Full Title:

Combining Shigella Tn-seq data with Gold-standard E. coli Gene Deletion Data

 Suggests Rare Transitions between Essential and Non-essential Gene Functionality Short Title:
Transitions between Essential and Non-essential Functionality

Nikki E. Freed ${ }^{1,2}$, Dirk Bumann ${ }^{2}$, and Olin K. Silander ${ }^{1,3, *}$

1 Institute of Natural and Mathematical Sciences, Massey University, Auckland, New
Zealand

2 Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
3 Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland

* Corresponding author: olinsilander@gmail.com (OKS)

Abstract

Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457 T on a genome-wide scale. Superficial analysis of this data suggested that 451 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 suggested that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, suggesting that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes; two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.

Author Summary

Essential genes are those that encode proteins required for growth and survival in a particular environment. We performed experiments using transposons, genetic elements that disrupt gene function, to determine the set of essential genes in the pathogenic bacteria Shigella flexneri. We then compared our results to the well-characterized set of essential genes in the closely related, yet non-pathogenic, bacteria Escherichia coli. We found only a small number of genes that are important for growth in Shigella flexneri, yet not in Escherichia coli. We believe these findings are interesting for several reasons; they help us better understand how quickly the functions of proteins change over time; they suggest possible targets for developing strain-specific antibiotic treatments; and they expand our basic understanding of this pathogen's metabolic processes.

Introduction

One general functional characteristic of a gene is essentiality - whether that gene is required for cellular viability and growth. In haploid (e.g. bacterial) genomes, this characteristic can be assessed by attempting to delete a specific gene from a genome. When such a deletion is not possible, this gene is frequently termed "essential" [1], implying that the gene is necessary for cell growth and viability. Gene disruption, although less precise, is more commonly used to infer essentiality using a similar criterion. For example, genes that cannot be disrupted by transposon insertion have been inferred as being essential (e.g. [2]).

One important question is how quickly essential functions change over evolutionary time. If orthologous protein coding genes in two bacterial strains differ in their essentiality classification, this suggests that either the biochemical nature of the protein has changed, or that the cellular context in which the protein acts has changed [3]. It has been experimentally established that such transitions can occur [4-6]. Here we examine how frequently proteins go from being essential to non-essential and vice versa in nature.

A recent study quantified changes in the essentiality classifications of protein coding genes between three alpha-proteobacteria: Caulobacter crescentus, Brevundimonas subvibrioides, and Agrobacterium tumefaciens [3]. The analysis showed that although orthologous cell components are well conserved, the essentiality of such components (e.g. those involved in the cell cycle) had changed considerably, with only 106 orthologous genes being essential in all three organisms, despite their relatively close evolutionary relationship ($89 \%-93 \%$ identity in 16S RNA genes).

In this study we combine dense transposon mutagenesis with high-throughput sequencing (Tn-seq [7]) to quantify gene essentiality in Shigella flexneri 2a 2457T (hereafter referred to as Shigella). We compare the essentiality classifications of protein coding genes in Shigella with a gold-standard assessment of essentiality in the closely related strain Escherichia coli K12 BW25113 (hereafter referred to as E. coli) [1]. These two stains are 99.5% identical in their 16 S RNA genes and share approximately 70% of their genomic content.

This proximity in evolutionary distance, and the use of a gold-standard data set, brings two unique advantages that have not been available in other studies that have used Tn-Seq or similar methods to quantify gene essentiality [3, 7-19]. First, by relying on the null hypothesis that protein coding genes do maintain their essentiality characteristics, we can objectively assess which quantitative features in the Shigella Tn-seq data best predict essentiality or nonessentiality of their orthologous counterparts in E. coli; such a comparison to a gold-standard has not yet been used to assess the quality and sensitivity of Tn-Seq data [20], although several studies have validated a small number of Tn-seq-inferred growth defects using clean
deletion methods (e.g. [10]). Second, the use of very closely related taxa allows us to quantify on a much shorter time scale the fraction of the essential gene complement that has changed, providing a fine scale window into the rate with which orthologues change in their essential functions.

The data presented here suggest that the essential gene complement of Shigella and E. coli overlap considerably. Indeed, we find no strong evidence that there are any protein-coding genes that are essential in E. coli but not Shigella. Conversely, we do find a small number of genes that play critical roles for Shigella growth, but which have dispensable roles in E. coli, or which are absent entirely from E. coli. This implies that the functional correspondence, in terms of essentiality, has changed for only a small number of protein-coding genes.

However, our analysis also suggests that some protein-coding genes that we observe as undisrupted by transposon insertions are in fact not essential for cell growth. Instead, they are either essential for transposon insertion to occur successfully, or their disruption (but not clean deletion) is detrimental to cell growth. This result emphasizes that in high throughput transposon mutagenesis studies, false positive inferences of essentiality may be common, and that simply increasing the resolution or precision of a dataset cannot necessarily solve this problem.

Taken together, our data suggests that the essential gene complement is relatively static over short time scales. However, when protein-coding genes do change from being non-essential to being essential, this appears more likely to occur in pathogenic organisms, perhaps because host environments absolve the organism from manufacturing its own nutrients, or because such organisms have smaller population sizes and are prone to the accumulation of deleterious mutations. It would be interesting to see if this pattern is observed when comparing other pathogens to their free-living sister taxa. If antibiotics can be directed against the function or expression of such differentially essential genes, this may allow targeting such treatments toward specific bacterial strains.

Results and Discussion

A Transposon Mutagenesis Library Provides Fine-scale Resolution of Gene

Essentiality

We generated a transposon insertion library by transforming a Shigella icsA mutant [21] with a plasmid containing a mini-Tn10 transposase with decreased hotspot activity ([22]; Fig. 1A, inset) inducible by isopropyl- β-D-thiogalactopyranoside (IPTG) [23, 24]. After overnight growth on Tryptic Soy Broth (TSB) agar plates containing IPTG, we harvested approximately 10^{6} colonies carrying transposon insertions. We pooled and then split this
library of clones into six replicates. Three replicates were subject to additional growth step inside the cytoplasm of HeLa cells for four hours. The resulting cells were then harvested, the replicates were bar coded and libraries were prepared. We sequenced all six of these pools on a single Illumina HiSeq lane. For all the analyses presented in this study, we have pooled the data from all replicates and from both of these treatments, as we are focusing on Shigella genes that are essential across any permissive growth conditions.

From this pool, we mapped insertions at 131,670 unique positions on the Shigella chromosome (with many insertions occurring on both the forward and reverse strands but at the same position), and 12,552 unique positions on the large Shigella virulence plasmid (see Methods). The median distance between inserts on the chromosome was 17 base pairs (bp); on the plasmid this distance was $9 \mathrm{bp} .95 \%$ of all inter-insert distances on the chromosome were less than 107 bp ; the corresponding figure for the plasmid was 59 bp (Figs. 1A and B).

Although the distribution of transposon inserts was relatively even across both the chromosome (S1 Fig.), at smaller scales we found many regions in which few or no insertions occurred. Quantitative analyses showed that regions containing no transposon insertions for 100bp or more were considerably enriched (see Methods; Figs. 1C and D). It is likely that many of these regions are critical for cellular growth in Shigella. Indeed, we found that for many of the protein-coding genes in these regions, the orthologous E. coli genes are known to be essential (Figs. 2 and 3).

In contrast to the Shigella chromosome, we found that few open reading frames on the virulence plasmid were devoid of insertions. Only six out of 263 plasmid ORFs had no inserts. Two of these were replication proteins (CP0258 and CP0259), and two (CP0217 and CP0218) were located within the plasmid stabilisation region. The remaining two, $m x i H$ and $a c p$, are both less than 250 bp in length (the cut-off used here to classify ORFs as essential; see below), and thus have a lower likelihood of being hit due simply to their smaller target size. The third replication protein of the plasmid, CP 0260 , contained a single insert in its 858 bp length. The absence of inserts in the plasmid replication or stabilisation regions is explained by the fact that if such insertions did occur, the plasmid would be lost; such insertions would thus never be sequenced. Thus, this data is consistent with the fact that the Shigella plasmid contains no essential genes [25], and suggested that our transposon library provided a fine-scale assessment of which Shigella chromosomal ORFs provide critical cellular functions.

Average Distance Between Inserts Clearly Delineates Essential and Non-essential ORFs

We next quantified which transposon insertion patterns in the chromosome were good predictors of the essentiality of open reading frames. To do so, we first identified 3,027
orthologous open reading frames present in both E. coli and Shigella for which we also had data on essentiality from both the Keio [1,26] and the Profiling of the Escherichia coli Chromosome (PEC) [27] studies (S1 Table). We considered this combined gene set as a goldstandard of essentiality, for two reasons: it is not subject to artefacts that might exist in Tn-seq dataset, such as insertion biases or biases arising during sequencing library preparation (e.g. [28]); and combining both the Keio and PEC datasets should result in few false positive or false negative essentiality characterizations. This set consisted of 277 orthologues considered essential by both studies, 2,717 genes considered non-essential by both studies, and 33 genes for which the two studies disagree.

