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Abstract

To study how a bacterium allocates its resources, we compared the costs and benefits
of most of the proteins in Escherichia coli K-12 during growth in minimal glucose
medium. Proteins that are important for fitness are usually highly expressed, and
95% of these proteins are expressed at above 13 parts per million (ppm). Conversely,
proteins that do not measurably benefit the host tend to be weakly expressed, with a
median expression of 13 ppm. In aggregate, genes with no detectable benefit account
for 31% of protein production, or about 22% if we correct for genetic redundancy.
Although some of the apparently unnecessary expression could have subtle benefits
in minimal glucose medium, the majority of the burden is due to genes that are
important in other conditions. We propose that over 10% of the cell’s protein is “on
standby” in case conditions change.

Introduction

The typical bacterial genome encodes thousands of proteins, and many of these pro-
teins are not beneficial for growth at any given time. For example, the model bac-
terium Escherichia coli K-12 preferentially utilizes glucose. Its genome encodes hun-
dreds of genes that enable it to utilize other carbon sources, but these genes will not
be beneficial if glucose is available. Furthermore, the activity of many proteins can
be detrimental, as the loss of many genes confers a measurable growth advantage in
some conditions (1; 2; 3; 4; 5).

Expressing an unnecessary protein should reduce the growth rate even if the pro-
tein’s activity is harmless. In theoretical models of microbial growth, useless protein
causes a reduction in fitness (or the relative growth rate) equal to the fraction of all
protein that is useless (6; 7) or a small multiple of this (8). In laboratory environ-
ments, the measured fitness cost of a useless and harmless protein is about 1-2 times
the fraction of protein (9; 8; 10).

Bacterial proteins are typically expressed at 3-21 parts per million of the protein
mass of a cell (data of (11), 25th-75th percentile). Although a cost of 3 ppm may
seem small, it should be significant for evolution. The effective population sizes (V)
for bacteria are estimated at around 10° or 107 (12), and under the nearly-neutral
theory of molecular evolution, this implies that alleles that increase fitness by just 1
ppm should predominate over evolutionary time (N, - s > 1, where s is the selection
coefficient; see (13)).

Given the high cost of unnecessary expression, bacteria should evolve to allocate
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their expression of protein to genes that are important for growth or survival. Several
recent studies examined the concentrations of proteins in bacteria as a resource allo-
cation problem. In FE. coli, proteins that are regulated by the growth rate account for
about half of the protein mass (14), and the total expression of many functional cat-
egories of proteins is correlated with the growth rate (15). However, the importance
of these proteins for growth or fitness was not examined. In Bacillus subtilis, the
concentrations of most enzymes can be explained by their theoretically-optimal flux
(16); this study included metabolic enzymes, ribosomes, and chaperones, but did not
include most of the genes in the genome. Also, all of these studies relied on peptide
mass-spectrometry (“proteomics”), and so they focused on relatively highly-expressed
proteins. These studies reported abundances for just 18-55% of the proteins in the
genome.

Here, we compare the costs and benefits of 86% of the proteins in E. coli K-
12 during growth in a minimal glucose medium. To measure protein production or
cost, we used ribosomal profiling data (11), which allows us to study weakly-expressed
proteins. To measure the benefit of each protein, or its importance for growth, we used
a barcoded library of about 150,000 transposon mutants (17) as well as information
from individual knockout strains (18; 19). We found that 96% of protein-coding
genes that had mutant phenotypes were expressed at above 10 ppm of protein mass
or above 40 monomers per cell, and their median expression was 205 ppm. In contrast,
genes that did not have a measurable impact on fitness had a median expression of
13 ppm. Overall, genes that were not important for fitness accounted for 31% of
protein production by mass, but some of these proteins are isozymes or are otherwise
expected to be redundant. Once we correct for genetic redundancy, we estimate that
in this condition, 22% of protein production is unnecessary. Many of these proteins
are only expected to be important in other conditions, given their known functions.
Indeed, by examining a large compendium of genome-wide fitness assays, we found
that the majority of this unnecessary expression is for proteins that have significant
phenotypes in other conditions. We propose that most of the 22% burden is for
proteins that are “on standby” in case conditions change.

Results

Comparison of ribosomal profiling to mutant phenotypes

To compare the costs and benefits of gene expression, we studied E. coli K-12 growing
at 37°C in MOPS minimal glucose media. We obtained ribosomal profiling data from
Li and colleagues (11) and we use the fraction of protein expression (weighted by the
length of the protein) to estimate the cost of expression. The ribosomal profiling data
should be accurate to within 2-fold for most genes, as the data from two halves of a
gene, or for two proteins in an equimolar complex, tend to be consistent within this
range (11). Also, Li and colleagues report that their quantitation is accurate for genes
with over 128 reads, which corresponds to roughly 1 ppm of expression. Genes with
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fewer reads are probably expressed at under 1 ppm. For a protein of average size,
1 ppm corresponds to about 6 monomers being produced per cell cycle, as in these
conditions there are 5.6 million protein monomers per cell (11).

