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Synopsis 21 

Mycobacterium tuberculosis is a deadly human pathogen that latently infects a third of the world’s 22 

population, resulting in approximately 1.5 million deaths per year. Due to the difficulties and 23 

expense of carrying out animal drug trials using M. tuberculosis and rodents, infections of the 24 

zebrafish Danio rerio with M. marinum have been used as a surrogate. However the methods so far 25 

described require specialised equipment and a high level of operator expertise.  26 

We investigated a natural infection model where zebrafish embryos are infected through incubation 27 

in media containing M. marinum. Using bioluminescently labelled M. marinum, we have 28 

characterised the nature of infection and established a model for interventional drug therapy. We 29 

have used a selection of traditional and experimental compounds to validate this model for anti-30 

mycobacterial drug discovery. We observed that only three of the six treatments tested (Delamonid, 31 

SN30527 and rifampicin) retarded the growth of M. marinum in vitro. In contrast, five of the six 32 

treatments (Pretomanid, Delamanid, SN30488, SN30527 and rifampicin) retarded the growth of M. 33 

tuberculosis in vitro. Importantly, these same five treatments significantly reduced the 34 

bioluminescent signal from naturally infected zebrafish embryos. 35 

Overall this study has demonstrated that zebrafish embryos naturally infected with bioluminescent 36 

M. marinum M can be used for the rapid screening of anti-mycobacterial compounds with readily 37 

available equipment and limited expertise. The result is an assay that can be carried out by a wide 38 

variety of laboratories for minimal cost and without high levels of zebrafish expertise. 39 

 40 
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Introduction 41 

Mycobacterium tuberculosis is a deadly human pathogen that latently infects a third of the world’s 42 

population. Around 5-10% of these infections develop into active disease, resulting in approximately 43 

1.5 million deaths per year1. Tuberculosis (TB) is treatable with antibiotics, albeit with extended 44 

treatment times required and a high financial cost1, and as a result has become less prevalent in the 45 

developed world, although it remains a major health issue globally1. However the emergence of 46 

multi drug resistant (MDR-TB) and totally drug resistant (TDR-TB) isolates of M. tuberculosis has once 47 

again brought TB into the spotlight for all countries and has necessitated the development of novel 48 

drugs to combat this pathogen 2, 3. A change in the global disease burden of HIV/AIDS has also added 49 

impetus to this cause; the number of people co-infected with HIV and M. tuberculosis is rapidly 50 

increasing globally, resulting in a destructive synergy which exponentially exacerbates the disease 51 

progression of both diseases 4.  52 

Due to the difficulties and dangers involved in culturing M. tuberculosis, an airborne Biosafety Level 53 

3 pathogen, faster-growing and less pathogenic mycobacterial species, such as M. smegmatis and M. 54 

marinum, are routinely exploited for TB research and anti-mycobacterial drug discovery5-8. M. 55 

marinum is a pathogen of ectotherms (fish, amphibians and reptiles) that produces a tuberculosis-56 

like disease 9. M. marinum is a close genetic relative of M. tuberculosis, with which it shares 57 

conserved virulence determinants 9, and has been known to cause granulomatous skin infections in 58 

humans 10, 11. Infection of the tropical zebrafish, Danio rerio, with M. marinum has been used to 59 

develop a surrogate in vivo model of TB pathogenesis 12 useful for the rapid screening of potential 60 

antimycobacterial compounds13. Zebrafish are genetically tractable 9 and possess a complex immune 61 

system comparable to that of humans 14-16. As a result, zebrafish have been extensively used for 62 

disease modelling and drug discovery for both communicable and non-communicable diseases13, 17-63 

24. Infection of zebrafish with M. marinum through microinjection results in the development of 64 

necrotic granulomatous lesions reminiscent of human TB infection,25, 26 lending weight to the use of 65 

this model host as a surrogate for mycobacterial research and drug discovery. One drawback of the 66 
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previously published infection protocols is that they require specialised equipment and a high level 67 

of operator expertise13.  68 

Bioluminescence is a biological reaction which results in the production of light via a luciferase 69 

catalysed reaction. It is a naturally occurring process with several variants seen across several 70 

kingdoms and has been harnessed as a reporter in both in vitro and in vivo assays27, 28 71 