We next quantified several characteristics for each protein-coding gene in our Tn-seq data set, including the total number of inserts per ORF, the mean distance between inserts, the length of the 5 ' fraction of the ORF upstream of the first insertion, the largest uninterrupted region in the ORF, and others (S2 Fig.). We took as a null hypothesis that generally, genes have maintained their essentiality characteristics since the divergence of E. coli and Shigella. We then tested which of these characteristics best predicted the essentiality status of their orthologous counterparts in the gold-standard dataset of open reading frame essentiality in E. coli (the Keio and PEC datasets).

We found that the best predictor of essentiality status in E. coli was the mean distance between transposon insertions in their Shigella orthologues (Materials and Methods; S2 Fig.). For the Shigella orthologues of the 277 E. coli essential genes, only four had a mean distance between inserts of less than 150 bp .17 (6%) had a mean inter-insert distance less than 250 bp . In contrast, only 6% of the orthologues of non-essential E. coli genes had a mean distance between inserts of greater than 250bp (Fig. 3A). We selected this mean inter-insert distance of 250bp as a cut-off for classifying Shigella ORFs as essential, as it provided a balance between protein coding genes classified as essential in E. coli but non-essential in Shigella (a 6\% false negative rate) versus non-essential in E. coli and essential in Shigella (a 6% false positive rate). By extension, genes that are less than 250bp in length and in which we do not observe insertions were inferred as essential (26 ORFs in total, of which 12 were ribosomal proteins and five were leader peptides). We note, importantly, that almost all of the predictors we tested performed extremely well (S2 Fig.).

We next investigated in greater detail the disagreements in essentiality classification between E. coli and Shigella (Fig. 3B). Of the 17 E. coli-essential genes that this metric identified as non-essential in Shigella, all are likely to be false negatives (i.e. in fact essential in Shigella, but not classified as such by our criterion). All 17 have a mean distance between inserts of greater than $100 \mathrm{bp}(\mathbf{F i g} . \mathbf{3 A})$, and nine are uninterrupted for more than 90% of their reading frame. This suggests, surprisingly, that there are no genes that are essential in E. coli but
whose Shigella orthologues are non-essential. This similarity in essentiality is not due to the fact that we use a characteristic that most closely predicts essentiality in the gold standard dataset - this result is robustly corroborated by any meaningful metric that we used (e.g. using other mean distances between inserts as cut-offs for essentiality, using the total number of inserts, the longest uninterrupted gene fraction, or others (S2 Fig.)). Overall, this data gives us a very strong prior that genes have maintained their essentiality status (or near-lethal effects on growth) since the divergence of E. coli and Shigella.

Many Non-essential E. coli orthologues of Essential Shigella Genes Exhibit

Impaired Growth

As a result of this strong prior, we thus expect that many of the discrepancies in essentiality between E. coli and Shigella are false positives due simply to the Shigella mutants being nonessential, but having significantly impaired growth. Indeed, of the 160 discrepant genes classified as non-essential in E. coli but essential in Shigella, 34% of the orthologous E. coli deletion genotypes exhibit low growth yields (less than 0.5 OD600 after 22 hours of growth in LB [1]). This contrasts strongly with the 2557 ORFs we classified as non-essential in Shigella: only 3.7% of the orthologous E. coli deletion genotypes had low growth yields (Fig. 4). Similar but less striking patterns were observed for growth in glucose minimal MOPS media (S3 Fig.).

It is important to note that Tn-seq assays have only limited power to differentiate essential genes from those whose deletion results in severe growth deficiencies. During the course of preparing the library for sequencing, we estimate that at least 20 generations of growth occurred. If a mutant has a growth rate even 60% that of the wild type, we would expect it to undergo only 12 doublings in contrast to the 20 of the wild type. This would result in a greater than 200 -fold underrepresentation of such a mutant $\left(2^{12} / 2^{20}\right)$. In addition, this calculation does not take into account any effects that the mutations have on the length of the lag time, which might also have significant effects on the relative frequency of some mutants.

In light of this limited resolution power; given that our prior expectation is that essentiality status changes only rarely; and because we are specifically interested in genes that may have changed in essentiality status, from this point on we focus our analysis on essential Shigella genes whose orthologous E. coli deletion genotype exhibits robust growth yields (OD600 greater than 0.75 after 22 hours growth in LB (Fig. 4)). For these genes, we have relatively high confidence that while their deletion in E. coli has few effects on growth, their disruption in Shigella is lethal or results in a severe growth deficiency.

Gene(s)	Evidence for Artefactual Inference of Shigella Essentiality
acrAB, tolC, $y b a B, k s g A$, yebC, smpB $(0.73)^{1}$	Affect kanamycin resistance [30-32]
$\begin{aligned} & \text { dnaQ, holD, recD, xseA, ruvA } \\ & (0.58), \text { ruvB }(0.60), \text { ruvC } \\ & (0.61), \operatorname{recB}(0.58), \text { recC } \\ & (0.65) \end{aligned}$	Likely to affect the transposition process; dnaQ, holD, ruvA, and $r u v B$ inferred as essential using Tn-seq in Salmonella [13]
priB	Deficient in plasmid maintenance [33,34]
fhuACD, tonB	Involved in iron acquisition which is critical for growth in the iron limited media used in this study [29]
$r p s T$	S20 ribosomal subunit; new data indicates mutants have poor growth [35] (in conflict with Keio data)
miaA	tRNA dimethyl transferase; previous data indicates E. coli mutants have poor growth [36] (in conflict with Keio data)
omp A	Outer membrane porin; clean knockouts appear viable [37]; mutant forms are frequently lethal [38]
pitA	Metal phosphate transporter with ten transmembrane segments; transposon disruption of substrate transporters is three-fold more likely to be inferred as essential compared to clean deletion (see main text; Fig)
potB	Type I ABC transporter (Putrescine / spermidine transporter)
cys U	Type I ABC transporter (Sulfate / thiosulfate transporter)
sapB	Type I ABC transporter (unknown substrate)
ptsH	Short 306 bp reading frame
$y d h R$	Short 258 bp reading frame

For a second set of genes, the discrepancies are likely due to the differences in methodology between the E. coli (precise gene deletions) and Shigella (transposon inactivation) studies (Table 1). We inferred $\operatorname{acr} A B$ and tolC as essential. These genes act together as an efflux pump, and mutations in these genes result in hypersensitivity to antibiotics [39]. Thus, clones with transposon insertions in these genes are unlikely to survive during library growth under kanamycin selection. A similar explanation likely underlies the fact that we inferred $y b a B$, $\operatorname{ksg} A, y e b C$, and $\operatorname{smp} B$ as essential: these four play role in aminoglycoside resistance [30-32]. We also inferred priB, dnaQ, holD, xseA, and recD as being essential in Shigella, although the E. coli deletion genotypes exhibit robust growth. All of these are involved in DNA replication, recombination, and double strand break repair, all of which are essential processes in the completion of the transposition process [40]. The related genes recBC and ruvABC contained a single insert between the five of them, while the E. coli deletion genotypes all exhibit only slightly impaired growth of 0.6 OD600 or more (Table 1). Certain recBC mutants can have considerable effects on the rate of Tn10 excision [41, 42] and we speculate that this may be one reason why we rarely observed insertions in these loci. It has also been speculated that ruv mutants inhibit transposition [43]. We propose that after transposition occurs, in order for the event to be successfully resolved, transcription of these genes is often required, and the transposition itself precludes the formation of a proper transcript.

Thus, the dispensability of these ten genes in E. coli, and the similarity in their function, suggests that they all affect successful transposon insertion rather than having critical effects on growth. Notably, priB, dnaQ, holD, ruvA, and ruvB were also inferred as essential in the closely related bacterium Salmonella typhimurium via a high-throughput transposon assay. In the same study $r u v C$, $r e c B$, $r e c C$, and $y b a B$, were inferred as extremely important for growth while $k s g A$ and $y e b C$ were inferred as significantly impairing growth [13]. Again, the majority of these knockouts in E. coli exhibit very robust growth (greater than 0.75 OD600 after 22 h growth in LB). Given the roles that these genes are known to play in transposition and antibiotic resistance, this suggests that the inference of essentiality may be due to artefacts of the transposon screen.

For a third set of genes, the literature presents conflicting information on the growth phenotypes, with studies that have individually assessed growth rates suggesting poor growth. These include rpsT [35], miaA [36], and ompA [38] (Table 1).

There were also two open reading frames that we inferred as differentially essential as they were completely uninterrupted in our data. However, these two open reading frames, $y d h R$ and $p t s H$, are very small and less likely to be disrupted, being 306 bp and 258 bp long,
respectively. It is probable, then, that this discrepancy is not driven by different physiological roles that they play in E. coli as compared to Shigella.

