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ABSTRACT  

Accurate identification of copy number alterations is an essential step in understanding the events 

driving tumor progression. While a variety of algorithms have been developed to use high-throughput 

sequencing data to profile copy number changes, no tool is able to reliably characterize ploidy and 

genotype absolute copy number from tumor samples which contain less than 40% tumor cells. To 

increase our power to resolve the copy number profile from low-cellularity tumor samples, we 

developed a novel approach which pre-phases heterozygote germline SNPs in order to replace the 

commonly used  'B-allele frequency' with a more powerful 'parental-haplotype frequency'. We apply 

our tool - sCNAphase - to characterize the copy number and loss-of-heterozygosity profiles of four 

publicly available breast cancer cell-lines. Comparisons to previous spectral karyotyping and 

microarray studies revealed that sCNAphase reliably identified overall ploidy as well as the individual 

copy number mutations from each cell-line. Analysis of artificial cell-line mixtures demonstrated the 

capacity of this method to determine the level of tumor cellularity, consistently identify sCNAs and 

characterize ploidy in samples with as little as 10% tumor cells. This novel methodology has the 

potential to bring sCNA profiling to low-cellularity tumors, a form of cancer unable to be accurately 

studied by current methods. 
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INTRODUCTION 

Somatic Copy Number Alterations (sCNAs) represent an important class of mutation in the cancer 

genome, evident by the large number of short focal sCNAs and larger chromosomal scale changes 

seen in the analysis of individual tumor genomes (1). This class of mutation has been linked to tumor 

progression, metastasis, multidrug resistance and poor clinical outcomes (2-6). Despite the sporadic 

accumulation of sCNAs during tumor progression, a number of regions are subject to recurrent 

sCNAs (7). Some of these recurrent sCNAs are found across different cancer types, while others 

were specific to a particular type or subtype of the disease (6,8-10). As a result, determining the 

sCNAs in an individual tumor sample has become standard practice in pathology labs for the 

treatment of some cancers. For example, this type of analysis is routinely used to assign the optimal 

chemotherapeutic treatments for patients with breast cancer who contain additional copies of the 

HER2 gene (11,12).  

Despite the importance of this class of mutation, it can be difficult to characterize the copy number 

profile of a tumor genome (13).  A typical tumor biopsy will contain both tumor cells as well as cells 

with a normal, diploid genome.  This can be quantified via the cellularity (the proportion of tumor cells 

in this mixture) or via the tumor DNA purity (the proportion of tumour DNA in the mixture of normal 

and tumor DNA).  Tumour purity is a function of both the cellularity and the tumor ploidy (which we 

define as the average copy number of the tumor) - for example a 50% cellularity tetraploid tumour and 

will have a 66% tumor purity.  The best current methods fail to produce the correct copy number 

segmentation when tumor cellularity in a sample falls below 40% (Supplementary Table S1). The 

cellularity for a number of serious forms of cancer, such as Breast Invasive Carcinoma, Lung 

Adenocarcinoma and some forms of Melanoma routinely fall below this threshold (13), moreover 

multiple cancers including renal clear cell carcinoma and lower grade glioma show a decreased 

survival time with lower tumor cellularity (14). Thus there is an important unmet need to identify copy 

number mutations in low purity samples. 

It is possible to survey the copy number profile of samples with a high tumor content, using a number 

of different techniques, however it is difficult to characterize the full spectrum of sCNAs with a single 

technology. Spectral Karyotyping (SKY) is one of the most accurate tools for characterizing and 

visualizing genome wide changes in ploidy (15-18), but suffers from a limited resolution and is low 

throughput. More recent technologies, such as single-nucleotide polymorphism (SNP) microarrays 

has provided powerful approaches for interrogating the tumor genome and identifying copy number 

mutations (13,19-22).  These include ASCAT (23) and ABSOLUTE (13), both of which initially pre-

segment SNPs into regions of equal copy-number (using a threshold based, model-free approach) 

and subsequently estimate ploidy and tumour purity by use of a model for the observed read-depth 

data conditional on the fixed segmentation.  ASCAT and ABSOLUTE are highly successful in samples 

with as little as 40% tumor DNA  (13,23), however the reliance on an initial model-free segmentation 

is likely to limit the ability of these methods to detect copy number alterations at lower tumour 

cellularities (Supplementary Table S1). The performance of these tools are also restricted by the 
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resolution of different microarray platforms as well as fluorescence signal saturation at high copy 

number. 

High throughput sequencing (HTS) is a powerful technology for identifying sCNAs, which may make it 

possible to characterize the complete copy number profile of impure cancer samples. Both ASCAT 

and ABSOLUTE have been modified to be applicable to HTS, and a number of other computational 

tools have been specifically designed to identify copy number changes, characterize loss of 

heterozygosity (LOH) and identify homozygous deletions from HTS data (Supplementary Table S1). 

These tools use a variety of different signals present in HTS data including read depth aberration, B-

allele frequency at somatic and germline SNPs.  Most of these tools are not suitable for samples with 

tumor cellularity less than 40% (23-26).  CLImAT is a recently introduced tool, which uses read-depth 

and BAF to estimate the ploidy and purity of impure tumor genomes and also characterizes copy 

number and LOH changes (27). At 20% simulated tumor cellularity, CLImAT demonstrated more 

robust cellularity and ploidy estimates as well as greater sCNA and LOH calling accuracy than 

Absolute (13),  SNVMix (24), Control-FREEC (25) and Patchwork (26); however this was evaluated 

using simulated tumor chromosomes rather than tumor-normal mixture samples. 