Bioluminescence allows for non-invasive monitoring of luciferase-expressing bacteria within a host, 72 

as the light produced by the bacterium travels through the host tissues and can be readily detected 73 

28-30. As tagged cells only produce a signal when alive, bioluminescence is an excellent reporter to 74 

rapidly assay for antimicrobial compounds, non-destructively and in real-time, in microtitre plate 75 

formats using a luminometer, or in vivo using sensitive imaging equipment28, 31-33. 76 

Zebrafish and other fish readily become naturally infected with M. marinum present in their 77 

environment34. However it is not possible to tell which fish are infected at an early stage without 78 

euthanising the animal and plating out for viable bacteria26. Here we use bioluminescently tagged M. 79 

marinum M to establish natural infections in zebrafish embryos, utilising the light emitted by these 80 

bacteria to identify which fish have become infected. We show that naturally infected fish can be 81 

treated with potential anti-mycobacterial compounds and light output used as an indicator of in vivo 82 

drug efficacy. 83 

84 
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Materials and Methods 85 

Bacterial strains and plasmids  86 

Bacterial strains and plasmids used throughout this study are described in Table 1. Bacteria were 87 

transformed as previously described 35. M. marinum strains were grown at 28℃ and M. tuberculosis 88 

at 37℃, with shaking at 200rpm and 100rpm respectively, in Middlebrook 7H9 broth (Fort Richard) 89 

supplemented with 10% ADC enrichment media (Fort Richard) and 0.5% glycerol (Sigma Aldrich) 90 

under the appropriate antibiotic selection (kanamycin at 25µg ml-1 and hygromycin at 50µg ml-1 91 

[Sigma Aldrich]). 92 

 93 

In vitro drug testing  94 

M. marinum BSG101 and M. tuberculosis BSG001 were grown without antibiotic selection to mid log 95 

phase, then diluted to an optical density at 600nm (OD600) of 0.01. Bacteria were aliquoted (100µl, 96 

5x105cfu ml-1 approx.) into the wells of a black 96 well microtitre plate (Grenier Bio-One). Test 97 

compounds were dissolved in DMSO, added 1:100 to the top most well and then diluted two-fold in 98 

a series down the plate (Table 2). The plates were incubated at 28℃ (M. marinum) or 37℃ (M. 99 

tuberculosis) and bioluminescence monitored daily over 7 days using a Victor X1 luminometer 100 

(Perkin Elmer).  101 

 102 

Fish husbandry 103 

Zebrafish (Danio rerio) embryos were obtained from natural spawnings and raised at 28℃ in E3 104 

Medium (0.33 mM calcium chloride, 0.33 mM magnesium sulphate, 0.14mM potassium chloride and 105 

5 mM sodum chloride). The medium was supplemented with 0.003% phenylthiourea (PTU) to inhibit 106 

pigmentation when embryos were being imaged. Zebrafish embryos of the age used do not fall 107 
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under the New Zealand Animal Welfare Act 1999 and so experiments did not require approval from 108 

an animal ethics committee.  109 

 110 

Natural infection of zebrafish embryos  111 

M. marinum strains were grown to mid log phase (OD600 between 0.8 and 2) without antibiotic 112 

selection, washed once in E3 before being adjusted to an OD600 of 1. The approximate concentration 113 

should be around 5x108 cfu ml-1; this was confirmed by retrospectively plating inocula onto 7H11 114 

supplemented with 10% OADC and 0.5% glycerol. Zebrafish embryos at 2 days post-fertilisation (dpf) 115 

were dechorionated, either manually or using pronase, as previously described36. Groups of embryos 116 

(50-300) were then placed in 9mm petri dishes containing 25ml of E3 supplemented with varying 117 

concentrations of M. marinum (by varying the volume of adjusted bacteria) and incubated for 4 days 118 

at 28°C. After infection, any non-internalised bacteria were removed by gently washing embryos 119 

four times with fresh E3 in groups of 10 in separate wells of a 24 well tissue culture plates (BD 120 

Falcon) using gentle aspiration of the media. Embryos were left in the 24 well plate overnight to 121 

remove transient bacteria and then rinsed 4 times in E3 to remove the transient population. 122 

