analysis and perturbation anal-
ysis to come up with a p-value for a pathway. The perturbation factor for each
gene is calculated as sum of signed log-fold change and the sum of perturbation
factors of the genes directly upstream of the target gene, normalized by the number
of downstream genes. So the perturbation propagation is similar to belief propaga-
tion. However this approach has two shortcomings. The perturbation propagation
involves negative entries, so algorithm is not guaranteed to converge. Once the
fold changes are captured in personalization vector, overrepresentations analysis
becomes redundant.
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DawnRank [14] attempts to rank mutated genes in a single cancer patient based
on its potential to be a driver gene. Here, fold change serves as personalization
component of PageRank. However, it uses M instead of MT in PageRank formu-
lations. That means nodes with higher centrality values get ranked higher. Here,
node centrality is interpreted as ability to affect other nodes in the graph.

7 Conclusion

In this paper, we proposed a novel and comprehensive approach, Prius for path-
way analysis. This approach, enables all the genes to participate in the pathways
analysis. The fold changes are treated as a disturbance received by gene and then
PageRank perturbs the disturbance through the interaction network. The pathways
are then ordered by their deviations from the normal state. This method thus over-
comes the limitations posed by the current methodologies. Prius is also flexible as
it offers users abililty to plug different algorithms of their choice for each stage of
the work flow. Prius is a unique framework which offers a possibility of integrat-
ing heterogeneous entities like miRNAs and promoter into pathway analysis along
with genes. We demonstrated the effectiveness of this method with two examples
from cancer genomics.

8 Future Scope

In this paper, we proposed a new framework for pathway analysis which addresses
some of the imminent issues of the state of the art. However, there is huge scope
for improvement as follows.

• The current pathway databases are far from complete and have high degree
of discordance. Though damping factor mitigates some of the uncertainty, a
comprehensive pathway database will lead to more accurate analysis

• Rate of interaction is not currently available for all the interactions in the
network. When rate of interactions will be available for all the interactions,
Flux Balance Analysis (FBA) could be employed or page rank algorithm
needs to be modified to accommodate rate of interaction .

• The interaction network can be enhanced by accommodating miRNAs, pro-
moters and transcripts
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