To measure the importance of each protein for growth, we used a pooled library
of about 150,000 transposon mutants with DNA barcodes (17). We grew the pooled
mutants in MOPS minimal glucose media for 12 generations and we assayed the
abundance of each mutant before and after growth by amplifying the DNA barcodes,
sequencing them, and counting them (17). Because mutants that have a strong growth
defect in rich media will be missing from our library, we also used a list of 286 essential
(or nearly-essential) proteins from PEC (19) and growth data on individual deletion
strains from the Keio collection (18). From PEC, we identified 286 essential proteins;
we classified non-essential genes whose mutants had a significant change in abundance
during our pooled assay as either important for fitness (294 genes) or detrimental
to fitness (25 genes); we classified 25 other genes with low coverage in our mutant
pools as important for fitness because mutants grew poorly in both minimal MOPS
media and LB (18); we classified proteins with non-significant changes in mutant
abundance of above 3% per generation (48 genes) or with insufficient coverage (449
genes) as ambiguous; and we classified the remaining 2,944 proteins as having no
phenotype. Based on a negative control in which we examined the differences between
two independently-grown samples of the pool of mutants, we expect around 1 false
positive among the genes with significant phenotypes (see Methods). The genes with
no phenotype probably affect growth by less than 5% per generation, because of the
genes with estimated effects of 4%-5% per generation, 28 of 39 (72%) were statistically
significant. The phenotypic classification of the genes is included in Supplementary
Table S1.

As shown in Figure 1A, genes that have a phenotype are much more likely to
be highly expressed, but even genes with no phenotype are usually expressed at
significant levels, with a median expression of 13 ppm. Also note that 13 ppm is far
above the level at which the ribosomal profiling data becomes noisy, which is about
1 ppm. 81% of proteins with no phenotype are expressed at above 1 ppm.

Most genes that affect fitness are well expressed
Proteins with detectable benefits in minimal glucose medium tended to be well ex-
pressed in this condition, with 96% of these genes being expressed at 10 ppm or more.
Similarly, 23 of 25 of proteins that were detrimental to fitness (92%) were expressed at
10 ppm or more, which makes sense because they should be expressed at a significant
level in order to have a measurable negative impact on the cell. (For gene sizes in the
25th-75th percentile, 10 ppm corresponds to 30-70 monomers per cell.)

All of the essential proteins (19) were expressed at above 5 ppm, except for the
putative protein YceQ, which had no ribosomal profiling reads at all. YceQ also
lacked ribosomal profiling reads in two other growth conditions (11); YceQ lacks
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Figure 1: The production of proteins versus their importance for growth.
(A) For each class of gene, we show the distribution of protein expression, in parts
per million of amino acids (x axis, log scale). Proteins with little or no expression are
shown at 0.1 ppm. (B) The aggregate expression of each class of gene.

homology to any other protein; the open reading frame is disrupted in some strains
of E. coli; and we identified transposon insertions within yce@ ((17); Supplementary
Figure S1). It appears that yce@ does not encode a protein. Deletion of the entire
yce() region may not be possible because it contains the promoter of the essential gene
rne (Supplementary Figure S1). The other weakly-expressed essential proteins (below
10 ppm) were PrmC and MreD, at around 30 and 60 monomers per cell, respectively.
(PrmC, formerly known as HemK, was listed as essential by (19); it is not entirely
essential but a mutant has severely reduced growth (20).)

Some very weakly-expressed non-essential genes were identified as being important
for fitness, including 6 proteins with expression of under 1 ppm of monomers or
roughly 6 copies per cell. These proteins were ArpA, WcaE, YahL, YbfK, YdbD, and
YnbB. Wcak is believed to be a glycosyltransferase that is involved in the biosynthesis
of colanic acid, an exopolysaccharide; little is known about the function of the other
proteins (21). We are not sure how these proteins could have a measurable effect at
6 copies per cell unless they are regulatory proteins. Another 7 genes were important
for fitness despite weak expression of 1-2 ppm of monomers (6-12 copies per cell),
including three proteins that are involved in the uptake of iron via the siderophore
enterobactin (FepD, FepG, and Fes). Differences between the genetic backgrounds of
the two data sets, or subtle differences in growth conditions, might lead to these rare
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discrepancies (see Methods). We also wondered if these proteins might be important
for the transition to growth in this condition, rather than during exponential growth
(which is when protein production was measured), but this does not seem to be the

case (see Methods).

Overall, we find that almost all proteins are expressed at above 10 ppm of monomers
(or roughly 50 monomers per cell) when they have a significant effect on growth. This
threshold accounts for 95% of the genes with phenotypes (599 of 630).

High expression of many proteins with no expected benefit

31% of total expression (by mass) was due to the 2,944 proteins with no measurable
impact on fitness (Figure 1B). As shown in Figure 1A, the distribution of expression
is quite skewed, so most of this 31% is due to a few hundred well-expressed genes.
We decided to focus on 287 proteins were expressed at above 200 ppm and had no
measurable impact on growth; these account for 24% of total protein production.
Proteomics data (15) confirms that most of these “unnecessary” proteins are highly
expressed (see Methods).