Embryos were then individually placed into the wells of a clear-bottomed black 96 well microtitre 123 

plate (Nunc) with 100µl of E3 and prepared for drug treatment. 124 

 125 

Injection of zebrafish embryos  126 

M. marinum strains were prepared as above. Zebrafish embryos 2dpf were manually de-127 

chorionated, anaesthetised using 0.168 mg ml-1 tricaine (Sigma-Aldrich) in E3 medium37 and infected 128 

by microinjection into the caudal vein as previously described38.  129 

 130 

Measurement of bioluminescence from zebrafish embryos  131 
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All bioluminescent measurements were carried out using a Victor X1 luminometer (Perkin Elmer) 132 

with a 1 second exposure time on an open filter. Bioluminescence from zebrafish infected with M. 133 

marinum BSG100 was visualised after addition of luciferin (30μg ml-1) (Gold Biotechnology). 134 

 135 

Drug testing in zebrafish embryos  136 

Infected zebrafish embryo were read on a luminometer after removal of transient bacteria and 137 

detectably infected embryos (RLU >20) were randomly distributed within drug treatment groups. 138 

Drugs were made up to 100x working concentration in an appropriate solvent. They were diluted 139 

1:10 in E3 and 10µl of diluted drug was placed into each well of the 96 well plate containing 100µl of 140 

E3. The final concentration of the test compounds was 10µM. E3 was used as a no treatment 141 

control. Embryos were treated at 5 days post infection and incubated at 28°C during treatment. 142 

 143 

Microscopy  144 

For imaging on the fluorescent inverted microscope, embryos were anaesthetised in tricaine as 145 

above and mounted in 3% (w/v) methylcellulose in E3 to reduce embryo movement. Images were 146 

captured on a Nikon SMZ1500 microscope with NIS-Elements F version 4.00.06 software.  147 

 148 

Statistics  149 

Data analysis was performed as indicated in the figure legends using the GraphPadPrism (version 5) 150 

package.151 
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Results 152 

Luminescence can be used to monitor zebrafish embryos naturally infected with luciferase-tagged 153 

M. marinum  154 

To determine if zebrafish embryos infected with bioluminescently labelled M. marinum could be 155 

monitored using a luminometer, we incubated embryos (n=300) aged 1 and 2 dpf in E3 containing 156 

1x107 cfu ml-1 of M. marinum tagged either with a modified firefly luciferase (designated M. 157 

marinum BSG100) or with a modified bacterial luciferase (designated M. marinum BSG101). At 158 

different time points, we removed the embryos from the M. marinum-containing media, washed 159 

them in fresh media and measured light. As the firefly luciferase reaction requires luciferin as a 160 

substrate, we added this exogenously (30 µg ml-1) when embryos were placed into the 96 well 161 

plates. Bioluminescence from infected embryos did not rise above background levels until 4 days 162 

post infection, with comparable levels of light emitted from BSG100 and BSG101 infected embryos 163 

(Fig. 1). Natural infection of embryos with M. marinum did not result in any premature deaths when 164 

compared to the uninfected group. While embryos infected with M. marinum labelled with the 165 

firefly luciferase (BSG100) produced more light (median maximum value of 709 relative light units 166 

[RLU] (ranging from 328 to 2872)) compared to the bacterial luciferase tagged strain (BSG101) 167 

(median maximum value of 446 RLU (ranging from 122 to 796)), the exogenous addition of luciferin 168 

increased the time required to carry out the assay and the expense of the technique. We therefore 169 

selected bacterial-luciferase tagged M. marinum M (BSG101) for further study. 170 

 171 

Natural infection results in gill colonisation and transient gut colonisation 172 

We investigated the nature and location of natural M. marinum infection of embryos using a strain 173 

of M. marinum expressing the red fluorescent protein tdTomato13 (designated BSG102). We 174 

incubated the embryos with BSG102 for 4 days and then determined the location of the infecting 175 

bacteria using a fluorescent microscope (Fig. 2). We observed fluorescently tagged bacteria 176 
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throughout the digestive tract, clustering around the developing gills and lower jaw of the larvae 177 