Modeling BAF has strengths and limitations complementary to read-depth (RD) modeling. BAF - 

which effectively uses an internal control of one allele versus the other - is less susceptible to 

position-specific biases, such as GC and mappability biases. However, one striking disadvantage of 

BAF modeling is that it is not possible to directly summate the allelic depth signal over multiple 

adjacent SNPs, as the non-reference alleles at one adjacent position may not be on the same 

parental haplotype. Summating RD over windows of size from 10kb up to 1Mb leads to substantial 

increases in statistical power to detect sCNAs. We hypothesized that application of state-of-the-art 

computational phasing approaches, incorporating population haplotype from the 1000 genomes 

project (27) as well as direct within-read phasing (28), would allow us to sum allelic depth along 

phased haplotypes to obtain parental-haplotype frequency (PHF) estimates. We further hypothesized 

that modeling PHF instead of BAF could lead to improved power characterize tumor ploidy and 

sCNAs at ultra-low levels of tumor purity. 

In this manuscript we present sCNAphase (https://github.com/Yves-CHEN/sCNAphase), a tool, which 

has been developed to characterize the full copy number profile of a cancer sample across a range of 

tumor purity. It achieves this by inferring tumor ploidy, sCNAs and regions of LOH across all levels 

tumor purity by integrated modeling of PHF and RD. We show that sCNAphase has accuracy 

comparable to SKY in determining genome-wide changes in ploidy and is able to identify focal sCNAs 

that are consistent with results from microarray analyzes. We also show that sCNAphase can 

confidently determine regions that have undergone a loss of heterozygosity event and identify regions 

of homozygous deletion. Moreover, sCNAphase consistently generates accurate sCNA 

segmentations at low levels of tumor purity and can accurately define levels of tumor purity in 

mixtures containing 5% tumor DNA. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2016. ; https://doi.org/10.1101/038828doi: bioRxiv preprint 

https://doi.org/10.1101/038828
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

MATERIAL AND METHODS 

Datasets 

The Illumina whole genome sequencing data of four pairs of tumor and matched normal cell line 

samples were downloaded from Cancer Genome Atlas (TCGA) (29) or Illumina BaseSpace 

(https://basespace.illumina.com). All of the 8 samples are at higher than 49x coverage, expect for 

HCC2218BL at 37x (Table 1).  Two independent normal 30X samples were also available for 

HCC1143 and HCC1954.  For the other two samples HCC1187 and HCC2218, we generated a 

second 'normal' by downsampling the available matched normal to 30X.  We will refer to these second 

normal samples as '0% mixtures' as we will use them as a negative control to investigate whether 

methods detect tumor DNA in mixtures without tumour DNA. 

By mixing the different amount of reads from pure tumor samples together with the '0% mixture' 

samples (i.e. the second normal sample), a series of mixtures samples were created at 30x coverage 

with 5%, 20%, 40%, 60%, 80% and 95% of tumor DNA. These mixture samples were obtained as 

BAM files from the Cancer Genome Atlas (TCGA) (29) for HCC1143 and HCC1954, from Illumina 

BaseSpace for HCC1187 and HCC2218 (Supplementary Table S2).   We also created an extra 10% 

mixture for all samples.   

 

Phasing Matched Normal 

By running samtools (30) and BCFtools (30) on the normal samples, we determined the germline 

heterozygous SNPs. At these loci, samtools is used to calculate the depths for the tumor sample. The 

somatic mutations were ignored in this step. Then SHAPEIT2(28), an in silico haplotype phasing tool, 

was used to phase whole genome sequence short read data. Because SHAPEIT2 requires a set of 

pre-phased reference haplotypes as input, we used pre-phased haplotypes provided by SHAPEIT2 

calculated from the 1000G Phase I dataset.  Based on this analysis, we assigned each allele from 

each heterozygote in the matched normal to a haplotype, labelled H1 or H2. 

 

Calculating regional haplotype depth  

Our approach only considers read-depth at heterozygous germline SNPs, and ignores information 

from somatic mutations.  We calculate the total read depth (RD) for the tumour (t) and normal (n)  in 

windows i = 1..N, each consisting of  K germline heterozygous SNPs (with a default K = 40) as 

                                                      
1

  
K

t t

i k

k

d RD


   

1

  
K

n n

i k

k

d RD


                                                                                 (1) 

                                                                 

We also calculate the read-depth in these regions specific to haplotype H1 (RDH1) as 
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If the K SNPs in a window are split by a large gap (greater than 1M, e.g a centromere), this window is 

excluded from further analysis. We discuss below detection of copy number switches which occur 

within a window of n SNPs. 

 

The data modelled by sCNAphase is D = (mt, dt,  mn, dn), where mt = {mt
i}  dt = {dt

i} , mn = {mn
i} and dn 

= {dn
i}. We also calculate the values  Dt, Dn as the sum totals of  dt, dn respectively across the genome. 

 

We also define the tumour parental-haplotype frequency (PHFt), which is a generalisation of the 

standard B-allele frequency (BAF) as  

                                                  
 

t
t i

i t

i

m
PHF

d
                                                                                                                 

(3) 

                                                                                                      

Statistical model of haplotype depth under null hypothesis of absence of tumor DNA  

Under the null hypothesis of the presence of no tumor DNA in the sample or the matched normal the 

distribution of H1 allele counts mi
t calculated at each window i can be modelled with a binomial 

distribution with a 50% 'probability of success'  

                                                ~ ,  0.5( ),t t

i i binm Binomial d p   

However, the presence of copy number variation and mapping biases lead to shifting from 0.5 to an 

unknown p0 and greater than expected variation in mi
t. As a result, it is necessary to instead use a 

beta-binomial with parameters alpha and beta equal to the number of counts mapping to H1 and H2 

in the normal sample: 

                                                 ~ ,  ,  –( .)t t n n n

i i i i im Beta Binomial d m d m         (4)                                                    

As mi
n and di

n – mi
n increase, the beta-binomial distribution approaches to the Binomial(mi

t, di
t, pbin=p0). 