Finally, we tested for other possible artefactual patterns in the data based on gene function. We asked whether there were specific functional categories in which genes were more likely to be inferred as essential using the transposon mutagenesis screen in Shigella as opposed to clean deletions in E. coli. We found two functional categories of genes that showed clear enrichment: genes involved in substrate transport and / or active transport, which were 3-and 2.1-fold enriched, respectively (Fig. 5). We hypothesize that one reason for this enrichment is that truncated versions of these proteins disturb the operation of the sec machinery, thereby decreasing or stopping growth. Thus, we propose that the four active transporters we infer as essential in Shigella but not E. coli (Table 1) are artefacts due to the transposition process resulting in truncated proteins.

Genes uniquely essential in Shigella flexneri

While many differences in essentiality classification between Shigella and E. coli are likely due to (1) severe growth defects present in both E. coli and Shigella rather than strict essentiality; and (2) differences in environmental conditions (e.g. iron) between the E. coli and Shigella assays; and (3) artefacts of the Shigella transposon screen that do not occur in the E. coli knockout screen, we do find a number of genes which we infer to be uniquely essential to Shigella. We expect that the physiological differences between E. coli and Shigella are driving these differences in gene essentiality (Table 2).

Among the set of genes essential in Shigella but dispensable in E. coli is lysS: this ORF has a functional homologue in E. coli (lys U [45]), while in Shigella flexneri there is no homologue. Also in this set of genes are proA, proB, and proC. These genes act in proline biosynthesis. Given the rich media the cells were grown in, it is surprising that they would be essential. In addition, as proB is involved in the first committed step of proline synthesis, its disruption should not cause accumulation of toxic intermediates. However, the data provide strong evidence that the disruption of any these three genes is either lethal or causes severe growth defects (Fig. 6). Interestingly, the active proline transporter putP is absent from Shigella [46]. It is also known that in Salmonella, the cryptic proline transporter pro Y is silent [47], and we hypothesize that this may also be true of this transporter in Shigella. Thus, inefficient proline transport from the media might necessitate biosynthesis.

A suite of genes involved in acetate utilization ($a c e E$, $a c e F$, $a c k A$, $p t a$, and $p y k F$) were all inferred as essential in Shigella but dispensable in E. coli. The significantly detrimental effect on growth that such mutants have has been noted previously using a completely different approach [21]. The difference in essentiality between these two organisms is most likely due
to the absence of acetyl CoA synthetase from Shigella, and confirms the sensitivity and relevance of our transposon mutagenesis assay for assaying differences between E. coli and Shigella biology.

Table 2. Genes inferred as uniquely essential in Shigella. All gene deletions in homologous E. coli genes show robust growth in rich media after 22 hours (greater than 0.75 OD600), suggesting that these genes are uniquely essential in Shigella as compared to E. coli.

Gene(s)	Function [44]	Evidence for Different Physiological Roles in E. coli and Shigella
lysS	Aminoacyl tRNA synthetase, tRNA modification	The lys U functional homologue is absent in Shigella [45]
proABC	Proline biosynthesis	The active proline transporter putP is absent from Shigella [46]. The cryptic transporter proY may be silent, as observed in Salmonella [47], possibly necessitating proline biosynthesis
ackA pta aceEF pykF	acetate kinase phosphotransacetylase pyruvate dehydrogenase pyruvate kinase	All affect acetate accumulation [48] and utilization [21], which is required for robust growth (Shigella lacks the acetyl CoA synthetase present in E. coli K12 [49])
$r f b F, r f b G$, $r f c$, and $r f b I$	sugar nucleotide biosynthesis for LPS	No E. coli K12 orthologues, as this locus has been replaced by the laterally transferred $w b b$ locus [50]
$s p r$	Murein DD-endopeptidase	None known
$t u f B$	Elongation factor $\mathrm{EF}-\mathrm{Tu}$	None known

For only two other orthologous gene pairs is there strong evidence of discrepant essentiality status: tufB (two insert locations; Fig. 7) and spr (one insert at base pair 543 across 567 bp). For neither of these genes do we have a hypothetical causal explanation. Interestingly, we also found very few transposon insertions in the tufB paralogue tufA (three insert locations; Fig. 7), suggesting that this gene, too, is important for Shigella growth despite its relative dispensability in E. coli (0.72 OD600 after 22 h in LB). We note that these two genes are nearly identical in their sequence, which creates ambiguities in mapping some reads.
However, this does not explain the absence of reads mapping to either of them.
Understanding the molecular mechanisms driving these apparent disparities in growth phenotypes between Shigella and E. coli is an important topic for future research.

Finally, the transposon insertion data indicated that a within single large operon, containing the ORFs $r f b A C E F G I / r f c$, four genes completely lacked insertions ($r f b F, r f b G$, $r f c$, and $r f b I$) (Fig. 8). Only $r f b A$ and $r f b C$ in this operon have E. coli orthologues. The remaining genes lie within a commonly laterally transferred region of the E. coli chromosome containing $w b b H I J K L, w z x B(r f b X)$, and $g l f$. These were all laterally transferred into the K12 lineage [50],
replacing the Shigella-like $r f b$ operon. The genes in this operon all play a role in sugar nucleotide biosynthesis necessary for O -antigen synthesis and production of the lipopolysaccharide component of the outer membrane [44]. This provides some evidence that specific aspects of this process have become essential in Shigella, despite these genes having been replaced by a laterally transferred set in E. coli K12.

Conclusions

By exploiting the extremely close evolutionary relationship of Shigella flexneri with E. coli K12, the bacterial strain that has been the most extensively and carefully characterized for its essential gene complement [1,27], we were able to develop an objective metric to precisely quantify how the results of the Tn -seq data relate to essentiality.

A superficial analysis of our Tn-seq data suggested that a total of 451 ORFs in Shigella were essential for cellular growth in rich media. This is very much in line with what other Tn-Seq studies have found, with numbers ranging from 480 in Caulobacter crescentus [8] to 447 in B. subvibrioides to 372 in Agrobacterium tumefaciens [3]. However, it is considerably more than the number that had been found in E. coli using in-frame gene knockouts, which is on the order of 300 essential genes. In addition, we found that close to 100% of the reading frames that were classified as essential in E. coli K 12 were also essential in S. flexneri, giving us a strong prior expectation that the essentiality classifications should match between these two taxa.

A more nuanced analysis suggested four explanations for artefactual discrepancies in essentiality between E. coli and Shigella: (1) many Shigella genes were not strictly essential but instead gene disruption caused severe growth impairment; (2) differences in experimental conditions (i.e. iron availability); (3) many of the genes we inferred as essential were important for antibiotic resistance or successful transposition, and are in fact dispensable for growth; and (4) transposon disruption of specific functional classes of genes may result in systematically different effects as compared to gene deletions, for example due to the production of truncated protein products. By carefully dissecting the functions of discrepant genes that do not appear to be artefactual, we were able to pinpoint several genes for which there is some evidence of differential physiological roles in E. coli and Shigella. Among others, these included lysS, three genes involved in proline biosynthesis, and a suite of genes involved in acetate utilization (Table 2). In addition to these, we found one large operon which appears to have an essential role in Shigella growth but which is missing completely in E. coli. Surprisingly, we found only two additional genes that are differentially essential (tufB and $s p r$) (Table 2).

Even after attempting to decrease false positive inferences of gene essentiality in Shigella, it appears to be considerably more common for genes to be dispensable for growth in E. coli, but critical for growth in Shigella. We suggests that one reason Shigella more may have a larger complement of essential genes than E. coli is that it frequently lives as an intracellular pathogen, and may have lost some of the functional redundancy that is present in E. coli. This may occur because host environments provide an abundance of nutrients, or because pathogens requiring a small infectious dose, such as Shigella [51], have inherently smaller population sizes and are more subject to genetic drift. A third possibility is that changes in gene function or redundancy may have occurred through selection for increased virulence, which has resulted in the inactivation of certain genes being selectively advantageous. Finally, we note that the discrepancies in essentiality between these two bacteria may be exploited to develop antibiotics that have strain-specific effects [21].

Methods

Strains

For all experiments, Shigella flexneri $2457 \mathrm{~T} \Delta i c s A$ was provided by M. B. Goldberg was used as the parental strain. This strain is unable to exploit the host actin cytoskeleton for motility and spreading [52]. Bacterial cells were grown in Tryptic Soy Broth (TSB) media. For experiments using eukaryotic cells, HeLa cells were cultured in DMEM supplemented with 10 mM Hepes, 25 mM glucose, and 4 mM glutamine. Shigella were grown to exponential phase in tryptic soy broth, coated with poly-L-lysine, and added at a multiplicity of infection of 25 , resulting in an infection rate of around 60%. Shigella was centrifuged onto HeLa cells $(600 \times \mathrm{g}$ for 5 min$)$. At 30 min postinfection, we added gentamicin $(100 \mu \mathrm{~g} / \mathrm{mL})$ to kill extracellular bacteria. Bacterial cells were allowed to grow within HeLa cells for a total of 4 hours.