(Fig. 2 A&B). We speculated that those bacteria present within the digestive tract could represent a 178 

transient colonisation. These bacteria were seen to be removed following defecation. To test this, 179 

we washed infected embryos in fresh media and incubated for a further 24 hours. After this 180 

incubation period, we observed that the bacteria that were previously present within the digestive 181 

tract had gone, while the bacteria associated with the developing gills were still present (Fig. 2C). We 182 

observed that the digestive tract remained clear of detectable bacteria for the majority of the 183 

experiment, with some non-transient colonisation appearing approximately 11 days post infection. 184 

 185 

Optimisation of infectious dose and infection protocol 186 

In order to determine the minimum dose for establishing a traceable infection within a single 187 

zebrafish embryo, we incubated embryos with concentrations of M. marinum BSG101 ranging from 188 

1x104 to 1x107cfu ml-1 and followed bioluminescence over 12 days using a luminometer. A dose of 189 

1x107cfu ml-1 BSG101 was the only one tested that established an infection that we could reliably 190 

detect above background levels using our luminometer (Fig. 3). This dose resulted in approximately 191 

40-60% of the exposed embryos becoming bioluminescent, depending on the experiment (data not 192 

shown). When embryos were exposed to a dual bioluminescent/fluorescent tagged strain of M. 193 

marinum (BSG103) and examined by fluorescence microscopy, we observed that more than 90% of 194 

the embryos were infected, but only half of these could be detected by luminometry (data not 195 

shown). 196 

In an effort to reduce the time required to process embryos for infection, we investigated the effect 197 

of manual versus chemical dechorionation (treatment with pronase). We observed that pronase 198 

treatment reduced the proportion of infected embryos detectable by luminometry (45% for manual, 199 

7% for pronase) and light levels from infected embryos were also consistently lower (20-150 RLU for 200 

manual, 20-76 RLU for pronase). For these reasons, we adopted the following optimised protocol for 201 
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further experiments: 1) manual dechorionation of embryos 2 dpf, 2) immersion in media containing 202 

1x107cfu ml-1 M. marinum for 4 days at 28°C, 3) wash in fresh media and incubation for a further 24 203 

hours at 28°C, 4) transfer of individual embryos to the wells of a black 96 well plate using a sterile 204 

plastic pasteur pipette for measurement of light and drug intervention studies. 205 

 206 

Drug treatment of naturally infected zebrafish embryos 207 

Zebrafish embryos, infected using the optimised natural infection protocol, were treated with 208 

rifampicin and a variety of nitroimidazole-based next generation and experimental anti-209 

mycobacterial drugs (Table 2, Fig. 4). Delamanid was recently approved for clinical use, while 210 

Pretomanid is in human Phase III combination trials39. The experimental compounds SN30488, 211 

SN30527 and SN3098240 are analogues of Pretomanid with varying lipophilic side chains, selected for 212 

their wide range of potencies against M. tuberculosis cultures. For comparison, we treated embryos 213 

infected through microinjection into the caudal vein with a subset of the compounds (Fig. 4). We 214 

considered all injected embryos as infected, whereas we only selected embryos with observable 215 

light emission after natural infection for use in drug intervention studies. For naturally infected 216 

embryos we used reduction in light emission as a surrogate measure of anti-mycobacterial activity; 217 

for injected embryos, we measured drug efficacy by embryo survival. We also exposed in vitro 218 

grown M. marinum and M. tuberculosis to the same compounds.  219 

We observed that at the concentration used, only three of the six treatments tested (Delamonid, 220 

SN30527 and rifampicin) retarded the growth of M. marinum BSG101 in vitro (as shown by a lack of 221 

increase in bioluminescence) (Fig 5A). In contrast, five of the six treatments tested (Pretomanid, 222 

Delamanid, SN30488, SN30527 and rifampicin) retarded the growth of M. tuberculosis BSG001 in 223 

vitro (Fig 5B). Interestingly the same five treatments tested (Pretomanid, Delamanid, SN30488, 224 