Gene | Fraction | Group Description

ompkF 2.0% | Key/redundant | outer membrane porin la

ompC 1.5% | Key/redundant | outer membrane porin protein C

livJ 0.6% | Nutrient leucine/isoleucine /valine transporter subunit
ompT 0.6% | Stress outer membrane protease VII

ahpC 0.5% | Key/redundant | alkyl hydroperoxide reductase, C22 subunit
aceA 0.5% | Central isocitrate lyase (glyoxylate shunt)

pfiB 0.4% | Anaerobic pyruvate formate lyase I

aceB 0.3% | Central malate synthase (glyoxylate shunt)

zinT 0.3% | Stress cadmium-induced cadmium binding protein
sodA 0.3% | Key/redundant | superoxide dismutase, manganese

adhF 0.3% | Anaerobic aldehyde-alcohol dehydrogenase

pyrl 0.3% | — aspartate carbamoyltransferase regulatory subunit
ompX 0.3% | - outer membrane protein X

oppA 0.3% | Nutrient oligopeptide transporter subunit

pntA 0.2% | Central NAD(P) transhydrogenase subunit alpha
sodB 0.2% | Key/redundant | superoxide dismutase, Fe

pykF 0.2% | Key/redundant | pyruvate kinase

metQ) 0.2% | Nutrient DL-methionine transporter subunit

dppA 0.2% | Nutrient dipeptide transporter

tpx 0.2% | Stress thiol peroxidase

Table 1: The 20 most highly-expressed genes, by fraction of amino acids,
that have no measurable impact on growth.

We show the 20 most highly-expressed proteins with no mutant phenotype in Ta-
ble 1. Six of these genes are involved in key processes that are important for growth
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but the knockout lacks a phenotype because of genetic redundancy. For example,
the top two proteins, OmpF and OmpC, are the two major outer membrane porins.
Presumably, some expression of porins is necessary for the movement of nutrients
through the outer membrane, but deleting either of these individually has little ef-
fect. Similarly, AhpC reduces hydrogen peroxide, which is a toxic byproduct of the
aerobic electron transport chain, but so do KatE and KatG. If all three genes are
disabled, then under aerobic conditions, toxic hydrogen peroxide will accumulate and
growth will be inhibited (22). SodA and SodB are redundant isozymes of superox-
ide dismutase and eliminate another toxic byproduct of oxygen utilization. A strain
lacking both SodA and SodB cannot grow aerobically in a minimal glucose medium
(23). Finally, PykF is one of two isozymes of pyruvate kinase, which (in reverse) is
an ATP-forming step in glycolysis. Again, these isozymes are likely redundant.

Of the remaining 14 highly-expressed proteins with no mutant phenotype, 12 are
only expected to be important for growth in other conditions. High expression of these
proteins might nevertheless be selected for, just in case growth conditions change (4).
For example, AceA and AceB are involved in central metabolism — they encode the
glyoxylate shunt — but a metabolic model predicts that they are not required for
optimal growth on glucose (24), and 3C labeling studies suggest that they do not
carry flux in this condition (25; 26). PntA (the pyridine nucleotide dehydrogenase
« subunit) is also involved in central metabolism and is predicted to be dispensible
for optimal growth on glucose (24), although it is not clear whether this prediction
is correct. (A strain that lacked both subunits (pntAB~) was reported to have a 30%
reduction in growth rate on glucose (25), while we observed a defect of just 2% in
mutants of either pntA or pntB, and this defect was not statistically significant. The
discrepancy could be due to differences in growth conditions.) Similarly, in B. subtilis,
some enzymes in central metabolism are highly expressed even when they carry no
flux (16). LivJ, OppA, MetQ, and DppA are involved in the uptake of amino acids
or short peptides, which are not present in our media. PflB and AdhE are probably
important for growth in anaerobic conditions. OmpT, ZinT, and Tpx are involved
in responses to stresses that were not present in our experiment. The two remaining
proteins are a regulatory subunit of an important enzyme (Pyrl) and and an outer
membrane protein whose function is not well understood (OmpX).

To more systematically examine the highly-expressed and “unnecessary” proteins,
we examined the EcoCyc entries for all 287 highly-expressed genes that lack phe-
notypes (Supplementary Table S2). 106 of these 287 proteins are expected to be
important in other conditions, as they are involved in utilizing alternate nutrients
(66 proteins), stress resistance (24 proteins), parts of central metabolism that are
dispensible in our condition (11 proteins), or anaerobic growth (5 proteins). These
106 unnecessary proteins account for 11.4% of total protein production. Another 60
of the 287 proteins are involved in key processes that are expected to be important
for growth in our condition, but are redundant because of isozymes (as with SodA
and SodB above) or more indirect redundancy (see appendix). These 60 genetically-
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redundant proteins account for 6.8% of protein production. Another 10 proteins are
involved in key processes and have little phenotype, even though they are not re-
dundant as far as we know: these include 4 non-essential components of essential
complexes and 2 proteins involved in the modification of tRNA or rRNA (see ap-
pendix). These proteins might have fine-tuning or regulatory roles. Just 8 of the
287 proteins are characterized transcriptional regulators (27). The majority of the
remaining genes are poorly characterized: 62/103 (60%) have names that begin with
Y.

If we assume that the proportion of “unnecessary” expression that is due to genetic
redundancy is similar for moderately-expressed proteins as it is for highly-expressed
proteins (6.8/24.1 = 28%), then we estimate that 31% - (1 — 0.28) = 22% of protein
production is unnecessary in this growth condition. More conservatively, if we consider
only the proteins of known function that are not expected to be important, then we
estimate that 11.4/24.1 - 31% = 15% of protein production is unnecessary.