Transposon library

Using a Tn10 transposon with a T7 promoter [23, 24] we created a library consisting of approximately 10^{6} clones. This library was created by mating E. coli strain BW20767 containing the pJA1 transposon plasmid with a spontaneous nalidixic acid resistant clone of Shigella flexneri $2457 \mathrm{~T} \Delta$ icsA for 5 hours. Transposase expression was induced by plating onto TSB plates containing 0.2 mM isopropyl- β-D-thiogalactoside (IPTG). Colonies were allowed to grow at $37^{\circ} \mathrm{C}$ for 18 hours on TSB agar plates. All colonies from these plates were then pooled and $100 \mu 1$ aliquots of the transposon library were stored at $-80^{\circ} \mathrm{C}$.

Three replicate experiments were carried out on different days in which an aliquot of the transposon library was grown for 18 hours in TSB to stationary phase, diluted 1:100 and
grown to exponential phase (0.7 OD600). This exponential phase culture was split into two: part of the bacterial culture was pelleted and saved and other was used for infecting HeLa cells (as described in [21]). After 3.5 hours, HeLa cells infected with the Shigella transposon library were trypsinized and pelleted. Uninfected HeLa cells were also collected and used to spike the original bacterial culture not used for HeLa infection in order to account for HeLa DNA. All resulting DNA was extracted using the Bacterial Genomic Miniprep Kit (Sigma).

Sequence library construction and sequencing

To amplify the transposon region from these pools, we used one top strand primer annealing to the transposon and a pool of three bottom strand primers each of which consisted of 10 random nucleotides followed by a pentamer of common nucleotides in E. coli [53]:
N_{10} GGTGC, N_{10} GATAT, and N_{10} AGTAC, using Phusion pfu (S4 Fig). A nested PCR was then performed to add the P7 and P5 Illumina adapters, as well as a barcode. The products from this second PCR were then size selected for inserts between 200bp and 300bp, quantified using a Qubit, and sequenced on an Illumina HiSeq2000 at the D-BSSE Quantitative Genomics Facility resulting in 49 bp single end reads. We used a custom sequencing primer on the P5 end of the molecule such that on both ends of the molecule, reads started directly on the chromosome.

Read mapping

In total, we obtained 198,682,954 reads. We found that the number of reads at each location in the genome varied by up to four orders of magnitude. For this reason, we considered only whether an insertion had occurred at a specific location, and not on the number of reads we obtained at a specific location, which is likely to be highly biased due to PCR artefacts. We thus first deduplicated the reads using tally [54], and then used bowtie2 [55] to align the reads to the Shigella flexneri 2a 2457T genome and the Shigella flexneri 2a str. 301 plasmid pCP301. The sequence of the S. flexneri 2457T plasmid is not available. However, the S. flexneri 2457 T and 2a str. 301 plasmids are nearly identical in sequence (differing by 30 SNPs; see below). Sequence reads were not trimmed for quality as read quality is taken into account in bowtie2. We used the --sensitive-local option to allow soft clipping on the 3 ' end of the reads (so that reads that contained adapter sequences at the 3 ' end could map successfully), and required at least 22 bp of matching sequence at the 5^{\prime} end of the read.

We checked for single nucleotide polymorphisms (SNPs) on both the chromosome and the plasmid using the samtools mpileup and bcftools utilities [56, 57]. We retained as possible SNPs only those sites that fulfilled the following three criteria: (1) the SNP was inferred as homozygous (necessarily true, as Shigella is haploid); (2) the quality score was above 20; and (3) at least three reads on both the reverse and forward strands confirmed the SNP. We found

99 SNPs on the chromosome (as compared to the reference Shigella flexneri 2457 T in NCBI) and 30 SNPs on the plasmid (as compared to the Shigella flexneri 2a str. 301 plasmid in NCBI (in addition to 12 and 2 small indels, respectively). These are detailed in S2 Table and S3 Table, respectively.

Within chromosomal protein coding regions, 44% of all SNPs were synonymous, while 32% fell outside of genic regions (i.e. protein coding or RNA genes). These fractions are greater than one would expect if such SNPs were randomly located on the genome. Only 24% of all mutations in chromosomal coding regions are expected to be synonymous (not accounting for mutational biases), and only 28% of the chromosome is annotated as nongenic (including repeat regions, although for many of these regions, the absence of an annotation may be erroneous). Additionally, only 2 of the 12 (17\%) small chromosomal indels fell in coding regions. This suggests that there was some selection against nonsynonymous substitutions that occurred during the culturing and derivation of the Shigella flexneri 2a 2457T virG mutant. More importantly, the small number of SNPs that we found suggests that few, if any, reads remained unmapped due to sequence differences between the strain used in our experiments and the sequenced GenBank strain.

In total, the reads mapped to 89,028 unique locations on the forward strand and 83,074 on the reverse strand of the chromosome, for a total of 172,102 insertions. Some of these insertions occurred at identical positions but on opposite strands, so in total, insertions occurred at 131,670 unique sites in the chromosome. Correspondingly, the reads mapped to 8,208 unique locations on the forward strand and 8,585 unique locations on the reverse strand of the plasmid, for a total of 12,552 unique sites. During the insertion of the $\operatorname{Tn} 10$ transposon, a 9 bp target DNA sequence is duplicated [58]. We accounted for this duplication in calculating the distances between insertions (by moving the inferred site of insertion for one direction (we arbitrarily selected the antisense direction) backward by 9 bp). Similarly, this duplication was accounted for in calculating various statistics of insertions within genes: sense insertions that were inferred as occurring in the last 9 bp of a gene were ignored in calculating the mean number of insertions per gene (as these bp are duplicated upstream of the insertion).

Antisense insertions occurring in the first 9 bp of a gene were ignored, as these bp are duplicated downstream of the insertion.

Using the read frequencies at all unique insert locations, we found that the transposon insertions occurred in a biased manner, integrating more often at sites similar to the known 9bp consensus NGCTNAGC [58], although this bias was relatively weak (Figs. 1A and B, insets). This low level of bias is likely due to our using a transposon with reduced hotspot activity [22]. In addition, we found that insertion frequency was slightly influenced by
nucleotides further downstream of this 9 bp consensus (Figs. 1A and \mathbf{B}, insets). Sequence logos for this analysis were visualized using the R package seqLogo [59].

The median distance between inserts was 17 bp in the chromosome and 9 bp in the plasmid (Fig. 1B), suggesting that the transposon libraries yielded a relatively fine-grained map of the essential genomic complement for both the chromosome and the plasmid.

As expected given the variation in insertion densities across the chromosome, we found high variance in the distribution of inter-insert distances. The total length of the S. flexneri genome is $4,599,354 \mathrm{bp}$ in total. Given that we observed 131,670 inserts, under a model of random insertion, we would expect a median distance between inserts of 35 bp , with 95% of all interinsert distances being less than 107 bp (under the assumption that these distances are distributed in a geometric manner (i.e. a negative binomial with the number of successes set to one). For the plasmid, we observed 12,552 inserts over $221,618 \mathrm{bp}$, such that we expect a median distance of 18 bp between inserts, and that 95% of all inter-insert distances are less than 59 bp . However, as noted above, we found that on average transposons insertions were separated by a median of 17 bp on the chromosome and 9 bp on the plasmid. Fitting a geometric distribution to the observed data over 99% of the range of the inter-insert distances (i.e. from 1 to 237 bp for the chromosome and from 1 to 78 bp for the plasmid) more exactly quantified this over-dispersion, and showed that uninterrupted regions in the chromosome greater than 100 bp were considerably enriched (Fig. 1C).

Paired end read mapping and inference of IS element dynamics

We used 100 bp paired end Illumina sequencing data from this same library to look for structural rearrangements due to IS elements in the genome. However, this analysis was complicated by the fact that many IS elements share close to 100% identity with others around the genome. During these analyses we thus restricted our searches to regions of the genome for which we had a priori expectations that they harboured a rearrangement (i.e. if there were no inserts and the orthologous E. coli locus was non-essential or absent).

Specifically, we followed the following procedure: we extracted a 50 kilobase pair (Kbp) region from the genome surrounding each hypothesized rearrangement (in all cases, this was a deletion). We then used bowtie 2 with the paired end option, allowing up to 10 Kbp inserts to map all reads from our 100 bp PE dataset. From these mapped reads, we retained only read pairs that had (1) mapping quality scores greater than 20; (2) at least one read that matched perfectly (i.e. at all 101 bases of the read) to the genome; and (3) were unique in their length at any specific location (thereby excluding artefacts such as PCR doublets). From these paired reads we then inferred the insert size, which is plotted in $\mathbf{S 5} \mathbf{F i g}$. The vast majority of insert sizes ranged between 100 and 400bp. However, some were much larger (e.g. up to 9,000 bp
in S5B Fig.). We inferred that these surrounded regions of the genome that must have been deleted.