SN30527 and rifampicin) significantly reduced the bioluminescent signal from naturally infected 225 

zebrafish embryos (p<0.001, Kruskal Wallis test with Dunns multiple comparisons) (Fig. 4A). The data 226 
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is summarised in Table 3. Similarly, we observed a 90% survival rate for BSG101 injected embryos 227 

treated with Pretomanid and Delamanid, compared to 20% survival of untreated injected embryos 228 

or those treated with SN30982 or rifampicin (Fig. 4B). 229 

 230 

Discussion 231 

There is a clear and desperate need for new medicines to treat TB. As working with M. tuberculosis 232 

limits research and preclinical drug development to those laboratories around the world with the 233 

resources and facilities to safely handle the bacterium, non-tuberculous mycobacteria such as M. 234 

marinum are widely used as surrogates5, 7, 41, 42. A major drawback of using M. marinum for 235 

antimycobacterial compound screening is that the in vitro resistance profile of the bacterium is very 236 

different to M. tuberculosis. This difference can be observed in the drastically different MIC values 237 

for the compounds tested against the two organisms in this study (Table 2). Two of the compounds 238 

(Pretomanid and SN30488) were not effective against M. marinum but were effective against M. 239 

tuberculosis. This means that screening compounds for activity against M. marinum in vitro runs the 240 

risk of missing potential anti-TB agents.  241 

Infection of zebrafish, either as adults or as embryos, by injection with M. marinum has proved to be 242 

a useful model for studying mycobacterial pathogenicity and for drug screening13, 43, 44. However, 243 

current infection protocols require specialised equipment and a high level of operator expertise. We 244 

first wanted to establish whether it was possible to infect zebrafish embryos by exposure to M. 245 

marinum in the media, and to monitor infection dynamics using bioluminescence. We determined 246 

that incubation for four days in a petri-dish containing 107 cfu of M. marinum per ml of media was 247 

sufficient to establish an infection. Indeed, microscopic imaging demonstrated that fluorescent M. 248 

marinum could be visualised in the developing gills and digestive tract after this time.  249 

The kinetics of natural infection we observed fits with existing understanding of zebrafish larval 250 

development; their mouth has been demonstrated to open from 3 dpf and their gut exists as an 251 
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open-ended tube by 4 dpf45. The initial digestive tract colonisation was found to be transitory, 252 

although at later stages a non-transitory colonisation was observed. It is unsurprising that the 253 

embryos could be infected via bathing, as this should represent one of the ways that zebrafish could 254 

become naturally infected in the wild; however without the use of bioluminescence to visualise M. 255 

marinum, the easy identification of infected embryos would not be possible. We observed that the 256 

proportion of embryos which became infected varied depending on the housing conditions. Initially 257 

embryos were housed in groups of 50 for infection but this resulted in a low proportion of 258 

measurable infections. When we increased the number to 300, the proportion of embryos with a 259 

measurable infection rose to approximately 40%. We speculate that this is due to the increased 260 

motion of the fish in the media allowing for greater mixing. Another possibility is that M. marinum 261 

may phenotypically change as it travels through the embryo gut, making it more infectious. Such 262 

hyperinfectivity has been reported for Vibrio cholera and Citrobacter rodentium46-48 263 

As several bioluminescent reporter systems exist, we wanted to establish which one would give the 264 

best results for this assay. We compared mycobacterial optimised bacterial luciferase (lux) and the 265 

codon-optimised red shifted firefly luciferase (RTluc)49. The bacterial lux construct contains all the 266 

required genes to make both the substrate and the catalytic enzyme to produce light. In the case of 267 

the firefly luciferase, the substrate has to be added exogenously. While M. marinum tagged with the 268 

firefly luciferase did produce higher levels of light, this was not enough to compensate for the 269 

increased cost to the assay, both in terms of expense and time as a result of having to add the 270 

exogenous substrate. We chose to use M. marinum tagged with bacterial lux through-out to produce 271 

as streamlined and economic an assay as possible.  272 

We investigated whether the assay could be accelerated by using pronase treatment to 273 

dechorionate embryos. While pronase treatment did reduce the time required to prepare embryos, 274 

more bacteria were needed to establish an infection compared to the dose needed to infect 275 

manually dechorionated embryos. Similarly, the proportion of infected embryos with visible 276 

bioluminescence was also reduced. One possible explanation for this difference could be that 277 
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pronase treatment may result in an increased inflammatory reaction within the embryos, resulting in 278 

