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Key Points 27 

 We introduce a model that accurately predicts the composition of blood from Affymetrix Gene 28 

ST gene expression profiles. 29 

 This model outperforms existing methods when applied to Affymetrix Gene ST expression 30 

profiles from blood. 31 

Abstract 32 

Measuring genome-wide changes in transcript abundance in circulating peripheral whole blood cells is a 33 

useful way to study disease pathobiology and may help elucidate biomarkers and molecular mechanisms 34 
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of disease. The sensitivity and interpretability of analyses carried out in this complex tissue, however, 35 

are significantly affected by its dynamic heterogeneity. It is therefore desirable to quantify this 36 

heterogeneity, either to account for it or to better model interactions that may be present between the 37 

abundance of certain transcripts, some cell types and the indication under study. Accurate enumeration 38 

of the many component cell types that make up peripheral whole blood can be costly, however, and 39 

may further complicate the sample collection process. Many approaches have been developed to infer 40 

the composition of a sample from high-dimensional transcriptomic and, more recently, epigenetic data. 41 

These approaches rely on the availability of isolated expression profiles for the cell types to be 42 

enumerated. These profiles are platform-specific, suitable datasets are rare, and generating them is 43 

expensive. No such dataset exists on the Affymetrix Gene ST platform. We present a freely-available, 44 

and open source, multi-response Gaussian model capable of accurately predicting the composition of 45 

peripheral whole blood samples from Affymetrix Gene ST expression profiles. This model outperforms 46 

other current methods when applied to Gene ST data and could potentially be used to enrich the 47 

>10,000 Affymetrix Gene ST blood gene expression profiles currently available on GEO. 48 

Introduction 49 

Measuring genome-wide changes in transcript abundance in circulating peripheral whole blood cells is a 50 

useful way to study disease pathobiology [1]. By providing a relatively comprehensive survey of the 51 

status of the immune system, peripheral whole blood transcript abundances may help elucidate 52 

molecular mechanisms [2]. The sensitivity and interpretability of analyses carried out in this tissue, 53 

however, are significantly affected by its dynamic heterogeneity [3]. It is therefore desirable to quantify 54 

this heterogeneity, either to account for it or to model interactions that may be present between the 55 

abundance of certain transcripts, some cell types, and some phenotypic indication. 56 
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Accurate enumeration of the many component cell types that make up peripheral whole blood can be 57 

costly, however, and may further complicate the sample collection process, beyond a simple complete 58 

blood count and leukocyte differentials (CBC/Diffs). Further, the majority of publicly available peripheral 59 

whole blood-derived gene expression profiles on the Gene Expression Omnibus [4] do not include any 60 

composition information. Accurate quantification of the cellular composition of blood samples from 61 

gene expression data without performing additional experiments is useful, allowing for re-analysis of 62 

existing public data, for example. 63 

Many approaches have been developed to infer the cellular composition of a sample from high-64 

dimensional transcriptomic [3, 5–10] and, more recently, DNA methylation data [11, 12]. Briefly, if X, W, 65 

and H are matrices with entries Xij (observed expression for sample i, gene j), wik (composition for 66 

sample i, cell type k), and hkj (cell type-specific contribution to the observed expression for cell type k, 67 

gene j), then the problem can be stated: having observed X, we wish to estimate W, based on the 68 

assumed relationship between expression and composition: 69 





K

k

ijkjikij ehwX
1  

70 

where 𝑒𝑖𝑗  represents the expression information for sample i, gene j that is not predictable by the cell 71 

composition.  72 

We further assume that, for each component cell type k, there exists a subset of features Xk
ij’ in X whose 73 

observed expression in sample i is proportional to the relative abundance of cell type k in sample i. 74 

More formally:  75 

k

i

k
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These composition-discriminating features are termed marker genes. For such genes, the elements of 77 

the H can be derived from omics profiles of isolated cell types obtained from reference datasets, and W 78 

estimated by regression [5, 7–13]. Importantly, mapping such marker genes across technology platforms 79 

is not always tractable. Not all genes can be readily mapped across gene expression platforms and the 80 

values derived from reference datasets may be specific to the platform on which the gene expression 81 

was measured. This limits application of these techniques to platforms on which suitable reference 82 

datasets exist. Unfortunately, generating such datasets is costly, and they are correspondingly rare. 83 