Highly-expressed genes that are not important for fitness often have phenotypes
in other conditions

If much of unnecessary protein production is due to preparation for other condi-
tions, then the highly-expressed yet unnecessary proteins should be important for
fitness in other conditions. So, we asked if these genes have phenotypes in a com-
pendium of 162 fitness experiments for E. coli ((17); M. N. Price et al., in preparation;
http://fit.genomics.lbl.gov/). This compendium includes growth in 29 different car-
bon sources, growth in 16 different nitrogen sources, growth in the presence of 35
different antibiotics or biocides, and motility on an agar plate. The compendium
covers 2,944 proteins that do not have a phenotype in minimal glucose media, and
722 of these are important for growth in other conditions or for motility. As shown in
Figure 2, proteins that are not important in minimal glucose media are much more
likely to be highly expressed if they have phenotypes in other conditions, with a me-
dian expression of 45 ppm instead of 7 ppm (P < 107! Wilcoxon rank sum test).
In total, the 722 proteins that are not important for fitness but have phenotypes in
other conditions account for more of protein production in minimal glucose media
(18%) than the 2,222 proteins that do not have any phenotypes at all (14%).

A caveat is that some of the genes with measurable phenotypes in artifical con-
ditions might be more subtly useful in nature. For example, some form of cellular
damage might occur at low rates under natural conditions, so that the repair genes
have subtle benefits. Yet during growth in the presence of an inhibitor that creates
this type of damage, these fine-tuning genes could have large benefits. We thought
that this caveat would be less likely to be relevant for carbon sources or nitrogen
sources: F. coli would probably not be able to consume these nutrients unless they
were sometimes important in nature. So we considered each carbon or nitrogen source
experiment individually, and asked whether proteins that were important for utilizing
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that nutrient (but not glucose) where more highly expressed than the typical protein
(in minimal glucose media). Also, we considered only experiments with 5 or more im-
portant proteins. In 82 of 96 experiments, the median protein that was important for
fitness (in the condition but not in glucose) was expressed at least 3-fold higher than
the median protein (in glucose). Thus, we propose that much of the “unnecessary”
expression represents preparation for changing conditions.

—— Important in other conditions (n=722)
= = Not (n=2222)

0.1 1 10 100 1000 10,000
Protein expression by weight (parts per million)

Figure 2: The production of “unnecessary” proteins versus their impor-
tance in other conditions. Only genes that were not important for fitness in
minimal glucose media are included. The z axis is as in Figure 1A.

Discussion

Do “unnecessary” proteins have subtle benefits?

A major caveat in our results is that the “unnecessary” proteins might have benefits
that are too subtle for us to measure. Our assay is sensitive to a loss of fitness due
to disabling a gene of about 4% per generation, which would give a logs ratio of —0.7
after 12 generations. But natural selection could maintain the expression of proteins
with far smaller benefits.

We relied on our understanding of F. coli’s physiology to argue that many of these
proteins are unlikely to provide a subtle benefit. Highly-expressed proteins that are
unlikely to be beneficial were involved in steps in central metabolism that do not
carry flux (such as aceAB), in anaerobic growth, or in the utilization of nutrients that
were not provided in the growth medium.
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A few of the “unnecessary” proteins might be involved in the salvage of components
that leak out of the cell. For example, of the 66 highly-expressed and “unnecessary”
proteins for utilizing alternate nutrients, 16 are involved in the uptake of amino acid
or peptides, and these account for 2% of total protein. Although neither amino acids
nor peptides were present in our media, they might be released by the cells. For
example, peptides might be released after the degradation of misfolded periplasmic
proteins by DegP (also known as HtrA) or OmpT, as both of these proteases are highly
expressed in our growth condition. But we doubt that the secretion of amino acids or
peptides is sufficient to justify an investment of 2% of protein in recovering them. A
similar scenario arises with glutathione, which can be secreted to a concentration of
over 100 uM by E. coli while growing in minimal glucose media (28). (The secretion
of glutathione may be a consequence of the domestication of FE. coli K-12, as it
was not observed with clinical isolates (29).) The GsiB protein (formerly known as
Y1iB) accounts for 0.02% of protein and is involved in the reuptake of the secreted
glutathione (28). Although we did not observe a benefit for gsiB — we estimated
a +1% per generation change in mutant abundance per generation, which was not
statistically significant — it is possible that it has a tiny benefit that is too small for
us to observe.

Overall, we cannot be certain of the lack of benefit for any one of these genes, but
it does not seem plausible that the expression of most of these genes is beneficial.

Adaptive just-in-case expression of many genes

Instead, we argue that the expression of many of these proteins is due to prepara-
tion for other conditions. This was supported by the observation that many of the
“unnecessary” and highly-expressed proteins are measurably important for fitness in
other conditions.

The high expression of genes that are important in other conditions need not
imply that those genes are constitutively expressed. Of the 227 highly-expressed
genes with no measurable phenotype in glucose minimal media and no expectation
of genetic redundancy, 45% are known to be regulated by one or more transcription
factors (27). This is similar to the rate for all genes (38%). Because many of the
transcription factors in E. coli K-12 are still poorly characterized, the true proportion
could be much higher.

High unnecessary expression of regulated genes may seem paradoxical, but intu-
itively, if the good times are not likely to last, then it is adaptive to express these
genes at significant (but not maximal) levels: turning them on only when needed
could lead to a long lag in growth (30; 31; 32). Alternatively, the high expression of
these genes in artificial conditions could reflect their regulation by signals that are not
directly related to their function (4), and such high levels of unnecessary expression
might not occur in natural conditions.
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The cost of being a generalist

We estimate that 22% of E. coli’s protein production in minimal glucose medium is
due to genes that are not important for fitness in this condition (after correcting for
genetic redundancy). And we observed that over half (57%) of this expression was
due to genes that are important for fitness in other conditions. This implies that, in
minimal glucose media, E. coli invests 22% - 57% ~ 13% of protein to prepare for
other conditions. Because the fitness cost of useless protein is at least as large as the
fraction of protein (6; 8; 9; 10), this burden could reduce E. coli’s growth rate by
13%.