Such deletions would result in the set of genes contained within as being inferred as essential because of their lack of transposon insertions. However, in the vast majority of cases, we found that when large operons lacked insertions but had non-essential orthologous operons in E. coli, or were missing entirely from E. coli, these operons were in fact missing from the Shigella clone that we used, most likely due to the rapid dynamics of IS elements in this bacterium [60]. For example, no sequence reads we obtained mapped to the yeaKLMNOP operon, which spans a total of $9,240 \mathrm{bp}$. Upon further analysis using a paired end genomic data set, we found that this region was clearly missing from our Shigella clone (S6B Fig.). This was similarly true for several other operons, as well as for single genes. We did not consider any region in which we identified a deletion in our downstream analyses.

Essential open reading frames

We identified 3,027 unambiguously ORFs that were present in both E. coli and Shigella flexneri 2457 T [61], and for which we had essentiality data. We used reciprocal shortest distance [62] to find orthologues, with the requirement that the alignment of the two hypothetical orthologues extend over at least 60% of the longer ORF. To establish a goldstandard set of essential genes we combined the data from two studies of the effects of gene deletion on growth in E. coli K12: the Keio collection [1] and the PEC study [27]. We retained only those ORFs which we had data on essentiality from both studies. We then quantified which transposon insertion patterns that most closely corresponded with the essentiality delineations in theses studies. Specifically, we selected the feature that maximized the number of true positive essential genes (maximizing the sensitivity) while minimizing the number of FP (maximizing specificity) (this metric is a receiver operator characteristic for which we quantified the area under the curve (AUC; S2 Fig.)). We selected from eleven nonindependent features: (1) the total number of insertions; (2) the mean number of bp between insertions; (3) the median number of bp between insertions; (4) the number of bp in the 5^{\prime}, end preceding the first insertion; (5) the number of bp in the 5^{\prime} end preceding the first insertion relative to the total bp in the gene; (6) the number of bp in the 5^{\prime} ' end preceding the second insertion; (7) the number of bp in the 5^{\prime} end preceding the second insertion relative to the total bp in the gene; (8) the number of bp in the longest uninterrupted stretch of the gene; (9) the number of bp in the longest uninterrupted stretch of the gene relative to the total length of the gene, and (10) the number of bp in the longest stretch of the gene interrupted by at most one insertion; (11) the number of bp in the longest stretch of the gene interrupted by at most one insertion, relative to the total length of the gene.

We found that for both the PEC dataset and the Keio dataset, the two best predictors of essentiality were the mean distance between inserts (AUC $=0.972$ for the PEC dataset, 0.952 for the Keio dataset, and 0.973 for the genes on which both datasets agreed on the essentiality classifications); and the fraction of the gene that lay in the longest uninterrupted region (AUC $=0.969$ for the PEC dataset, 0.955 for the Keio dataset, and 0.971 for the genes on which both datasets agreed on the essentiality classifications) (S2 Fig.). We selected mean distance as on average, it marginally outperformed the other statistic on the gold standard data set.

We note that for eight of the 14 genes classified as essential solely in the Keio dataset, the orthologous Shigella ORFs have mean distances less than 30 bp , suggesting that these genes may be falsely annotated as essential in the Keio study. In contrast, nine of the ten genes inferred as essential solely in the PEC dataset have mean distances greater than 200 bp ; the tenth has a mean distance of 189 bp .

tRNA disruptions

We found insertions in 27 out of 99 tRNAs, with tRNAs for certain amino acids being considerably overrepresented (S2 Table).

Additional analyses of differentially classified essential genes

We also tested for the enrichment of certain functional categories in the set of genes that were classified as being essential in Shigella but not E. coli. This differs from the analysis present in Fig. 5 in that we are asking whether across a broad set of functions, are specific categories enriched for Shigella-essential genes. In Fig. 5 we ask whether within a single functional category, is there a much higher fraction of Shigella essential genes than we would expect, given the fraction of genes in that functional category that are essential in E. coli.

Thus, for this analysis, we separated genes by primary functional category and secondary subcategory using the MultiFun designations (e.g. the primary functional category cell processes divided into the secondary subcategories of cell division, SOS, stress, protection, and motility). We then calculated the fraction of Shigella-essential genes within each secondary subcategory and compared this to the total fraction of Shigella-essential genes within the primary category (e.g. we calculated the fraction of essential genes in Ribosomal Function (the secondary category) and the fraction of Shigella-essential genes in all other categories in Cell Structure (the primary category) (S6 Fig.). We tested for enrichment (depletion) using a Fisher exact test.

We also examined gene conservation. Highly conserved genes were considered to be those present in more than 50% of all gamma-proteobacteria [61]. We found that genes classified as uniquely essential in Shigella were much more conserved across gamma-proteobacteria (79\%
bioRxiv preprint doi: https://doi.org/10.1101/038869; this version posted February 7, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.
highly conserved) compared to genes that were found non-essential in both E. coli and
Shigella (36% highly conserved; $\mathrm{p}=1.0 \mathrm{e}-33$, Wilcox rank sum test).

Availability of supporting data

All read data are in the SRA with accession numbers XXX.

List of abbreviations used

bp - base pairs; Shigella - Shigella flexneri 2a 2457T; E. coli-Escherichia coli BW25113; ORF - open reading frame; PEC - Profiling the E coli Chromosome database

Competing interests

The authors declare no competing interests.

Authors' contributions

NEF, DB, and OKS conceived and designed the transposon mutagenesis. NEF performed the mutagenesis and sequencing. OKS analysed the data with input from DB and NEF. NEF and OKS wrote the paper.

Acknowledgements

The authors thank Luise Wolf for input on designing the sequencing protocol.

Endnotes

References

1. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006 0008. Epub 2006/06/02. doi: $10.1038 / \mathrm{msb} 4100050$. PubMed PMID: 16738554; PubMed Central PMCID: PMC1681482.
2. Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, et al. Global transposon mutagenesis and a minimal mycoplasma genome. Science. 1999;286(5447):2165-9. doi: Doi 10.1126/Science.286.5447.2165. PubMed PMID: WOS:000084157300055.
3. Curtis PD, Brun YV. Identification of essential Alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems Mol Microbiol. 2014. doi: 10.1111/mmi. 12686.
4. Blank D, Wolf L, Ackermann M, Silander OK. The predictability of molecular evolution during functional innovation. P Natl Acad Sci USA. 2014;111(8):3044-9. PubMed PMID:
WOS:000332180900041.
5. Liu GW, Yong MYJ, Yurieva M, Srinivasan KG, Liu J, Lim JSY, et al. Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability. Cell. 2015; 163(6):1388-99. PubMed PMID: WOS:000366044800003.
6. Bergmiller T, Ackermann M, Silander OK. Patterns of Evolutionary Conservation of Essential Genes Correlate with Their Compensability. Plos Genet. 2012;8(6). PubMed PMID:
WOS:000305961000055.
7. van Opijnen T, Camilli A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol. 2013;11(7). doi: Doi 10.1038/Nrmicro3033. PubMed PMID: WOS:000320368400013.
8. Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B, Coller JA, et al. The essential genome of a bacterium. Mol Syst Biol. 2011;7. doi: Artn 528

Doi 10.1038/Msb.2011.58. PubMed PMID: ISI:000294537800007.
9. van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods. 2009;6(10):767-U21. doi: Doi 10.1038/Nmeth.1377. PubMed PMID: ISI:000270355200023.
10. Kamp HD, Patimalla-Dipali B, Lazinski DW, Wallace-Gadsden F, Camilli A. Gene Fitness Landscapes of Vibrio cholerae at Important Stages of Its Life Cycle. Plos Pathog. 2013;9(12). doi: Artn E1003800

Doi 10.1371/Journal.Ppat.1003800. PubMed PMID: WOS:000330535400034.
11. Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LDT. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. Bmc Genomics. 2012;13. doi: Artn 578

Doi 10.1186/1471-2164-13-578. PubMed PMID: WOS:000314646600001.
12. van Opijnen T, Camilli A. A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res. 2012;22(12):2541-51. doi: Doi 10.1101/Gr.137430.112. PubMed PMID: WOS:000311895500022.
13. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J, et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 2009;19(12):2308-16. doi: Doi 10.1101/Gr.097097.109. PubMed PMID: ISI:000272273400015.
14. Gawronski JD, Wong SMS, Giannoukos G, Ward DV, Akerley BJ. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. P Natl Acad Sci USA. 2009;106(38):16422-7. doi: Doi 10.1073/Pnas. 0906627106. PubMed PMID: WOS:000270071600076.
15. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, et al. Identifying