More recently, so-called reference-free approaches have been proposed to address this issue [6, 14]. 84 

When applied to transcriptomic data, these approaches still require the identification of suitable marker 85 

genes for the cell types to be quantified. This selection is of paramount importance to achieve optimal 86 

performance. The general strategy for marker selection is to identify genes whose expression in one cell 87 

type exceeds that of all other cell types being considered [6], a process that itself relies on reference 88 

datasets. In fact, all approaches discussed thus far rely on one of a handful of publicly available 89 

reference datasets to derive a basis matrix or identify suitable marker genes [12, 15, 16]. No suitable 90 

reference dataset exists on the newer Affymetrix Gene ST platform. 91 

Here we propose a new approach that leverages a multi-task learning algorithm to construct a statistical 92 

model able to predict the composition of peripheral whole blood from Affymetrix Gene ST expression 93 

profiles. We further show that the coefficients of this model can be used to identify suitable marker 94 

genes directly, without the need for a reference dataset. Our strategy is readily applicable to other 95 

tissues and/or platforms, which would allow for the development of tools to accurately segment and 96 

quantify a variety of admixed tissues from their gene expression profiles, to account for cellular 97 

heterogeneity across indications or model interactions between gene expression, some cell types and 98 

the indication under study. The described model is freely-available and open source, outperforms other 99 
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current methods when applied to Gene ST data, and could significantly improve our ability to study 100 

disease pathobiology in blood by allowing a more complete study of the various components of the 101 

immune compartment of blood from whole blood gene expression. 102 

Patients, material, and methods 103 

Availability of data and materials 104 

The datasets supporting the conclusions of this article are available on the Gene Expression Omnibus 105 

(GEO): repositories GSE77344 (RTP cohort samples) and GSE77343 (CHFP samples). The model is made 106 

available as a package for the R statistical programming language, distributed under the GNU General 107 

Public License v3.0, and is hosted on GitHub: https://www.github.com/cashoes/enumerateblood. 108 

Cohorts 109 

We used two large clinical cohorts to train and validate the new statistical model. The Rapid Transition 110 

Program (RTP) included prospectively enrolled patients with chronic obstructive pulmonary disease 111 

(COPD), presenting either to St. Paul’s Hospital or Vancouver General Hospital (Vancouver, Canada). 112 

Subjects presenting to the emergency department or those visiting the COPD clinic were approached for 113 

consent to participate in the study. Matched genome-wide transcript abundance and DNA methylation 114 

profiles were available for 172 samples from this cohort. This data was used for training the model and 115 

cross-validation. Complete blood counts, including leukocyte differentials (CBC/Diffs) were available for 116 

all blood samples and used as an independent measure of blood composition (excluding lymphocyte 117 

subtypes). 118 

The chronic heart failure (HF) program (CHFP) included prospectively enrolled HF patients presenting to 119 

St. Paul’s Hospital or Vancouver General Hospital (Vancouver, Canada). Subjects were approached 120 

during their visit to the heart function, pre-transplant, or maintenance clinics, and those who consented 121 
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were enrolled in the study. A blood sample was collected at the time of enrollment. Genome-wide 122 

transcript abundance profiles and complete blood count, including leukocyte differential (CBC/Diffs) 123 

were available for 197 HF patients. This data was used to independently validate the performance of the 124 

statistical model. 125 

Both studies were approved by the University of British Columbia Clinical Research Ethics Board and 126 

Providence Health Care Research Ethics Board and confirm to the principles outlined in the Declaration 127 

of Helsinki. 128 

Sample processing 129 

For all subjects, blood was collected in PAXgene (PreAnalytix, Switzerland) and EDTA tubes. The EDTA 130 

blood was spun down (200 x g for 10 minutes at room temperature) and the buffy coat aliquoted out. 131 