To test if this kind of burden occurs in other microbes, we compared ribosomal pro-
filing data (33) and homozygous mutant data (34) for budding yeast Saccharomyces
cerevisiae growing in rich media. We found that about 25% of protein production is
for genes that are not important for fitness. We suspect that most microbes invest
significantly in the expression of proteins that are “on standby” in case conditions
change.

The high aggregate cost of unnecessary expression suggests that it might be possi-
ble to engineer strains with reduced genomes that will grow faster or more efficiently.
For example, Posfai and colleagues constructed a strain of E. coli K-12 with 42 dele-
tions that removed 14% of the genome (35). We estimate that deleting these genes
saved 2.6% of protein production. (We ignored any regulatory effects of the dele-
tions.) But, Posfai and colleagues also removed six of the genes that we identified
as being important for fitness (yagh, ydbD, ynbB, wcaF, yfdl/gtrS, and yfjl), which
may explain why they did not observe any improvement in the growth rate.

Another aspect of being a generalist is the need for gene regulation. Among the
186 homomeric transcription factors that have been characterized in E. coli (27),
the typical expression was 10 ppm to 60 ppm (25th to 75th percentile), and their
total expression is 1.8%. Thus, the total cost of gene regulation does not seem to be
that high. However, the cost of an individual regulator would be significant during
evolution, which might cause rarely-needed capabilities to be lost from most members
of a population (36).

Proteins with tiny benefits will not be maintained

We propose a minimum threshold for the benefit of a protein, on the assumption
that it will not be maintained by natural selection unless the benefit exceeds the
cost. We found that 96% of proteins with a detectable fitness advantage had a cost
of above 10 ppm. Similarly, in S. cerevisiae growing in rich media, 89% of proteins
with a detectable fitness advantage are expressed at 10 ppm or higher (combining
(34; 33)). It is possible that a protein with subtle benefits might not require such high
expression, but we found that the median protein without a measurable phenotype
was still expressed at 13 ppm. So, we propose that proteins with benefits of 10 ppm
or less will be selected against. Although a benefit of 10 ppm might seem small, such

10
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tiny benefits are sometimes considered in evolutionary theory, such as in a recent
model of selection for genetic redundancy (37). We argue that evolutionary models
that rely on such subtle benefits of a gene are not realistic because of the cost of
protein production.

The challenge of detecting the cost of unnecessary expression

Although an unnaturally highly-expressed gene can cause a measurable reduction in
the growth rate (8; 9; 10), it is challenging to measure the reduction in the growth
rate due to unnecessary expression at natural levels. In minimal glucose media, many
of the highly and “unnecessarily” expressed proteins account for less than 0.1% of
protein each, which implies that it would take over 100 generations to see a 10%
increase in the relative abundance of a deletion strain. An experiment of this length
is risky because of secondary mutations. The most highly-expressed “unnecessary”
protein was just 0.6% of protein (LivJ, see Table 1).

Would the cost of expressing unnecessary protein should be detectable in labora-
tory evolution experiments? A cost of 0.6% implies that it would take 115 generations
for the abundance of a beneficial mutant to increase by even two-fold. If the mutant
is initially very rare, then it still will not be detectable. Furthermore, in labora-
tory evolution experiments with bacteria, strongly beneficial mutations are common,
which leads to “hitchhiking” — if a strongly-beneficial mutation happens to arise in
a genetic background that contains mildly-deleterious variants, then those deleteri-
ous variants will increase in abundance. Thus, hitchhiking weakens the impact of
selection on variants with more subtle effects. In theory, variants become effectively
neutral if they are under selection that is an order of magnitude weaker than that
of the strongly-beneficial mutations (38). Because beneficial mutations often have an
advantage of several percent per generation or more (39), the loss of an unnecessary
protein that is expressed at 0.3% would be effectively neutral.

In practice, it appears that some unnecessary catabolic capabilities are lost during
the evolution of E. coli in the laboratory in a glucose medium, but most remain, even
after 50,000 generations (40). Losses occur at a higher rate in strains with elevated
mutation rates, which suggests that many of the losses are effectively neutral (40).
Also, because many of the losses of catabolic capabilities in the mutator strains are
rescued by a reduction in temperature, these losses are probably due to mutations that
cause proteins to misfold, rather than mutations that reduce unnecessary expression
(40). A few catabolic capabilities were lost in multiple lines, which seems to reflect
selection against the deleterious activity of a protein, rather than selection on the
cost of making an unnecessary protein. For example, during the growth of E. coli
on glucose, there is strong selection (1-2% per generation) for the loss of D-ribose
utilization (41). This seems far too strong to be explained by the cost of expressing
the ribose utilization operon, which we estimate at 0.03%. Instead, it appears that the
activity of these proteins is detrimental. More broadly, many genes are detrimental
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to fitness in some conditions (1; 2; 3; 4; 5), and these are the genes that we expect
will be lost or down-regulated during laboratory evolution experiments, regardless of
their expression levels.