Tumor purity and cellularity 

The percentage of tumor content can be measured in two different scales, 1) tumor cellularity (tc) 

defined as the percentage of tumor cells or 2) tumor purity (tp) defined as the percentages of tumor 

DNA in mixtures of tumor and normal cells. These two quantities are related via the tumor ploidy, 

which we define as the average copy number of the tumor over all windows: 
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If we assume a diploid normal, then the relationship between tumor cellularity (tc) and tumor purity (tp) 
is given by: 

1 1 2

tp tc pl

tp tc
 

 
                                                            (5)  

Hidden Markov Model based on haplotype segments 

We model the probability of the data conditional on the tumor celullarity tc and the tumor ploidy pl as  
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assuming that the normal depth is independent of tumor cellularity and ploidy, and the total tumor 

read depth is also independent of cellularity and ploidy. 

We use a hidden Markov Model to calculate this probability. The hidden states (si) of this model are 

the unobserved copy numbers, x for H1 and y for H2 in the tumor genome in window i, represented by 

g = (x, y).  The total copy number is given by CN(g) = x + y.  We consider all hidden states g with copy 

number in the range 0<=CN(g)<=12, that makes up a set G of 91 possible configurations. We also 

define a transition probability for transitioning between pairs of states g and l as  t(si = g | si-1 = l).  We 

can write down the joint probability of the observed tumor depth data and the unobserved state path 

using the following equation:  
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Emission probability. In the above equation, the emission probability was split into two parts (the 

second and third components): one models the effect of sCNA on the total read depth di
t comparing to 

Dt and another models the effect of sCNA on read depths for H1 comparing to H2. They can be 

calculated as, 

 

     

   ,  ,  ,  ,

  , ,  1  ,

                          1       1  .

    ,

( |

 , ,  ,  ,

)

(

)

( |  )

t t n n

i i i i i

t t n n

i i i i

n n n n n n

i i i i i i

t n t n

i i i

P m s g d m d tc

Beta Binomial m d tc m tc m x

tc d tc m x tc d m y tc m tc m x

P d s g d tc pl D D

Beta







       

               





   

       

 

 

12..100

, ,    1

 1    1 ,              11

, ,   * *   1  *

 *   *  1  *

( ,

)

{

* *

(

  

,

t t n n

i i i

n n n n

i i

t t n n

cn i i i

n n n

i

Binomial d D tc d CN g tc d

tc pl D tc D tc d CN g tc d if CN g

max Beta Binomial d D tc d cn tc d

tc pl D tc D tc d







      

            

   

        1  *     ,     12 )}n

i icn tc d f CN g








  

  

This effectively extends the maximal copy number to 100 to capture the significantly amplified regions, 

e.g. 50 copies of HER2, which otherwise seems equally unlikely to be any of the genotypes with copy 

number <= 12. 

Initial and transition probability. The initial probability p(s1= g) in Equation 6 was set to be 1/91 for 

each g from G, so that show no preferences for any genotypes. We used a fixed transition probability 

model defined on the all the states G at locus i. The transition probability two successive sites si-1 and 

si is defined as   
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                                                                                                                  (8) 

in which, rev(l) is to reverse the order of the copy numbers for H1 and H2 for state l. Combining 

Equation (7,8), A can be calculated. Essentially, this transition probability imposes a weak preference 

for lower copy number states. 

Estimation of tumor cellularity and ploidy. We first estimate the tumor purity and ploidy by 

maximizing the likelihood function in Equation 6 calculated by Baum-welch algorithm (31). Because 

of the flat likelihood surface at low purity tumor (Supplementary Figure S1), two dimensional 

gradient-free local searching algorithms occasionally failed to find the global maximum. We solved 
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this by performing a one dimensional optimization to determine the ideal tumor cellularity, for a set of 

ploidy values increased from 1.8 to 5 with an increment of 0.2. The pair of cellularity and ploidy with 

the biggest likelihood are chosen as cellularity and ploidy estimate.  

Estimation of copy number profile. With the estimated tumor purity and ploidy, the hidden states (s) 

at each the window i are estimated using Viterbi algorithm(32). The density of the windows calculated 

by counting the distance between two neighbor windows (Supplementary Figure 2) is less than 

100kb for the vast majority. To impute the copy number information for regions in between two 

successive windows (segments), two windows are joined into one segment, if they are with the same 

copy number state and locate in short distance of less than 100kb. This generates a copy number 

segmentation for the whole genome, with a few undetermined regions when two windows cannot be 

joined. 

 

Removal of merging errors at copy number switches 

The merging of every K SNPs gives a merging error, if the region spans the boundary of two adjacent 

sCNAs, which cannot be resolved with a single copy number state. Therefore we nullify the estimation 

for segments with merging errors, which can be detected by a likelihood ratio test for each SNP k in a 

window i as follows,  
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 (9), 

in which  mk
t , dk 

t are the alternative allelic depth and the read depth from a tumor sample at locus k; 

mk 
n and dk

n are depths from the matched normal sample. The numerator assumes the K SNPs are in 

a single sCNAs, with a single copy number state g from G which maximizes the likelihood.  The 

numerator assumes each SNP k can have an individual genotype that maximizes the likelihood.  We 

then removed 1% of the segments with minimal values.  

 

Workflow 

We built up a pipeline – sCNAphase to generate a full copy number profile including copy number 

alterations to each parental haplotype, tumor purity and tumor ploidy using the method described 

above.  
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The pre-processing steps of the workflow (Figure 1A) include 1) calling germline SNP variants, 2) 

resolving germline allelic haplotypes and 3) generating regional haplotype depths. Compared with B-

allelic depth at per site, the phased allelic depths generated by ordering the alleles according to 

parental haplotypes (H1 and H2), gives a less variable allelic frequency, based on which the regional 

haplotype depths further reduce the variability (Figure 1B, C, D). The regional haplotype depth 

information is then used for the estimation step. 

The estimation step performed an integrated calculation of tumor purity, tumor ploidy and copy 

number profile, using the idea from Equation 6. The output from this includes a) a copy number 

segmentation file that shows the regional changes in overall copy number as well as haplotype copy 

number in a region; b) a digital SKY (dSKY) plot based on the segmentation is generated for 

visualization similar to traditional SKY plot; c) a vcf file includes allelic copy numbers and phases for 

the each germline SNPs. This estimation procedure was implemented in R, powered by 

multithreading techniques. Excluding the pre-processing, the estimation takes approximately 4 hours 

running on 12 CPUs (1600MHz) for the Illumina whole genome sequencing data. 