Both PAXgene blood and buffy coat samples were stored at -80oC. 132 

Transcript abundance 133 

Total RNA was extracted from PAXgene blood on the QIAcube (Qiagen, Germany), using the PAXgene 134 

Blood miRNA kit from PreAnalytix, according to manufacturer’s instructions. Human Gene 1.1 ST array 135 

plates (Affymetrix, United States) were used to measure mRNA abundance. This work was carried out at 136 

The Scripps Research Institute DNA Array Core Facility (TSRI; La Jolla, CA). The resulting CEL files were 137 

processed using the ‘oligo’ R package [17]. 138 

Dna methylation 139 

For the RTP cohort samples only, DNA was extracted from buffy coat using Qiagen’s QIAamp DNA Blood 140 

Mini kits. DNA was bisulphate-converted using the Zymo Research EZ DNA methylation conversion kit, 141 

and Infinium HumanMethylation450 BeadChips (Illumina, United States) were used to measure 142 

methylation status at >485,000 sites across the genome. This work was carried out at The Centre for 143 
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Applied Genomics (TCAG; Toronto, Canada). The resulting IDAT files were processed using the ‘minfi’ R 144 

package [18]. 145 

Statistical analysis 146 

Following preprocessing with their respective packages (‘oligo’ or ‘minfi’), the normalized data were 147 

batch corrected using the ‘ComBat’ algorithm [19], as implemented in the ‘sva’ R package [20]. 148 

1. Model training 149 

Next, we inferred the cellular composition of the RTP cohort blood samples from their DNA methylation 150 

profiles using the ‘estimateCellCounts’ function provided by ‘minfi’. This function uses publicly available 151 

DNA methylation profiles obtained from isolated leukocyte sub-types to infer the relative abundance of 152 

granulocytes, monocytes, B, CD4+ T, CD8+ T and NK cells (details in Table 1) with very high accuracy [12, 153 

18]. We compared these composition estimates to those obtained from a hematology analyzer 154 

(CBC/Diffs) to assess accuracy. 155 

We then fit a multi-response Gaussian model using elastic net regression via the ‘glmnet’ R package [21] 156 

on the genome-wide transcript abundance data, using the DNA methylation-derived cell proportions as 157 

response variables. The multi-response Gaussian model family is useful when there are a number of 158 

possibly correlated responses – a so called “multi-task learning” problem – as is the case for these cell 159 

proportions. Probesets with minimum log2 expression < 5.5 across all samples (22,251) were excluded 160 

using the ‘exclude’ parameter. We set the elastic net mixing parameter ‘alpha’ at 0.1 to encourage the 161 

selection of a smaller subset of genes and chose the regularization parameter ‘lambda’ using the 162 

‘cv.glmnet’ function set to minimize mean squared error (MSE). 163 

2. Estimating out-of-sample performance 164 

Out-of-sample performance of our model was evaluated using 20 x 10-fold cross-validation (not to be 165 

confused with the cross-validation performed by ‘cv.glmnet’ in order to choose an effective 166 
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regularization parameter ‘lambda’). We then validated the accuracy and calibration of our model by 167 

comparing its predicted cell proportions to the available CBC/Diffs data in the CHFP cohort. 168 

Unfortunately, a more complete enumeration of the lymphocyte compartment (e.g., by flow cytometry) 169 

was not available in any of our cohorts, so we could not independently validate performance in the 170 

various lymphocyte sub-types. Instead, the sum of the predicted B, CD4+ T, CD8+ T and NK cell 171 

proportions was compared to total lymphocyte proportions from the CBC/Diffs. 172 

3. Performance compared to other current approaches 173 

Finally, we compared the performance of our model to two alternative approaches for determining the 174 

composition of blood samples from their gene expression profiles, described by Abbas et al.[5] and 175 