Genetic Determinants Needed to Establish a Human Gut Symbiont in Its Habitat. Cell Host Microbe. 2009;6(3):279-89. doi: Doi 10.1016/J.Chom.2009.08.003. PubMed PMID: WOS:000270290700011.
16. Lee SA, Gallagher LA, Thongdee M, Staudinger BJ, Lippman S, Singh PK, et al. General and condition-specific essential functions of Pseudomonas aeruginosa. P Natl Acad Sci USA.
2015;112(16):5189-94. PubMed PMID: WOS:000353239100085.
17. Chao MC, Pritchard JR, Zhang YJJ, Rubin EJ, Livny J, Davis BM, et al. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of
transposon-insertion sequencing data. Nucleic Acids Res. 2013;41(19):9033-48. doi: Doi 10.1093/Nar/Gkt654. PubMed PMID: WOS:000326044700026.
18. Pritchard JR, Chao MC, Abel S, Davis BM, Baranowski C, Zhang YJJ, et al. ARTIST: HighResolution Genome-Wide Assessment of Fitness Using Transposon-Insertion Sequencing. Plos Genet. 2014;10(11). PubMed PMID: WOS:000345455200029.
19. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. P Natl Acad Sci USA. 2003;100(24):14339-44. PubMed PMID: ISI:000186803800105.
20. Chao MC, Abel S, Davis BM, Waldor MK. The design and analysis of transposon insertion sequencing experiments. Nat Rev Microbiol. 2016;14:119-28.
21. Kentner D, Martano G, Callon M, Chiquet P, Brodmann M, Burton O, et al. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. P Natl Acad Sci USA. 2014;111(27):9929-34. doi: Doi 10.1073/Pnas.1406694111. PubMed PMID: WOS:000338514800054.
22. Kleckner N, Bender J, Gottesman S. Uses of Transposons with Emphasis on Tn10. Method Enzymol. 1991;204:139-80. PubMed PMID: WOS:A1991GN46900007.
23. Badarinarayana V, Estep PW, Shendure J, Edwards J, Tavazoie S, Lam F, et al. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat Biotechnol. 2001;19(11):1060-5. PubMed PMID: ISI:000172002600022.
24. Chan K, Kim CC, Falkow S. Microarray-based detection of Salmonella enterica serovar typhimurium transposon mutants that cannot survive in macrophages and mice. Infect Immun. 2005;73(9):5438-49. doi: Doi 10.1128/Iai.73.9.5438-5449.2005. PubMed PMID:

WOS:000231460000017.
25. Sansonetti PJ, Kopecko DJ, Formal SB. Involvement of a Plasmid in the Invasive Ability of Shigella-Flexneri. Infect Immun. 1982;35(3):852-60. PubMed PMID: WOS:A1982NE19800013. 26. Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y, Touda Y, et al. Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol. 2009;5. doi: Artn 335

Doi 10.1038/Msb.2009.92. PubMed PMID: WOS:000273359200008.
27. Kato JI, Hashimoto M. Construction of consecutive deletions of the Escherichia coli chromosome. Mol Syst Biol. 2007;3:132. PubMed PMID: ISI:000249223700002.
28. Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: Application to Mycobacterium tuberculosis. P Natl Acad Sci USA. 2003;100(12):7213-8. doi: Doi
10.1073/Pnas. 1231432100 . PubMed PMID: WOS:000183493500058.
29. Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol. 2007;189(3):950-7. PubMed PMID: WOS:000244112100030.
30. Skunca N, Bosnjak M, Krisko A, Panov P, Dzeroski S, Smuc T, et al. Phyletic Profiling with Cliques of Orthologs Is Enhanced by Signatures of Paralogy Relationships. Plos Comput Biol.
2013;9(1). PubMed PMID: WOS:000314595600012.
31. Sparling PF. Kasugamycin Resistance . 30s Ribosomal Mutation with an Unusual Location on Escherichia-Coli Chromosome. Science. 1970;167(3914):56-\&. PubMed PMID:
WOS:A1970E985700019.
32. Corvaisier S, Bordeau V, Felden B. Inhibition of transfer messenger RNA aminoacylation and trans-translation by aminoglycoside antibiotics. J Biol Chem. 2003;278(17):14788-97. PubMed PMID: WOS:000182516100028.
33. Kim PD, Banack T, Lerman DM, Tracy JC, Camara JE, Crooke E, et al. Identification of a novel membrane-associated gene product that suppresses toxicity of a TrfA peptide from plasmid RK2 and its relationship to the DnaA host initiation protein. J Bacteriol. 2003;185(6):1817-24. PubMed PMID: ISI:000181448900008.
34. Berges H, Oreglia J, JosephLiauzun E, Fayet O. Isolation and characterization of a priB mutant of Escherichia coli influencing plasmid copy number of Delta rop ColE1-type plasmids. J Bacteriol. 1997;179(3):956-8. PubMed PMID: WOS:A1997WE44000050.
35. Bubunenko M, Baker T, Court DL. Essentiality of ribosomal and transcription antitermination proteins analyzed by systematic gene replacement in Escherichia coli. J Bacteriol. 2007;189(7):284453. PubMed PMID: WOS:000245842000030.
36. Diaz I, Pedersen S, Kurland CG. Effects of Miaa on Translation and Growth-Rates. Mol Gen Genet. 1987;208(3):373-6. PubMed PMID: WOS:A1987J026300002.
37. Ambrosi C, Pompili M, Scribano D, Zagaglia C, Ripa S, Nicoletti M. Outer Membrane Protein A (OmpA): A New Player in Shigella flexneri Protrusion Formation and Inter-Cellular Spreading. Plos One. 2012;7(11). PubMed PMID: WOS:000311151900175.
38. Freudl R, Braun G, Hindennach I, Henning U. Lethal Mutations in the Structural Gene of an Outer-Membrane Protein (Ompa) of Escherichia-Coli-K12. Mol Gen Genet. 1985;201(1):76-81.
PubMed PMID: WOS:A1985ARK1200013.
39. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Genes Acra and Acrb Encode a Stress-Induced Efflux System of Escherichia-Coli. Mol Microbiol. 1995;16(1):45-55. PubMed PMID: WOS:A1995QU56400005.
40. Kleckner N. Transposable elements in prokaryotes. Annu Rev Genet. 1981;15:341-404.

PubMed PMID: Medline:6279020.
41. Lundblad V, Taylor AF, Smith GR, Kleckner N. Unusual alleles of recB and recC stimulate excision of inverted repeat transposons Tn10 and Tn5. P Natl Acad Sci USA. 1984;81(3):824-8.
PubMed PMID: Medline:6322169.
42. Chan SH, Lau A, Lei V, Woo J. Effects of recB, recC and recF mutations on Tn10

Transposition in Escherichia coli. ournal of Experimental Microbiology and Immunology. 2006;9:7580.
43. Attfield PV, Benson FE, Lloyd RG. Analysis of the ruv locus of Escherichia coli K-12 and identification of the gene product. J Bacteriol. 1985;164(1):276-81. PubMed PMID: Medline:2995311.
44. Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, BonavidesMartinez C, et al. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 2013;41(D1):D605-D12. PubMed PMID: WOS:000312893300086.
45. Kawakami K, Ito K, Nakamura Y. Differential Regulation of 2 Genes Encoding LysylTransfer Rna-Synthetases in Escherichia-Coli - Lysu-Constitutive Mutations Compensate for a Lyss Null Mutation. Mol Microbiol. 1992;6(13):1739-45. PubMed PMID: WOS:A1992JC20400003.
46. Zhang XB, Liu H, Yang F, Yang J, Xue Y, Dong J, et al. Comparative genome analysis of deleted genes in Shigella flexneri 2a strain 301. Chinese Sci Bull. 2003;48(9):846-52. PubMed PMID: WOS:000183995400002.
47. Liao MK, Gort S, Maloy S. A cryptic proline permease in Salmonella typhimurium.

Microbiol-Uk. 1997;143:2903-11. PubMed PMID: WOS:A1997XW07300007.
48. Wong MS, Wu S, Causey TB, Bennett GN, San KY. Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng. 2008;10(2):97-108. PubMed PMID: WOS:000261595200004.
49. Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. P Natl Acad Sci USA. 2013;110(50):20338-43. PubMed PMID:

WOS:000328061700082.
50. Hooper SD, Berg OG. Gene import or deletion: A study of the different genes in Escherichia coli strains K12 and O157 : H7. J Mol Evol. 2002;55(6):734-44. PubMed PMID:
WOS:000179503100012.
51. Kothary MH, Babu US. Infective dose of foodborne pathogens in volunteers: A review. J Food Safety. 2001;21(1):49-73. PubMed PMID: WOS:000169172400004.
52. Goldberg MB, Theriot JA. Shigella-Flexneri Surface Protein Icsa Is Sufficient to Direct ActinBased Motility. P Natl Acad Sci USA. 1995;92(14):6572-6. PubMed PMID: WOS:A1995RG73600073.
53. Caetanoanolles G. Amplifying DNA with Arbitrary Oligonucleotide Primers. Pcr Meth Appl.