Conclusions

Proteins that are important for fitness are highly expressed, but many of the highly-
expressed proteins are not important for fitness. Some of this is due to genetic redun-
dancy, but most of these proteins are important for fitness in other conditions, so we
propose that they are expressed because of the possibility of a rapid change in condi-
tions. In aggregate, this preparation accounts for around 13% of the protein in E. coli
growing in minimal glucose media. The bulk of this investment is due to around 200
highly-expressed proteins, but most other proteins that are not important for fitness
are still expressed at detectable levels and have significant costs during evolution.

Materials and Methods

Measuring mutant fitness in minimal glucose medium

We used a collection of 152,018 randomly-barcoded transposon mutants that were
derived from E. coli strain BW25113 (17). The pool of mutants was recovered from
the freezer by growing it in rich medium (LB) until ODgyy = 1 and pelleted, and an
initial sample was collected. The remaining cells were washed and inoculated into
two different 2 liter flasks, each with 200 mL of MOPS minimal medium (Teknova)
supplemented with 2 g/L D-glucose, at an initial OD = 0.02. (MOPS includes inor-
ganic salts as well as 3-(N-morpholino)propanesulfonic acid and tricine as buffering
agents, but does not include any vitamins.) The cells grew aerobically at 37°C until
late exponential phase (OD = 0.57-0.59), were diluted back to OD = 0.02, and grew
again to saturation (OD = 2.8-3.1). Thus the cells grew in minimal media for a total
of about 12 generations. To compare the abundance of each strain at the end of each
experiment to its abundance at the beginning, we used DNA barcode sequencing (42)
with Illumina. Specifically, we extracted genomic DNA and performed PCR using
the 98°C protocol (17).

We sequenced these three samples using Illumina HiSeq. For each sample, we
obtained 23-26 million reads with barcodes that matched the pool. We also sequenced
these three samples on a MiSeq instrument, along with two additional samples that
were collected from the two replicate cultures before the first transfer (at about 5
generations). The MiSeq run had 1.7-3.0 million reads per sample.

We computed gene fitness values as described previously (17). Briefly, the fitness
of a strain is the normalized logs ratio of the number of reads, and the fitness of a gene
is the weighted average of the fitness values for strains with insertions in the central
10-90% of the gene. In each HiSeq sample, the median gene had around 2,000 reads
for relevant strains. The two replicate cultures yielded similar gene fitness values (r
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Figure 3: Consistency of gene fitness values in minimal glucose medium.
(A) Consistency between replicates at 12 generations. Fitness values less than -3 are
shown at -3, and 123 genes have fitness under -3 in both replicates. (B) Consistency
across time. Genes with significant phenotypes (of either sign) are subdivided into
those with weak expression (under 2 ppm of monomers) or above. Fitness values less
than -3 are shown at -3. (C) Consistency within each gene. Fitness values at 12
generations were computed separately for the first and second half of each gene that
had sufficient coverage. (D) shows the same data as (C), but only for fitness values
above -3. In all panels, lines show x =0, y =0, and z = y.
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= 0.995; Figure 3A). Fitness at 12 generations (from HiSeq) was strongly correlated
with fitness at 5 generations (r = 0.936, Figure 3B). Gene fitness at 12 generations
was also similar (r = 0.91) to the results of an independent experiment on a different
day with the same pool of mutants, a higher concentration of D-glucose (3.96 g/L),
a smaller volume (10 mL), and fewer generations of growth (about 6.9; experiment
set2IT096 of (17)).

Gene fitness values at 12 generations were usually more extreme than those at 5
generations, which indicates that the abundance of the mutants continued to change
in the same direction from 5-12 generations as they had during 0-5 generations (Fig-
ure 3B). This shows that most of these genes were important during exponential
growth, which is when the ribosomal profiling data was collected, and not just for the
transition to growth in this medium. All 13 genes that were significantly important
for fitness (as described below) despite weak expression of under 2 ppm of monomers
were also below the line (Figure 3B). (None of the genes that were detrimental to
fitness were so weakly expressed.)

As another way to check that the fitness data represents the impact of disabling
each protein, we estimated the fitness at 15 generations separately for the first and
second half of each gene, and then averaged the two independent replicate experiments
(Figure 3C). We considered the 3,189 non-essential proteins that were included in the
comparison to the ribosomal profiling data and have sufficient coverage of both halves
of the gene. If the change in abundance of the strains is due to disabling the protein,
then insertions at different locations in the gene should have similar fitness values,
while if the change in strain abundance is due to some other factor such as secondary
mutations, then the insertions at different locations would have uncorrelated fitness
values. The fitness values from the two halves were strongly correlated (r = 0.96),
and just one gene had a significant phenotype but had inconsistent signs for the two
halves (the adenylate cyclase cyaA, see Figure 3D).

A caveat that our analysis did not take into account is polar effects, in which a
transposon insertion in one gene leads to reduced expression of downstream genes via
rho-dependent termination. Although we do not believe polar effects are common (see
(17) for a systematic analysis), they might lead us to underestimate the proportion
of “useless” protein.