Chikina et al. [6], in this independent heart failure cohort. First, the basis matrix from Abbas et al., 176 

derived from the IRIS (Immune Response In Silico) reference dataset, was used to predict the cell 177 

proportions of neutrophils, monocytes, B, CD4+ T, CD8+ T and NK cells [15]. Again, the Abbas predicted 178 

proportions for B, CD4+ T, CD8+ T and NK cells were summed to obtain a predicted lymphocyte 179 

proportion. The Abbas predicted neutrophil, monocyte and lymphocyte proportions were compared to 180 

CBC/Diffs. 181 

4. Model features as marker genes for use with reference-free approaches 182 

Next, we evaluated whether our approach could be used to identify more suitable marker gene sets 183 

compared to a reference dataset approach. The reference-free approach described by Chikina et al. 184 

does not require a basis matrix, relying instead on a set of putative marker genes. These are used to 185 

guide the decomposition of the dataset’s covariance structure into separate variance components, using 186 

singular value decomposition (SVD).  Marker genes for each cell type are summarized in this manner, a 187 

technique known as eigengene summarization [22]. Given a good set of marker genes, these 188 

summarized values, termed surrogate proportion variables, should track with mixture proportions. We 189 
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used the reference-free approach described by Chikina et al. (as implemented in the ‘CellCODE’ R 190 

package) and marker genes derived either from the IRIS reference dataset, as recommended by Chikina 191 

et al., or from the coefficients of our model. We then compared the surrogate proportion variables 192 

produced by ‘CellCODE’, using either marker gene sets, to those obtained from CBC/Diffs in order to see 193 

whether we could identify better marker genes. Spearman’s rank correlation (ρ) was used to summarize 194 

association between predictions and root mean squared error of prediction (rmse) was used to 195 

summarize accuracy and precision. 196 

Results 197 

DNA methylation derived predictions of the cellular composition of the RTP cohort blood samples were 198 

accurate when compared to those obtained from CBC/Diffs (root mean squared error [rmse] = 0.01 – 199 

0.08, Spearman’s ρ = 0.85 – 0.94; Supplementary Figure S1). The observed error rates were consistent 200 

with those previously reported [11, 12]. These predictions were used as the response variables in a 201 

multi-response Gaussian model fit to the RTP cohort gene expression data using an elastic net 202 

regression. The model selected by ‘cv.glmnet’ retained 491 features. Its fit to the data is visualized in 203 

Figure 2, against both the DNA methylation derived composition estimates (Figure 2A), and CBC/Diffs 204 

(Figure 2B). Model fit was good (DNA methylation composition: rmse = 0.01 to 0.04; ρ = 0.86 to 0.97; 205 

CBC/Diffs: rmse = 0.01 to 0.06; ρ = 0.91 to 0.97) across all cell types, with the exception, perhaps, of 206 

CD8+ T cells. When considering the model fit to the CBC/Diffs data, we noted slight bias, with 207 

granulocyte proportions tending to be under-predicted and lymphocyte proportions over-predicted. 208 

To characterize the potential performance of this model on new data, we carried out a 20 x 10-fold 209 

cross-validation. Estimated out-of-sample performance varied across cell types (Figure 3). We report the 210 

mean rmse (scaled to the expected cell abundance) and Spearman’s ρ across all 200 generated models. 211 

Scaled rmse was lowest for granulocytes (0.08) and monocytes (0.24), higher in B, NK and CD4+ T cells 212 
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(0.51, 0.52, and 0.58, respectively), and highest in CD8+ T cells (1.21). Absolute rmse (0.02 – 0.06) 213 

compared favorably to other methods for inferring cellular composition of samples from gene 214 

expression data [5, 7, 8, 13]. Results for Spearman’s ρ were consistent: highest in granulocytes (0.926), 215 

followed by monocytes (0.824), NK cells (0.812), CD4+ T cells (0.785), B cells (0.731), and CD8+ T cells 216 

(0.671). 217 

Next, we applied the model to gene expression profiles from the CHFP cohort blood samples in order to 218 

independently validate the model’s performance. Performance remained good (rmse = 0.02 to 0.09; ρ = 219 