greater initial killing of the bacteria.  279 

The optimised natural infection assay protocol we have established requires manual dechorination 280 

of zebrafish embryos two days post fertilisation, followed by bathing with 1x107 cfu ml-1 M. marinum 281 

for 4 days. Embryos are then removed from the infected media, washed and placed in fresh media 282 

and kept for a further overnight to allow for the clearance of transiently colonising bacteria. After a 283 

further wash, embryos can be housed within individual wells of a clear bottom, black 96 well plate 284 

for measurement of infection dynamics using bioluminescence. We investigated whether the 285 

optimised natural infection assay could be applied to the testing of anti-mycobacterial compounds. 286 

Four of the six compounds we tested reduced the luminescence from infected embryos to below 287 

background levels. When the same compounds were tested in the caudal vein-injection model, 288 

which uses embryo survival as an indicator of bacterial clearance, three of the four compounds were 289 

also identified as being effective. 290 

Overall this study has demonstrated that it is possible to carry out high throughput in vivo drug 291 

screening in the zebrafish model using embryos naturally infected with bioluminescent M. marinum 292 

M. Natural infection is quicker than injection and requires less expertise. Interestingly, not all of the 293 

injected embryos had detectable light levels and with the fluorescently tagged M. marinum up to 294 

90% of the naturally infected embryos had visible signs of infection (data not shown). Embryos can 295 

be screened in 96 well plates and drug efficacy rapidly identified over the course of 10 days. Through 296 

the use of a luminometer with a plate stacker this process can be semi-automated to reduce the 297 

hands on time. While this is moderately slower than previously reported automated robotic systems, 298 

it is also a fraction of the cost. The result is an assay that can be carried out by a wide variety of 299 

laboratories for minimal cost and without high levels of zebrafish expertise. Widening participation 300 

in TB research and pre-clinical drug discovery in this way should accelerate the progress towards 301 

new and better treatments for TB and other neglected mycobacterial infections. 302 

303 
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 304 

Strain/plasmid Description Reference 

M. marinum ATCC BAA-
535 

Wildtype isolate M  

M. marinum BSG100 ATCC BAA-535 containing pMV306G13FFlucRT 
chromosomally integrated, Km resistant. 

This study 

M. marinum BSG101 ATCC BAA-535 containing pMV306G13LuxABCDE 
chromosomally integrated, Km resistant. 

This study 

M. marinum BSG102 ATCC BAA-535 expressing pTEC27, Hyg resistant. This study 

M. marinum BSG103 BSG101 expressing pTEC27, Km and Hyg resistant. This study 

M. tuberculosis BSG001 M. tuberculosis ATCC (H37Rv) containing 
MV306hsp + LuxAB + G13 + CDE chromosomally integrated, 
Km resistant. 

50
 

pMV306G13FFlucRT Mycobacterial integrating vector containing a modified firefly 
luciferase gene optimised optimised for use in Mycobacteria, 
Km resistant. 

49
 

pMV306G13LuxABCDE  Mycobacterial integrating vector containing the lux operon 
from Photorhabdus luminescens optimised for use in 
Mycobacteria, Km resistant. 

49
 

pTEC27 Mycobacterial plasmid containing the red fluorescent protein 
tdTomato, hyg resistant. 

13
 

Table 1: Strains and plasmids used in this study 305 

Key: Km, kanamycin; hyg, hygromycin. 306 

307 
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 In vitro MIC 

Compound ID Structure M. tuberculosis M. marinum 

Pretomanid39 

 

0.3125 μM >10 μM 

Delamanid39  

 
 

0.078 μM 0.625 μM 

SN3048840 

 

0.039 μM >10 μM 

SN3052740 

 

0.625 μM 10 μM 

SN3098240 

 

10 μM >10 μM 

Table 2. Novel compounds used in drug treatment assays and in vitro MIC values for M. 309 

tuberculosis BSG001 and M. marinum BSG101 310 

Key: MIC, minimum inhibitory concentration.  311 

312 
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Compound ID In vitro MTB In vitro MM Zebrafish MM 
(natural infection) 

Zebrafish MM 
(caudal vein injection) 