 

Comparison of  two copy number segmentations 

Using one segmentation as the reference, the consistency of the other segmentation (test 

segmentation) with the reference can be measured in varied ways, given different criteria for counting 

if two copy number states are consistent. We performed this analysis using three different criteria: 

Counting per base overlap for copy number gain or loss. A segment is identified as gain if the 

copy number is higher than the average ploidy; otherwise, it is identified as loss according to a 

particular segmentation. The two segmentations are counted as overlapped at a single base, if that 

base is consistently seen as gain or loss. The fraction of overlapped bases to the number of bases in 

reference and the test segmentation are defined as sensitivity and specificity respectively  

Counting per base overlap for LOHs. The sensitivity and specificity are calculated based on how 

many bases are consistently identified as loss of heterozygosity. This only stresses identification of 

one haplotype copy number being zero (not both), disregards whether the overall copy numbers from 

two predictions being equal. 

Counting 50% reciprocal overlap for focal amplifications. A segment is identified as focal 

amplification if the copy number is at least twice of the average ploidy and the size is between 100kb 

to 4Mb. Once a segment is identified as a focal amplification, the actual copy number is disregarded.  

A reference segment and a test segment are overlapped, if the overlapped region accounts for at 

least 50% of each of the two segments. The total number of overlapped segments to the number of 

segments from reference or test segmentation are defined as the sensitivity and specificity 

respectively. 
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RESULTS 

We developed a new method, sCNAphase, for estimating the copy number and LOH profile of the 

tumor genome for low cellularity tumors. sCNAphase integrates haplotype-specific allele counts 

together with total read depth in a Hidden Markov model which explicitly models both tumor DNA 

purity and ploidy. We evaluated the performance of sCNAphase against two state-of-the-art 

algorithms (CLImAT (version 1.1) and ASCAT (version 2.4)) using mixture samples derived from 

whole genome sequence data from 4 well-characterized tumor cell-line samples covering a range of 

ploidies with known copy number information from SNP array and SKY data. The samples used in 

this study are described in Table 1. Mixture samples were generated in-silico over a range of tumor 

purities from 5% to 95% as described in Methods. 

 

Haplotype phasing greatly improves the power to identify sCNA from allelic depth 

The B-allele frequency (BAF) is commonly used to detect the presence of copy number variants 

(CNVs) in normal, diploid genome(33). This signal can also be interrogated to find sCNAs by looking 

for deviations from an expected equal ratio of two alleles at germ-line heterozygous SNPs. In order to 

investigate the power of this signal, we calculated Allelic Depth (AD) at all germ-line heterozygous 

SNPs in a tumor derived cell-line (HCC1143, see Table 1) at varying tumor purities, as well as in the 

matched normal sample (note that an independent normal was used to generate artificial mixed 

tumor/normal samples at varying purity, see Methods). The distribution of p-values under a null model 

which assumes an equal ratio is inflated even for the normal sample, due to the presence of germline 

CNVs (Supplementary Figure S3), thus we instead calculate p-values under the assumption that 

tumor BAF is the same as germ-line BAF, which corrects this inflation (Figure 2A). BAF provides 

substantial power to identify sCNA at 100% purity (Figure 2B.), but the signal is too weak at 5% purity 

to identify any sCNAs (Figure 2C.).  

To investigate the improvement in power to detect sCNAs using PHF rather than BAF, we phased 

germ-line heterozygotes using SHAPEIT2 (28) and the panel of reference haplotypes from the 1000 

Genomes Project, then used this information to calculate tumor PHF in non-overlapping windows of 

40 consecutive heterozygous SNPs (Methods). This strategy dramatically improved the power to 

detect sCNAs in the 100% purity sample (Figure 2E) and 5% (Figure 2F), and did not lead to 

spurious identification of sCNAs in the normal sample (Figure 2D).  

 

Digital Spectral Karyotyping with sCNAphase is concordant with spectral karyotyping  

The genome-wide results from the analysis of each of the pure tumor cell-lines and the matched 

germline samples were visualized using digital spectral karyotyping (dSKY) plots. These images were 

designed to build on the effectiveness of spectral karyotyping (SKY) images to represent genome-
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wide changes in ploidy (Figure 3). Our dSKY plots make visual identification of aneuploidy, loss of 

heterozygosity and focal changes straightforward. To build on SKY platform, red shading on the 

chromosome ideograms was added to indicate regions of LOH, while green shading indicates 

homozygous deletions. 

Comparing the 3 available SKY images from these cell-lines to the corresponding dSKY plots, 

demonstrated that the results from sCNAphase were highly concordant with those from the SKY 

analyses, both at the ploidy level (Table 2) and at the large-scale genomic alterations level. For 

example, both the sCNAphase and SKY analysis of HCC1187 classified this cell-line as hypo-triploid 

and both suggested that this cell-line had 4 copies of chromosome 7, and 2 copies of chromosome 17 

(Figure 3AB; Supplementary Figure S4). In addition to the chromosomal gains or loss shown in 

SKY, dSKY plots are able to display more important information such as focal copy number changes, 

regions with loss of parental chromosomes and regions that are altered by events more complicated 

than whole chromosome gains or loss. For example, at the chromosome level, both SKY and 

sCNAphase suggest that HCC1187 has 4 copies of chromosome 7 (Figure 3A). However, the higher 

resolution result from sCNAphase was able to detect that two of these copies shared an identical 

deletion at the tip of the q arm. Analysis of chromosome 17, revealed that while both the SKY and the 

dSKY suggested HCC1187 contained two copies of the chromosome (suggesting this chromosome 

had not undergone a copy number mutation), the dSKY plot revealed this chromosome has 

undergone a copy neutral loss of heterozygosity (LOH) event (Figure 3B). 