Identifying significant phenotypes in minimal glucose medium

For each replicate and for each gene, we computed a t-like test statistic that takes
into account the variability of the fitness values for the strains for each gene (17). To
identify genes with statistically significant changes, we wanted to combine the two ¢
values, but they are not independent as they both used the same data for the initial
sample. So, instead of using the usual way of combining ¢ values of (t4 +1tp)/V/2, we
used teomp = (ta +tp)/ v/3. The increased denominator makes up for the partial non-
independence. To see why 3 instead of 2 is correct, consider the expected variance of
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the sum of the two fitness values, and remember that fitness is the difference of log
abundances. With non-independent start samples, the variance is Variance(A — C +
B — (') = Variance(A) + Variance(B) + 4 - Variance(C), while with independent start
samples, it is Variance(A —C' + B — D) = Variance(A) + Variance(B) + Variance(C) +
Variance(D). (Remember that Variance(A + B) = Variance(A) + Variance(B) if A
and B are independent.) If each component has about the same variance, then the
non-independence increases the variance by a factor of 6/4 = 3/2.

Genes were considered to significantly affect fitness if |teoms| > 4. If ¢ follows the
standard normal distribution then we expect 0.2 false positives. As a control, we
compared the two 12-generation samples to each other and identified just 1 gene with
|t] > 4.

Seven genes had strains with statistically significant changes at 12 generations but
had a different sign after 5 generations (these can be seen as outliers in Figure 3B).
Another 39 genes had mutants that showed non-significant changes in abundance of
3% per generation or more. These 48 genes were classified as ambiguous.

Most genes whose deletion strains have strong growth defects when grown indi-
vidually in glucose medium also have a significant fitness defect in our assay. Baba
and colleagues (18) grew each mutant from the Keio deletion collection in a min-
imal MOPS glucose media and measured the optical density at 24 and 48 hours.
(Although their media was similar to ours, it contained 2 mM instead of 1.32 mM
phosphate.) We focused on the measurement at 24 hours as it should be more sen-
sitive to a reduction in the growth rate, and we considered a 2-fold reduction in OD
relative to the median as a strong defect. Of the genes that were included in the
comparison to the ribosomal profiling data, 140 had such a strong reduction in OD,
and in the fitness data, we classified 116 (83%) of these as significantly important
for fitness, 13 as ambiguous, 1 as detrimental (rseA), and 10 as not important for
fitness. RseA encodes an anti-sigma factor of ¢ and is not important for fitness in
our other defined-media experiments either (17); the cause of the discrepancy is not
clear. The other 10 discordant genes included several genes involved in molybdenum
cofactor synthesis (moeA, moeB, moaC) or selenocysteine synthesis (selD), but these
processes are not expected to be important for growth under aerobic conditions. The
discrepancy probably indicates a low concentration of oxygen in the experiment of
Baba and colleagues, which was conducted in 96-well microplates without shaking.
The other discordant genes were ubiC, which is involved in ubiquinone synthesis but
is not required for growth on glucose (43); the DNA repair enzyme wvrD; exoX, which
encodes a genetically redundant DNA repair enzyme (44), so it is not clear why it
would be important for fitness in these growth conditions; metL, which is expected to
be redundant with thrA in these conditions; and the poorly characterized genes hfiD
and ycal.
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Proteomics confirms the high expression of “unnecessary” proteins

To check that the high expression of genes with no measurable benefit is genuine,
we considered proteomic estimates of protein abundance (15). Unfortunately, the
proteomic data with the highest coverage is from cells that were grown in a different
media formulation than we used (M9 media with trace elements added instead of
MOPS media, and with a higher concentration of glucose). Nevertheless, among the
4,062 proteins that were included in our analysis, 1,909 were quantified by proteomics,
and for these proteins, the proteomics data was quite correlated with the ribosomal
profiling data. For example, the Spearman rank correlation of the weight fraction,
according to the two different methods, was 0.84, and the Pearson linear correlation
of the monomer fractions was 0.82. The proportion of expression (by weight) that
was due to proteins with no measurable phenotype was 23% according to proteomics,
as compared to 29% for these same proteins according to ribosomal profiling. (29% is
slightly less than 31%, which was reported above, because of the aggregate expression
of the proteins that were not quantified by proteomics.)

We also checked if the 287 highly-expressed “unnecessary” proteins (with a weight
fraction of above 200 ppm) were also highly expressed according to the proteomics
data. 270 of the 287 proteins (94%) were quantified by proteomics, and of these, 219
(81%) had a weight fraction of above 100 ppm in the proteomics data. Overall, the
proteomics data confirmed the high expression of most of these proteins.

Experimental differences between the fitness data and the ribosomal profiling
data

The ribosomal profiling data was from strain MG1655, while our transposon mutants
were made from strain BW25113. The genomes of these strains were compared by
(45). BW25133 lacks araBAD, rhaDAB, or valX, has a truncated and modified lacZ,
has a frameshift in hsdR, and has a premature stop codon in yjjP. BW25133 also
lacks 110 nt in an intergenic region. MG1655 (but not BW25113) has mobile element
insertions in crl, in mhpC, and in two intergenic regions, and has frameshifts in glpR
and in gatC. The strains also differ at a 3 nt stretch in rrlD and 13 other single-
nucleotide substitutions.

We do not expect these differences to lead to global changes in gene expression
or in growth. Indeed, the proteomics data (15), which gave similar results as the
ribosomal profiling data, was obtained using BW25113. Incidentally, both strains
have a frameshift mutation in rph that reduces the expression of the downstream
gene pyrkE, which is required for pyrimidine biosynthesis; this mutation reduces the
growth rate in minimal media by around 10% (46).