1993;3(2):85-94. PubMed PMID: WOS:A1993MD19100001.
54. Davis MPA, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: A set of tools for quality control and analysis of high-throughput sequence data. Methods. 2013;63(1):41-9.
55. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-U54. PubMed PMID: WOS:000302218500017.
56. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987-93. doi: Doi 10.1093/Bioinformatics/Btr509. PubMed PMID: WOS:000296099300009.
57. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence

Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9. doi: Doi
10.1093/Bioinformatics/Btp352. PubMed PMID: ISI:000268808600014.
58. Halling SM, Kleckner N. A Symmetrical 6-Base-Pair Target Site Sequence Determines Tn10 Insertion Specificity. Cell. 1982;28(1):155-63. doi: Doi 10.1016/0092-8674(82)90385-3. PubMed PMID: WOS:A1982MY42100020.
59. Bembom O. seqLogo: An R package for plotting DNA sequence logos. 2007.
60. Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457 T (vol 71, pg 2775, 2003). Infect Immun. 2003;71(7):4223-. PubMed PMID: ISI:000183797200078.
61. Silander OK, Ackermann M. The constancy of gene conservation across divergent bacterial orders. BMC Research Notes. 2009;2:2.
62. Wall DP, Fraser HB, Hirsh AE. Detecting putative orthologs. Bioinformatics. 2003;19(13):1710-1. PubMed PMID: ISI:000185310600016.
63. Serres MH, Riley M. MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. Microb Comp Genomics. 2000;5(4):205-22. PubMed PMID: 11471834.

Table and Figure legends

Table 1. Genes artefactually inferred as essential in Shigella. Listed here are those genes that were likely inferred as essential largely due to the gene disruptions having direct effects on (1) antibiotic resistance, (2) successful transposition events, (3) differences between the growth conditions of the E. coli and Shigella essentiality studies, or (4) systematically different effects of gene disruption versus gene deletion.

Table 2. Genes inferred as uniquely essential in Shigella. Listed here are genes inferred as essential in Shigella, but which have orthologous E. coli deletion genotypes that exhibit robust growth (greater than 0.75 OD600 after 22 h growth in LB). The genes in the $r f b$ operon have no orthologues in E. coli K12 (see main text).

Fig 1. Histograms of distances between inserts on the chromosome for (A) the Shigella chromosome and (B) the Shigella virulence plasmid. The median distance between inserts is indicated by the dotted line. The insets in (A) and (B) indicate the slight but detectable biases in transposon insert location using a weight matrix motif. The reverse cumulative plots show the observed fractions of distances between inserts for the chromosome (C) and the plasmid (D). In blue, the observed frequencies are plotted. In black, the expected frequencies are plotted, given a geometric distribution (negative binomial with the number of successes set to one) of inter-insert distances (see main text). For both the chromosome and the plasmid, there are considerably more large regions uninterrupted by transposons than one would expect given the geometric null model, observed as a shift of the curve to the right.

Fig 2. Orthologous genes known to be essential in E. coli are also essential in Shigella. A region of the Shigella chromosome is shown, with genes whose orthologues are known to be essential for growth in E. coli (coloured in white) [1, 27], or non-essential (coloured in grey). The unique locations of transposon insertions are plotted as vertical black segments. In the genome region shown here, none of the genes essential in E. coli have orthologues that are interrupted in Shigella.

Fig 3. Differences in essentiality classification between \boldsymbol{E}. coli K12 and Shigella. (A) Cumulative distributions showing the mean distances between inserts for ORFs depending on whether their orthologues are known to be non-essential (black curve) or essential (blue curve) in E. coli. All ORFs that are completely uninterrupted by transposons have been plotted at the very right end of the x-axis. The dotted vertical line indicates the cut-off that we used to delineate essentiality in Shigella (a mean distance between transposons of 250 bp or more). The 17 blue points to the left of the dotted vertical line indicate ORFs that are essential in E. coli but not Shigella by our metric. These are likely to be false positives (i.e. nonessential in both Shigella and E. coli), as all have inter-insert distances greater than 100 bp
(see main text). Black points to the right of the dotted vertical line indicate ORFS that we classify as essential in Shigella but not in E. coli. Many of these ORFs have E. coli orthologues whose deletion genotypes exhibit robust growth, suggesting that their essentiality status has changed. (B) A Venn diagram showing the overlap between essential orthologous ORFs in E. coli and Shigella.

Fig 4. Orthologous gene pairs that are non-essential in E. coli but inferred as essential in Shigella (blue) tend to exhibit low growth yields in E. coli. ORFs that we infer to be uniquely essential in Shigella consistently have E. coli orthologues with low growth phenotypes in LB media after 22 hours (apparent as a strong leftward shift in the cumulative curve). For genes inferred as uniquely essential in Shigella, 34\% of the orthologous E. coli deletion genotypes exhibit low growth yields (less than 0.5 OD600 after 22 hours of growth in LB). For genes we classified as non-essential in Shigella and E. coli only 3.7% exhibit low growth yields. Thus, some genes we infer as essential in Shigella may not be strictly essential, but instead be required for robust growth. Despite this enrichment for low-growth phenotypes, there are many genes which we infer as essential in Shigella, but which have E. coli orthologues whose deletion genotypes exhibit robust growth (OD600 greater than 0.75 after 22 hours growth in LB).

Fig 5. Transposon disruption of Shigella genes with transport-related functions are more likely to be inferred as essential compared to clean deletions of similarly
functioning genes in \boldsymbol{E}. coli. We classified genes according to function using the MultiFun functional classification system [63]. For any category containing more than ten essential E. coli genes, we also calculated the number of Shigella-essential genes. As expected, most categories show a relative excess of Shigella-essential genes, as we inferred approximately 50% more genes as being essential in Shigella versus E. coli (Fig. 3B). However, two functional categories show a clear excess above this level: substrate transport and active transport, showing a 3- and 2.1-fold increased probability of inferring a gene as being essential in Shigella as opposed to E. coli. This provides evidence that genes in these functional categories may be more likely to be inferred as artefactually essential. For each functional category (y-axis), we show the number of genes in that category (to the right of each bar); the number of genes found to be essential in E. coli (within each bar); and the level of enrichment of essential genes in Shigella (x-axis).

Fig 6. Three genes involved in proline biosynthesis (proABC) appear uniquely essential in Shigella. The orthologous E. coli deletion strains exhibit robust growth (OD600 greater than 0.75 after 22 hours growth in LB), but are essential by our criteria. proA and proC completely lack transposon insertions, while proB contains only two insertions near the 3 'end,
which leaves approximately 70% of the gene intact, including the entire kinase and substratebinding domain.

Fig 7. Both elongation factor paralogues tufA and tufB appear differentially essential in Shigella as compared to E. coli. The orthologous E. coli deletion strains of tufA and tufB exhibit robust growth (OD600 of 0.72 and 0.78 after 22 hours in LB), but are essential by our criteria. Both genes contain insertions only at the 5^{\prime} or 3^{\prime} ends of the genes. Genes that are essential in both E. coli and Shigella are coloured in white. Those inferred as being essential in Shigella but for which the orthologous deletion genotypes exhibit robust growth in E. coli are indicated in blue. Genes inferred as essential in Shigella and which do not exhibit robust growth in E. coli are coloured in light blue. tRNA genes are indicated in dark grey.

Fig 8. The region of the genome containing the $\boldsymbol{r f b}$ operon is largely uninterrupted by transposon insertions. $r f b I$, $r f c, r f b G$, and $r f b F$ are completely uninterrupted by transposon insertions; $r f b E$ is uninterrupted over 90% of its length. None of these genes have orthologous counterparts in E. coli K12 due to a lateral transfer event that occurred at this locus (see main text). This operon encodes genes active in O -antigen biosynthesis.

S1 Table. Full table of gene characteristics and orthologue relationships used in the analyses.
S2 Table. List of chromosomal SNPs and indels observed in the Shigella strain used here that differ from the GenBank sequence NC004741.

S3 Table. List of plasmid SNPs and indels observed in the Shigella strain used here that are different from the GenBank sequence of the Shigella flexneri 2a strain 301 virulence plasmid pCP301 (NC_004851).

S4 Table. Table listing tRNA genes and the number of insertions in each.
S1 Fig. Distribution of transposon insertions across the genome. We observed little bias on the chromosomal level of insert locations.