In addition to visualizing large-scale chromosomal copy number alterations, inter-chromosomal 

translocations make it difficult for traditional SKY analyses to determine the exact copy number of 

translocated regions. For example, the results of from the SKY analysis of chr1 in HCC1187, make it 

difficult to deconvolute the copy number profile of this chromosome at the genome level (Figure 3C). 

While the dSKY plots do not provide any information about the translocations, they are able to 

demonstrate which region has undergone a specific copy number alteration. Together these 

examples show that dSKY plots, make it possible to begin to untangle complex phenotypes and 

identify mutations invisible to previous methodologies at a genome-wide level. 

 

sCNAphase accurately calculates tumor ploidy, tumor purity and sCNAs across a range of 

different levels of simulated tumor purity 

The presence of stromal cells or other cells with a normal diploid genome in a solid tumor sample can 

impact the capacity of genomic-based approaches to characterize mutations in a tumor sample (13). 

To assess the performance of sCNAphase to characterize impure tumor samples, simulated mixtures 

from HCC1143 and HCC1954 (29) as well as HCC1187 and HCC2218 from Illumina BaseSpace 

(https://basespace.illumina.com) were analyzed (see Methods). To simulate the range of tumor 

heterogeneities found in primary tumor samples, each cell-line had a number of mixtures analyzed, 
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each with varying proportions of tumor cell-line DNA (95%, 80%, 60%, 40%, 20%, 10%, 5% and 0% - 

see methods). Each mixture and matched normal sample were passed through the sCNAphase 

pipeline. Given that the ploidy estimates from the pure cell lines were comparable to the results from 

SKY (Table 3), we assessed the degree to which the analysis of the mixture samples were consistent 

with the results from the pure cell lines. A similar analysis was carried out using CLImAT and ASCAT, 

which estimate sCNAs as well as tumor purity and ploidy. 

This analysis revealed that sCNAphase was able to accurately recapitulate the ploidy results from 

each of the pure cell-lines across the majority of the mixtures as well as accurately determine the 

level of tumor DNA in each sample (Figure 4AB, Supplementary Table S3). The only inaccurate 

ploidy calls came from HCC1954 and HCC2218 mixtures at 5% tumor purity. Despite this, 

sCNAphase was still able to accurately report on the amount of cell-line DNA in these samples. 

Across the entire cohort of mixtures, the sCNAphase results only deviated from the simulated 

proportion by maximum 2% (Figure 4B, Supplementary Table S3). Cellularity estimates, which can 

be calculated as a function of tumor purity and ploidy (see Methods) were also reported (Figure 4C). 

The sCNAs identified were consistent across the mixtures (see Methods) except for the 5% mixtures 

from HCC2218 and HCC1954 in which the ploidy estimates had been incorrectly calculated (Figure 

4D). Adjusting the ploidy to the correct value rescued the segmentation and allowed sCNAphase to 

capture the same broad copy number profile from these 5% mixtures (Supplementary Figure S5).  

In comparison, both CLImAT and ASCAT provided robust purity estimate down to 20% simulated 

tumor purity, but substantially over-estimated tumor cellularity for the simulated low purity samples 

(Figure 4C). Both tools also failed to correctly resolve the correct ploidy of these low purity samples 

(Figure 4A). ASCAT provided results that were consistent with the ploidy estimates from sCNAphase 

for high purity samples, but at 40% and 20% purity, the estimates changed significantly for one and 

three of cell-lines respectively. CLImAT also showed the limitation in ploidy estimation at 40%, and it 

also misinterpreted the tumor ploidy of all the mixtures from HCC1954 and HCC2218. The sCNA 

predictions of CLImAT and ASCAT were self-consistent down to 40% purity for 3 of 4 samples, 

although with lower self-consistency scores than sCNAphase (Figure 4D). These results showcase 

the utility of the increased power offered by per-segment based haplotype counting strategy to resolve 

complex tumor genomes over the current state-of-the-art BAF based approach.  

 
The effect of sequencing and mapping artifacts 

To test the tolerance of the methods to sequencing artifacts, we applied the tools to a matched tumor 

normal pair in which the tumor was an independent normal sample (i.e. a 0% tumor sample). In this 

case, the estimated tumor DNA purity should be 0%, and any sCNAs predicted are due to noise alone. 

For all four 0% tumour samples, sCNAphase identified < 0.1% tumor purity (Figure 4C; 

Supplementary Table 3). It did, however, identify spurious sCNAs present at this level of purity. On 

this basis, we can recommend that the sCNAphase segmentation should be disregarded if the 

estimated tumor cellularity is less than 1%. ASCAT and CLImAT reported tumor purity estimates of 
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above 20% for these 0% tumor mixtures, which indicates that the copy number segmentation of these 

tools may be only reliable down to 40% purity (Figure 4C). 

 

Microarray analysis of cell-lines validates the sCNAphase results  

The Cancer Cell Line Encyclopedia and the COSMIC Cell Line Project (34) provide an independent 

annotation of the mutations present in publically available cell-lines. The copy number profiles of the 

cell-lines analyzed by sCNAphase had been characterized as part of this COSMIC project, and were 

independently profiled using a PICNIC analysis of microarray data (35). This resource provides us 

with an independent annotation of the specific sCNAs in each of these cell-lines and allows us to 

investigate the capacity of sCNAphase to report on individual sCNAs.  