The media formulations for the fitness and ribosomal profiling experiments were
identical, and both experiments used a culture volume of 200 mL at 37°C and shaking
at 180 rpm. However, the ribosomal profiling experiments used 2.8 L flasks, while
for mutant fitness experiments we used 2.0 L flasks, so the concentration of oxygen
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might not have been identical. The proteomics data used a different media and a
smaller volume: it was collected using M9 media with 5 g/L glucose and added trace
minerals, and with a 50 ml culture in a 500 ml flask shaking at 300 rpm (15).

A fitness compendium for Escherichia coli K-12

This compendium includes previously-described fitness experiments with various car-
bon sources and M9 minimal media (17). Nitrogen source experiments were conducted
similarly, with D-glucose as the carbon source. Stress experiments were conducted
in LB, at 28°C instead of 37°C, and in a 48-well microplate. Inhibitors were added
at a concentration that would reduce the growth rate by about 2-fold. All of these
experiments were inoculated at OD = 0.02 and grown aerobically until saturation.
Only experiments that met standards for internal and biological consistency (17) were
retained for analysis.

Fitness values and ¢ scores were obtained as described above. t values from repli-
cate experiments were combined as described above if they shared a control. If there
were 3 or 4 replicates with shared controls, then the variance was reduced by 2 or
2.5 instead of by 1.5 fold. If the replicates were fully independent, then the t val-
ues were combined in the traditional way (teomp = . t/+/n, where n is the number
of replicates). For stress experiments, only independent samples grown at the same
concentration were considered to be replicates.

Across the compendium, genes were considered to have a significant phenotype if,
in any condition, average fitness was under -0.5 and t.,,, < —4. There were 1,107
such genes. In 13 control comparisons between independent samples from the same
culture, this threshold was never reached. (Given 13- 3,789 values from the standard
normal distribution, the expected number of values under -4 would be 1.6.) Based on
the standard normal distribution, we would expect 13 false positives in this data set,
or a false discovery rate of about 1%.

For the analysis of individual experiments, a phenotype was considered significant
if fitness was under -1 and t < —4.

Software

The E. coli fitness experiments were analyzed using FEBA statistics version 1.0.1
(https://bitbucket.org/berkeleylab/feba). Statistical analyses were conducted in R
2.15.0.

Data Availability

Tables of counts per barcode, fitness values, and ¢ values are available at http://genomics.lbl.gov/
strongselection/, as are supplementary tables 1 and 2. Also, the E. coli fitness com-

pendium can be browsed at http://fit.genomics.1bl.gov/.
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Appendix: Comments on the functions of highly-expressed and

“unnecessary” proteins

70 of the 287 proteins are involved in key processes that we expected would be im-
portant for growth in minimal glucose media. For 60 of them, we can explain the
lack of phenotype due to redundancy. The redundancy may be due to isozymes, but
sometimes the redundancy is indirect. For example, SpeD is highly expressed and is
required for the synthesis of spermidine, which is one of the major polyamines in £.
coli. Previous studies found that a strain of F. coli that lacks spermidine has a subtle
growth defect (around 15%) while a strain that lacks both spermidine and another
polyamine, putrescine, has a severe growth defect (around 70%) (47; 48). This indi-
cates that putrescine and spermidine synthesis are partly redundant, and under our
conditions, spermidine synthesis may be fully redundant. Alternatively, the effect of
the loss of spermidine might be small: SpeE is also required for spermidine synthesis,
and we found that knockouts of speF had a subtle growth defect (3% per generation)
that is near the limit of sensitivity of our fitness assay.

Why doesn’t mutating any of the other 10 highly-expressed proteins that are
involved in key processes lead to reduced growth? BamB, BamC, SecB, and YajC are
non-essential components of essential protein complexes. LepA, MiaB, and RimO are
accessory proteins for translation or for the modification of tRNA or rRNA, and might
have more subtle advantages. ZapB is required for Z ring placement and mutants
have altered size but still grow at about the same rate as wild-type cells (49). TatA
is the twin arginine translocase and apparently none of the proteins that it exports
are important for growth in our conditions. And MlaC is involved in ensuring the
asymmetry of lipids in the outer membrane; this is important for stabilizing the outer
membrane but is not important for fitness in standard growth conditions (50).

Supplementary Tables

Supplementary Table S1: Comparison of fitness data and ribosomal profiling data.
Supplementary Table S2: Manual classification of highly expressed genes with no

phenotype in minimal glucose.
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Supplementary Figures

Transposon Insertions
In and Around YceQ
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Supplementary Figure S1: Locations of transposon insertions in and
around yceQ. Only locations that are supported by at least two TnSeq reads (Wet-
more et al 2015) are shown. A “+” symbol indicates that the promoter and the an-
tibiotic resistance gene within the transposon are on the + strand. We also highlight
the location of the primary promoter (pl) of rne (Ow et al, Molecular microbiology
43:159-171), which is an essential gene, and the conserved and structured regulatory
leader in the 5" untranslated region of the rne mRNA (Diwa et al, Genes & develop-
ment 14:1249-60). The vertical lines show the extent of yce@. Note that yce@ overlaps
both the primary rne promoter and the regulatory leader, which may explain why
deleting the entire region is not possible (Baba et al 2006). Consistent with this, we
identified transposon insertions within yce( but only in the “-” orientation, so that
the promoter within the transposon could drive expression of rne. Incidentally, inser-
tions within the 3’ part of rne are viable because the C-terminal part of RNase E is
not required for its catalytic activity or for its essential role in processing ribosomal
RNA (Kido et al, J. Bacteriology 187:3917-25; Lopez et al, Molecular microbiology
33:188-99).
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