S2 Fig. ROC curves showing the predictive power of various features. To select a feature that was the best predictor of essentiality in E. coli orthologues, used only ORFs that we had data on essentiality from both the Keio and PEC studies. We then selected transposon insertion patterns that most closely match the essentiality delineations in theses studies. Specifically, we selected the feature that maximized the number of true positive "essential" genes (maximizing the sensitivity) while minimizing the number of FP (maximizing specificity). We selected from eleven (non-independent) features shown here: (1) the total number of insertions; (2) the mean number of bp between insertions; (3) the median number of bp between insertions; (4) the number of bp in the 5^{\prime} end preceding the first insertion; (5) the number of bp in the 5^{\prime} end preceding the first insertion relative to the total bp in the gene;
(6) the number of bp in the 5 ' end preceding the second insertion; (7) the number of bp in the 5 ' end preceding the second insertion relative to the total bp in the gene; (8) the number of bp in the longest uninterrupted stretch of the gene; (9) the number of bp in the longest uninterrupted stretch of the gene relative to the total length of the gene, and (10) the number of bp in the longest stretch of the gene interrupted by at most one insertion; (11) the number of bp in the longest stretch of the gene interrupted by at most one insertion, relative to the total length of the gene. See the Methods section for more details of this analysis.

S3 Fig. Analogous plots to that shown in Fig. 3, for growth in minimal glucose MOPS media after (A) 24 and (B) 48 hours. In both cases, we find that the shift is less pronounced than that observed for LB.

S4 Fig. Schematic of the primer positions used for Illumina sequencing of transposon insertions.

S5 Fig. Inferred fragment lengths of perfectly mapped reads across several genomic

 regions. For each plot, the inferred fragment lengths are arranged by increasing length (ranked on the y-axis). Thus, very long fragments are present at the top of the y-axis. Most fragments have lengths between 100bp and 400 bp ; a small number have lengths over 1000 bp or more. It is very likely that these are not the true insert sizes, but appear that way because of large scale deletions in our Shigella clone compared to the clone present in the NCBI genome database; see Methods for more details. (A) A region of the chromosome in which a complicated series of rearrangements has occurred, leading to paired end reads perfectly matching to different locations in this region. 45 mapped read pairs span more than 1.5 Kbp , a size that is not concordant with the majority of insert sizes. (B) A genomic region where an approximately 10 Kbp deletion occurred, removing a region containing the yeaKLMNOP operon. 92 mapped read pairs span more than 8.5 Kbp . This region is flanked by two IS elements. (C) A region where an approximately 4 Kbp deletion occurred, removing two genes with no E. coli K12 orthologues. 68 mapped read pairs span more than 4 Kbp , and again this region is flanked by two IS elements. (D) A genomic region where an approximately 2 Kbp deletion occurred, removing $y h d W$. 244 mapped read pairs span more than 2 Kbp , and the region is flanked by two IS elements. (E) A deletion in the region of the chromosome containing S4145 (yiaN). 232 mapped read pairs spanned more than 1.8 Kbp , and this region is also flanked by two IS elements. (F) A region of the chromosome containing the $r f b$ operon. Most of the genes within this operon are uninterrupted by transposons. However, we find no evidence that this is due to a deletion of this region in our Shigella clone, as we find no reads mapping across the region; a small number of reads map within the region; and the closest IS elements are 15 Kb upstream of $r f b J$ and 20 Kb downstream of $r f b A$. The genes in this operon have no orthologues in E. coli K12.
S6 Fig. Functional categories of non-essential \boldsymbol{E}. coli genes that are enriched (or

 depleted) for essential Shigella genes. We classified genes according to function using the MultiFun classification system [63]. For this analysis we considered only genes that are nonessential in E. coli. We find that genes uniquely essential in Shigella are enriched in some functional categories. For example, of the 27 ribosomal proteins identified as non-essential in E. coli, we identify approximately 45% as being essential in Shigella. In contrast, of the 565 membrane proteins identified as non-essential in E. coli, we find that less than 10% are essential in Shigella. Thus, ORFs uniquely essential in Shigella are far more likely to function in the ribosome than one would expect. The number of non-essential E. coli genes is indicated above each bar; the probability of finding the level of enrichment (or depletion) that we observe in each secondary category is indicated for cases in which this probability is less than 0.025 , using a Fisher exact test. (A) All non-essential genes in E. coli. (B) An identical analysis excluding all non-essential genes in E. coli that exhibit very low growth yields (OD600 less than 0.5 after 22 hours of growth LB). In both cases, the only subcategory notably enriched for essential genes is that containing ribosomal proteins. The only categories appreciably depleted for genes with essential function are genes with function in RNA processing and to some extent, energy production.S7 Fig. Transposon insertion locations across the entire Shigella chromosome. Each insertion site is indicated by a vertical red line. ORFs are indicated in light green; rRNAs in dark green; and tRNAs in dark blue. The annotation is taken from the GenBank sequence of Shigella flexneri 2a 2457T.

B

Genomic location (bp)

Growth yield of orthologous E. coli deletion strain in glucose minimal MOPS media (OD600 after 24h)

Growth yield in MOPS (OD600 after 48h)

1: Arbitrary PCR

using phusion PCR enzyme, so that no A's added at 3' end

1_transp_deep_seq_F1: TCTATCGCCTTCTTGACGAG

1_transp_deep_seq_R2: GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT NNNNNNNNNNggtgc 1_transp_deep_seq_R3: GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT NNNNNNNNNNgatat 1 transp deep seq R4: GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT NNNNNNNNNNagtac

2: Nested PCR (addition of P7 and P5)

using phusion PCR enzyme, so that no A's added at 3' end

2_transp_deep_seq_ FP5: AATGATACGGCGACCACCGAGATCT actggtcggcg CATTAGGGGATTCATCAG

```
Rev_P7 6_02
```



``` CAAGCAGAAGACGGCATACGAGAT gtatct GTGACTGGAGTTCAGACGTGT CAAGCAGAAGACGGCATACGAGAT tcatgg GTGACTGGAGTTCAGACGTGT CAAGCAGAAGACGGCATACGAGAT cgcgac GTGACTGGAGTTCAGACGTGT CAAGCAGAAGACGGCATACGAGAT acgata GTGACTGGAGTTCAGACGTGT CAAGCAGAAGACGGCATACGAGAT tataga GTGACTGGAGTTCAGACGTGT
```


3: Sequencing on Illlumina chip

transp_deep_seq_custom seq 1: actggtcggcgCATTAGGGGATTCATCAG

4: Barcode is read on IIllumina chip

transp_deep_seq_ Index seq: eancocanabaccacacarcrecrancrccaerracac

 was not certified by peequeriengetiss the author/funder, who has vailable under aCC-b

$201-251 \mathrm{~Kb}$

躬

$701-751 \mathrm{~Kb}$

$751-801 \mathrm{~Kb}$

 -

$901-951 \mathrm{~Kb}$

$$
\underbrace{\mid} \mid
$$

$1251-1301 \mathrm{~Kb}$

$$
\begin{aligned}
& 1.515 \mathrm{MD}-2 \\
& 1.535 \mathrm{Mb}
\end{aligned}
$$

为

$$
\sim \rightarrow
$$

$$
1751-1801 \mathrm{~Kb}
$$

$$
\begin{aligned}
& -1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (H2HPC }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TRA }
\end{aligned}
$$

$$
2101-2151 \mathrm{~Kb}
$$

$$
2151-2201 \mathrm{~Kb}
$$

$$
\begin{aligned}
& \text { 为 }
\end{aligned}
$$

$$
2201-2251 \mathrm{~Kb}
$$

$2251-2301 \mathrm{~Kb}$

$2301-2351 \mathrm{~Kb}$

 1
2.315 Mb $|2.32 \mathrm{Mb} \quad| 2.325 \mathrm{Mb} \quad \mid 2.33 \mathrm{Mb}$
 $\rightarrow-2$.

$$
2401-2451 \mathrm{~Kb}
$$

$$
\begin{aligned}
& \text { (2.40 Mb }
\end{aligned}
$$

$2501-2551 \mathrm{~Kb}$

 \longrightarrow R2.55 Mb
$2901-2951 \mathrm{~Kb}$

 $\rightarrow-\underbrace{2}_{13,25 \mathrm{Mb}}$

$$
3651-3701 \mathrm{~Kb}
$$

Clen

$3801-3851 \mathrm{~Kb}$

$$
\begin{aligned}
& 3.855 \mathrm{Mb}
\end{aligned}
$$

13.88 Mb
-13.85 Mb

- "
F^{2}

$$
\begin{aligned}
& -\underbrace{}_{\mid 3.05 \mathrm{Mb}}
\end{aligned}
$$

$$
4001-4051 \mathrm{~Kb}
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

$4251-4301 \mathrm{~Kb}$

$4301-4351 \mathrm{~Kb}$

 ||||||| |

$$
4401-4451 \mathrm{~Kb}
$$

$$
\begin{aligned}
& -2 x^{2}
\end{aligned}
$$