To compare the annotations of these cell-lines (Table 2), the base ploidy for each cell-line were 

determined, by rounding up the ploidy estimates from SKY, flow cytometry and PICNIC to integers 

and taking the consensus values. In this process, hyper or hypo-teraploidy was round to tetraploidy; 

hypo-triploidy to triploidy. On this basis, HCC1187 was considered as triploid and all other cell-lines 

were treated as tetraploids. Any segment with a copy number greater than the ploidy was defined as 

an amplification, otherwise as a deletion. Sensitivity and specificity were calculated by counting the 

per base overlap for copy number gain or loss (Methods). This comparison revealed that the majority 

of events present in the COSMIC annotation of each cell line could be found across the range of 

mixtures for each cell-line using sCNAphase, when ploidy was properly assigned (Figure 5A, B). In 

the samples in which ploidy was incorrectly calculated (5% mixtures for HCC2218 and HCC1954), the 

capacity of sCNAphase to reflect the COSMIC results was greatly diminished. A similar comparison 

with the results from CLImAT showed that this approach failed to correctly profile any of the HCC2218 

or HCC1954 mixtures (Figure 5A, B). ASCAT had comparable performance with sCNAphase for all 

four cell-lines in the samples that contained more than 40% tumor DNA, but the consistency with 

COSMIC segmentation significantly dropped at lower purity due to incorrect ploidy estimates. The 

comparison of the sCNAs identified by an array-based approach to those identified by sCNAphase, 

CLImAT and ASCAT, illustrate the ability of sCNAphase to identify valid copy number changes across 

a range of different simulated tumor purities. 

LOH events are a common feature of the cancer genome and have been previously linked to the 

inactivation of tumor suppressors (36,37). Given the capacity of our approach to quantify and identify 

the haplotype of each chromosome, we assessed the ability of sCNAphase to identify the LOH events 

present in the COSMIC annotation of these cell lines (Figure 5C, D). This comparison showed 

sCNAphase identified approximately 90% of the regions of LOHs in COSMIC annotations of these 

cell-lines while producing few spurious results (except for HCC1954). Furthermore, sCNAphase was 

still able to identify the same regions of LOH in the low purity samples in which ploidy had been 

incorrectly assigned. CLImAT and ASCAT, however, showed very inconsistent LOH profile with 

COSMIC at low than 40% and 20% tumor purity. 
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One limitation for sCNAphase to reach even higher sensitivity was that sCNAphase provided no 

estimation at long regions with few SNPs or with highly variable depth profile (see Methods). For 

example, chr9p1-13 of HCC1187 was defined as a region of LOH by both COSMIC and CLImAT 

(Figure 5E); however sCNAphase only identified small islands of LOH (marked in pink) and left the 

majority as undetermined. When investigating the raw BAFs from this location (Figure 5F), the 

majority of the BAFs fell randomly between 0 to 1, producing a depth profile that was too confounding 

for sCNAphase to confidently resolve. The complexity of the copy number profile at this region was 

also recognized by ASCAT as revealed in the frequent switching between different copy number 

states. 

In the analysis of HCC1954 there was a low degree of overlap between the regions of LOH identified 

by the three tools and those present in the COSMIC LOH annotation of the cell-line. Closer inspection 

indicated that these differences were due to large chromosomal regions predicted to be LOH in 

COSMIC, but which appear to be regions of high copy number and allelic imbalance, rather than 

regions of LOH (Supplementary Figure S6). We also found substantial differences between the copy 

number estimates from COSMIC and sCNAphase for multiple chromosomal arms for HCC1954 as 

well as differences between the ploidy estimates in COSMIC and those from sCNAphase and the 

previous SKY analyses (Supplementary Figure S4, S6). Given the inconsistent results, the COSMIC 

annotation of the HCC1954 may underestimate the ploidy of this cell-line (Table 2), and as a result, 

may have reported some regions of LOHs and focal deletions for HCC1954 that do not reflect the true 

copy number profile of this cell-line.  

 

Focal sCNAs identified by sCNAphase mirror those identified by microarray analysis  

Given the clinical importance of recurrent focal amplifications in the cancer process, we assessed the 

performance of sCNAphase and CLImAT to detect the focal amplifications present in the COSMIC 

annotation for these four cell-lines, using the criteria of counting 50% reciprocal overlap for focal 

amplifications (Methods). A very stringent threshold was applied, which required focal amplifications 

to be in between 100 kb and 4 Mb as well as a copy number that was greater than twice the ploidy of 

the cell-line. It is worth noting that this is a more difficult copy number threshold for amplification than 

the one used in the previous section. In the analysis of the pure cell-lines, sCNAphase was able to 

detect the majority of the focal amplifications present in the COSMIC annotation of each of these cell-

lines, with a sensitivity approximately twice that of CLImAT (Table 3; Supplementary Table S4).  

For mixture samples, sCNAphase was still able to identify the majority of focal events at 5% tumor 

purity for HCC1187 and HCC1143, and 10% for HCC1954 and HCC2218. The drop in the 5% 

mixtures from HCC2218 and HCC1954 was due to the underestimation of the tumor ploidy in two 

samples. Despite this, sCNAphase was able to detect at least 12 copies of the pathologically relevant 

ERBB2 in HCC1954 and HCC2218 across the entire cohort of mixtures (Supplementary Table S5), 
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highlighting the diagnostic potential of sCNAphase (38,39) at even 5% tumor DNA. Likewise, another 

focal peak of amplification, that was found to be recurrently altered in breast cancer (11q13) (40,41), 

was detected in both the 100% HCC1143 and HCC1954 samples, as well as their corresponding 5% 

mixtures. The identification of focal events, including those that are well known to be clinically 

significant, across the full range of mixtures demonstrates the capacity of sCNAphase to identify 

pathologically relevant sCNAs in ultra-low purity samples.  

We hypothesized that one reason for a low specificity (on average, only 41% and 31% of focal 

amplifications detected by sCNAphase and CLImAT respectively were validated by COSMIC) could 

be that COSMIC underestimates copy number of highly duplicated regions (due to fluorescence 

signal saturation) and so the 2 * ploidy threshold for declaring a focal amplification is not reached. To 

test this, we re-calculated specificity and sensitivity after increasing the sCNAphase detection 

threshold, but keeping the COSMIC threshold (Supplementary Table S6). As the sCNAphase 

threshold increased, the specificities almost doubled across all tumor purities, with a much smaller 

effect on sensitivity.  