Pretomanid A N A A 

Delamanid A A A A 

SN30488 A N A NT 

SN30527 A A A NT 

SN30982 N N N N 

Rifampicin A A A N 

 314 
Table 3. Comparison of efficacy of treatments across in vitro and in vivo models used in this study.  315 

Key: MTB, M. tuberculosis BSG001; MM, M. marinum BSG101; A, active; N, not active; NT, not 316 

tested.317 
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Figure Legends 445 

Figure 1: Bioluminescence can be used to monitor zebrafish embryos naturally infected with 446 

tagged strains of M. marinum. A comparison of the bioluminescence (given as relative light units 447 

[RLU]) from zebrafish embryos naturally infected with M. marinum M expressing either a red-shifted 448 

firefly luciferase (BSG100) or bacterial luciferase (BSG101). Similar light levels were observed with 449 

the two constructs while uninfected embryos remained at background levels (indicated by black 450 

dashed line). Bioluminescence is presented as box-whisker plots of RLUs from 20-30 embryos 451 

measured over a seven day period. The edges of the boxes represent the 25th and 75th quartiles, 452 

the solid line represents the median, and the whiskers are the minimum and maximum values. One 453 

representative experiment is shown. 454 

  455 

Figure 2: Natural exposure of zebrafish embryos to M. marinum results in transient colonisation of 456 

the gut and infection of the developing gills and lower jaw. Embryos were exposed to M. marinum 457 

expressing a red fluorescent reporter (BSG102) and bacterial location identified by fluorescence 458 

microscopy. (A) Colonisation of the developing gills and lower jaw after 4 days infection. (B) 459 

Transient colonisation of the digestive tract. (C) After 5 days, colonisation is localised to the head 460 

region, with the digestive tract no longer colonised. Representative embryos are shown. 461 

  462 

Figure 3: An infectious dose of 107 cfu bioluminescent M. marinum per ml of exposed medium is 463 

required to produce infected embryos that can be detected by luminometry. A comparison of the 464 

bioluminescence (given as relative light units [RLU]) from zebrafish embryos naturally infected with 465 

different doses (from 104 to 107 colony forming units [cfu] ml-1) of M. marinum M expressing 466 

bacterial luciferase (BSG101). Black dashed line indicates limits of detection. Bioluminescence is 467 

presented as box-whisker plots of RLUs from 20-30 embryos measured over a 12 day period. The 468 
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edges of the boxes represent the 25th and 75th quartiles, the solid line represents the median, and 469 

the whiskers are the minimum and maximum values. One representative experiment is shown. 470 

  471 

Figure 4. Treatment of M. marinum BSG101-infected embryos with Pretomanid, Delamanid, 472 

SN30488, SN30527, SN30982 and rifampicin. Drug efficacy was monitored by changes in 473 

bioluminescence (given as relative light units [RLU]) from individual naturally infected embryos 474 

(n=20-30) immediately prior to and 3 days after treatment (A). Black dashed line indicates limits of 475 

detection of luminometer. Data did not pass the D'Agostino & Pearson normality test so before and 476 

after treatment groups were compared using the Kruskal Wallis test with Dunn’s post-hoc analysis. 477 

Those treatments resulting in a significant decrease in bioluminescence are shown. One 478 

representative experiment out of 3 is shown. For embryos infected by caudal vein injection (B), after 479 

injection embryos were placed directly into media containing compounds and drug efficacy was 480 

monitored by changes in survival over ten days. One representative experiment out of 2 is shown. 481 

 482 

Figure 5. In vitro treatment of M. marinum BSG101 and M. tuberculosis BSG001 with Pretomanid, 483 

Delamanid, SN30488, SN30527, SN30982 and rifampicin. Drug efficacy was monitored by changes 484 

in bioluminescence (given as relative light units [RLU]) immediately prior to and 3 days after 485 

treatment for M. marinum BSG101 (A) or for M. tuberculosis BSG001 (B). Data passed the D'Agostino 486 

& Pearson normality test so before and after treatment groups were compared using ANOVA with 487 

Bonferroni’s post-hoc analysis. Those treatments resulting in a significant increase in 488 

bioluminescence are shown. Data represents experiments performed on three separate occasions. 489 

(Dotted line indicates background level of light detection). 490 

491 
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