Homozygous deletions are another class of copy number mutation involved in the tumorigenic 

process (42-44). The COSMIC annotations show that there are 7 homozygous deletions larger than 

100Kb in these four cell-lines. sCNAphase was able to consistently detect the 3 longer homozygous 

deletions from HCC1143 and HCC1187(Supplementary Table S7). The size of a focal deletion, 

more specifically, the number of germ-lines SNPs in the region limits sCNAphase from identifying 

shorter events. Our analysis of HCC1954 did not detect the longer deletion from chr22 of HCC1954; 

however analysis of the raw sequencing data suggest that this deletion may be shorter than the 

332kb listed in the COSMIC annotation, as the read depth at the flanking region is significantly higher 

than the deleted region (Supplementary Figure S7). Despite this, sCNAphase did not identify any 

false positives and was able to consistently identify these deletions at minimal levels of tumor purity. 

In contrast, CLImAT failed to identify any of homozygous deletions present in COSMIC, and it 

classified a few other regions as homozygous deletions that were not present in either the COSMIC or 

sCNAphase results.  

 

sCNAphase identifies Copy Neutral / Amplified Regions of LOH in low purity samples 

Examination of the pure cell-lines with sCNAphase, revealed a substantial fraction of the tumor 

genome that had undergone LOH and contained two or more copies (Table 2). This is a compound 

event which requires at least a deletion of one haplotype as well as amplification of the other 

haplotype. Analysis of these regions revealed a number of loci that were present in multiple unrelated 

cell-lines, including chr5q and chr17p as well as parts of chr17q, all of which had been previously 

found to undergo recurrent CN-LOH in cancer (37,45-47) (Supplementary Figure S4). One of these 

regions contains the tumor suppressor TP53, the gene most commonly altered by CN-LOH (45,48). 

We observed homozygous somatic mutations in TP53 for three of the cell-lines (Supplementary 
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Table S8), which are likely to be disruptive. In the remaining cell-line, two heterozygous germline 

SNPs were identified (Supplementary Table S9), one of which, R283C has been previously shown 

to increase a carrier’s risk of developing cancer (45,49,50). It is likely that the loss of the wild type 

allele and the amplification of the deleterious SNP increase this risk. These results demonstrate the 

power offered by HTS and sCNAphase to characterize the biological impacts of a complex mutation in 

low purity samples. 

DISCUSSION 

Although somatic copy number alterations are a well-established driver of cancer, the capacity to 

identify these mutations are impacted by a number of issues including varying levels of tumor purity 

and frequent changes in tumor ploidy. As a result, the majority of methods designed to characterize 

the sCNAs in the cancer genome are unable to accurately profile a significant fraction of primary 

tumor samples. In this study, we have shown that by taking a haplotype-based approach, sCNAphase 

can overcome these issues and reliably characterize both genome-wide, chromosome-arm-wide as 

well as focal copy number changes present in a tumor genome across a range of tumor purities. 

Comparison of the results from the sCNAphase to those from SKY and flow cytometry, illustrated the 

ability of sCNAphase to correctly reflect the genome-wide changes in ploidy. Using a range of 

mixtures, to simulate the challenges posed by low-cellularity primary tumors, we were able to 

recapitulate the changes in ploidy seen in the analysis of the pure cell-lines, across the spectrum of 

tumor purities. Comparison of copy number and LOH segmentations obtained from a high density 

microarray at 100% purity to those reported by sCNAphase across a range of mixture samples 

demonstrated the high specificity and sensitivity of the method down to 10% tumor purity. 

Equally importantly, samples without any tumor DNA were predicted to have < 0.1% tumor cellularity 

by sCNAphase, whereas both of the other approaches tested reported at least 20% tumor DNA. 

sCNAphase has this in-built robustness to sequencing and mapping artifacts because it models the 

observed regional tumor depth data (including total depth and haplotype-specific depth), conditional 

on normal depth data from the same region. 

To focus on characterizing the copy number profile of low purity tumors, we have made the simplifying 

assumption that there is a dominant tumor clone with low heterogeneity in the tumor biopsy. Regions 

with heterogeneous copy number between clones with similar abundance would lead to a failure of 

the merging test statistic, and thus these regions would likely be excluded. 

The accurate characterization of the copy number profile in low cellularity samples as well as the 

identification of mutations in cancer genes, is suggestive of the potential clinical utility of this tool. In 

addition to low purity tumors, a potential application of our haplotype-based methodology would be in 

studies that aim to profile the copy number changes in a tumor through the analysis of circulating 

tumor DNA. Circulating tumor DNA, has been previously shown to contain mutations present in the 

tumor genome, but tumor DNA in circulation is mixed with DNA from normal cells and the tumor purity 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2016. ; https://doi.org/10.1101/038828doi: bioRxiv preprint 

https://doi.org/10.1101/038828
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

is frequently low (51). While sCNAphase can successfully profile low purity mixtures, it is likely that in 

order to realize this, an optimized version of the tool will need to be developed. 
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TABLE AND FIGURES LEGENDS 

 

Table 1.  Information about the cell-line samples. 

Cell-line Platform/ 

Library 
Downloaded from Coverage Tissue Annotation 

HCC1143 HiSeq2000/ 

Paired WGS 
TCGA 50x Breast 

ductal 
52 years female, Caucasian with STAGE IIA, 

grade 3 Breast ductal carcinoma 
Basal A subtype 

HCC1143BL HiSeq2000/ 

Paired WGS 
TCGA 60x, 30x Blood Paired 60x normal for HCC1143 and 

independent 30x sample 

HCC1954 HiSeq2000/ 

Paired WGS 
TCGA 58x Breast 

ductal 
61 years female, Indian with STAGE IIA, grade 

3 Breast ductal carcinoma. 

Basal A subtype, HER2 amplified 

HCC1954BL HiSeq2000/ 

Paired WGS 
TCGA 71x, 30x Blood Paired 60x normal for HCC1954 and 

independent 30x sample 

HCC1187 HiSeq2000/ 

Paired WGS 
Illunima BaseSpace 93x Breast 

ductal 
41 years female, Caucasian with STAGE IIA, 

grade 3 Breast ductal carcinoma 
Luminal 

HCC1187BL HiSeq2000/ 

Paired WGS 
Illunima BaseSpace 49x Blood Paired normal for HCC1187 

HCC2218 HiSeq2000/ 

Paired WGS 
Illunima BaseSpace 83x Breast 

ductal 
38 years female, Caucasian with STAGE IIIA, 

grade 3 Breast ductal carcinoma 
Basal A subtype, HER2 amplified 

HCC2218BL HiSeq2000/ 

Paired WGS 
Illunima BaseSpace 37x Blood Paired normal for HCC2218 
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Table 2. Summary of results from sCNAphase on 4 cancer cell lines. The proportion of the 

genome that has undergone sCNA is calculated as the proportion of the genome with copy 

number not equal to nearest integer ploidy. 

Cell-line 

Estimated Ploidy Proportion of genome 

Ploidy 

determined by 

sCNAphase 

Ploidy determined 

by COSMIC 
Undergon

e sCNA  
Undergone 

LOH 

Undergone 

LOH with more 

than 2 copies 

HCC1143* 
Hypo-tetraploid 

3.7 3.36 83% 46% 30% 

HCC1954* 
Tetraploid 

4.5 4.2 43% 8% 6% 

HCC1187* 
Hypo-triploid 

2.7 2.64 28% 58% 8% 

HCC2218# 
Tetraploid 

4.2 3.93 64% 14% 4% 

* Cell-line with the ploidy determined from SKY (52). 
# Cell-line with the ploidy determined from flow cytometry (38). 

 

Table 3. The capacity of sCNAphase to detect the focal sCNAs in COSMIC 

Tumor 

purity 

HCC1143 
15 focal 
amplification from 
COSMIC 

HCC1954 
94 focal amplification 
from COSMIC 

HCC1187 
2 focal amplification 
from COSMIC 

HCC2218 
18 focal amplification 
from COSMIC 

Sen Spe Sen Spe Sen Spe Sen Spe 

100% 80 23 66 52 100 26 61 31 

80% 80 24 67 47 100 25 56 31 

60% 80 24 63 47 100 27 44 38 

40% 67 28 61 52 100 30 78 25 

20% 80 22 65 57 100 30 61 44 

10% 87 29 77 52 100 23 61 48 

5% 80 23 37 93 100 29 22 100 

Sen for sensitivity; Spe for specificity. 
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Figure 1.  The individual steps that make up the sCNAphase workflow. (A) Each panels shows an 
individual process used by sCNAphase to characterize the copy number profile from matched tumor 
and normal pairs. (B) The BAFs from a region of chromosome 8 from the HCC1143 breast cancer 
cell-line. (C) The application of phasing to the BAF data makes it possible to identify PHFs, regions 
composed of 40 adjacent germline, heterozygous SNPs. Each PHF increase the power of this 
analysis and makes it possible to better reflect the copy number profile of this region. (D) Application 
of the sCNAphase pipeline to the phased data, calls specific copy number changes. 
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Figure 2. The capacity of different allele frequencies to determine sCNAs in tumor derived cell-line 
samples. Each of the points in the Q-Q plots corresponds to a p-value for a pair of allelic depths from 
a tumor derived cell line (HCC1143) at all germ-line heterozygote SNPs in different scenarios.  The 
red line represents the expected distribution of p-values under the null hypothesis (of no sCNA).  P-
values are calculated using a binomial distribution with probability of success equal to observed 
germline BAF (A, B, C) or PHF (D, E, F).   Deviation above this line indicates power to detect sCNA (A) 
Using BAF on 0% tumor purity sample (i.e. normal). (B) Using BAF at 100% tumor purity (C) Using 
BAF at 5% tumor purity. (D) Using PHF on a 0% tumor purity sample (i.e. normal). (E) Using PHF at 
100% tumor purity. (F) Using PHF on 5% tumor purity.  

Figure 3. dSKY plots build on SKY images to better reflect the complete copy number profile of a 
tumor genome. In each of these subplots (A, B, C), a SKY image (reproduced with permission from 
(52)) on the left shows the copy number of a particular chromosome, which was compared to a dSKY 
plot of the same chromosome - the vertical bars shown on the right in the same color. The number of 
the bars correspond the copy numbers at the specific regions calibrated by the chromosomal 
ideogram (vertical bar with grey bandings). The red shading on the ideogram is used to mark regions 
of LOHs. 
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Figure 4. (A) Inferred ploidy as a function of tumor purity. (B) Estimated tumor cellularity (the 
proportion of tumor cells in each sample) at different levels of simulated purity. (C) Estimated tumor 
purity versus simulated tumor purity (proportion of tumor DNA in sample). These purity values were 
calculated from estimated cellularity and estimated tumour ploidy using Equation 6 for each tool. (D) 
Self-consistency at decreasing tumor purity, measured as average of base-pair sensitivity and base-
pair specificity versus 100% tumor sample. 
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Figure 5. sCNAphase recapitulates the COSMIC annotation of these cell-lines across a range of 
purities. Consistency with COSMIC segmentation for copy number (A, B) and LOH (C,D) at varied 
tumor purity. For tumor samples at different tumor purity, the base-pair sensitivity in (A,C) and base-
pair specificity in (B,D), was calculated by overlapping sCNAphase, CLImAT and ASCAT 
segmentations estimated at a particular tumor purity with COSMIC segmentations based on 100% 
purity tumor samples. Each of the four cell-lines was represented a particular point shape as indicated 
in the legend. Results from sCNAphase, CLImAT and ASCAT are shown in green, black and orange 
respectively. The copy number segmentations of chr9 p-arm HCC1187 from COSMIC, sCNAphase,  
CLImAT and ASCAT were shown in (E) in blue, green, black and orange hash lines respectively. 
BAFs at this region in (F) support the loss of heterozygosity shown in COSMIC and 
CLImATsegmentation in p-arm except for the region highlighted in the pink box (39M-47M). For most 
of this 8M region, sCNAphase did not report copy number or LOH due to the highly variable BAFs 
which give merging errors (see Method). The complexity of this region can be also found from ASCAT 
predication at this region. 
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