0.69 to 0.91; Figure 4A), though the bias we previously noted was more pronounced. Prediction of 220 

monocyte proportions was significantly worse than that seen in-sample (ρ = 0.69 vs. 0.91) and expected 221 

out-of-sample (from cross-validation; ρ = 0.80 vs. 0.91). Comparing performance of this model against 222 

another available approach for inferring the composition of whole blood samples from microarray gene 223 

expression data [5], we find that our model performs better, with both correlation to CBC/Diffs data and 224 

prediction error markedly improved, especially for monocytes (lymphocyte rmseAbbas= 0.28 vs. rmseglmnet 225 

= 0.09; monocyte rmseAbbas= 0.07 vs. rmseglmnet = 0.02; ρAbbas = 0.31 vs. ρglmnet = 0.69;  Figure 4B).  226 

Marker genes derived from the coefficients of our model outperformed those derived from the IRIS 227 

reference dataset when used to predict cellular composition using the approach proposed by Chikina et 228 

al. (granulocytes ρ = 0.87 vs. 0.67, lymphocytes ρ = 0.84 vs. 0.78, and monocytes ρ = 0.73 vs. 0.32; Figure 229 

5). The marker gene sets showed minimal overlap (granulocytes = 3/51, monocytes = 4/58, B cells = 230 

0/55, CD4+ T cells = 0/11, CD8+ T cells = 1/15, NK cells = 6/22). 231 

Finally, we applied the model to predict the composition of the RTP cohort blood samples from their 232 

gene expression. This is a contrived example, as this information was already available to us, but it 233 

serves to illustrate a possible application of the approach. As expected, large differences exist in the 234 

proportions of the various cell types between patients given prednisone or not. Patients on prednisone 235 
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had proportionally lower amounts of monocytes (p = 2.9 x 10-4), B (p = 6.6 x 10-5), CD4+ T (p = 6.6 x 10-7), 236 

CD8+ T (p = 5.0 x 10-10) and NK cells (p = 9.3 x 10-10), and proportionally higher amounts of granulocytes 237 

(p = 2.3 x 10-8). 238 

Discussion 239 

We introduce a statistical model for predicting the composition of blood samples from Affymetrix Gene 240 

ST gene expression profiles. We demonstrate that this model has suitable performance across all 241 

included cell types in cross-validation, and validate its performance in an independent cohort. The 242 

training and validation cohorts represent 2 major clinical indications, COPD and CHF, and include 243 

patients with various comorbidities, on various drugs, some with strong effects on blood gene 244 

expression (e.g., prednisone), suggesting that our model may generalize well and be broadly applicable. 245 

All training and validation samples were from older individuals, however, and it may be that this model 246 

will not generalize well to pediatric populations. A loss of performance in pediatric population has been 247 

noted when using a similar approach with DNA methylation data [23]. 248 

We also show that platform-specific marker gene sets can be derived without the need for reference 249 

datasets of isolated gene expression profiles for the cell types we wish to enumerate. Using marker 250 

genes selected from the coefficients of our model in combination with the reference-free approach 251 

proposed by Chikina et al. resulted in better performance compared to using marker genes derived from 252 

isolated leukocyte gene expression profiles obtained on another microarray platform. Interestingly, the 253 

reference-free approach performed only slightly worse than our model, although with loss of scale. This 254 

suggests that the non-zero coefficient weights of the model (which we used to select marker genes for 255 

the various included cell types) can be estimated entirely in the data, and that these marker genes may 256 

be context-independent surrogates of cell proportions. 257 
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More generally, the strategy we adopted to derive our model (and identify suitable marker genes) could 258 

be readily applied to other platforms, or tissues of interest. The only requirements are accurate 259 

quantification of the cell types of interest across a large cohort with matched omics profiling. For many 260 

popular platforms (e.g., RNA-seq), this schema may be more cost effective than sorting and profiling a 261 

number of replicates for all cells of interest, particularly when we consider how costs would scale with 262 

additional cell types to be quantified. Moreover, for low abundance cell types, obtaining a sufficient 263 

quantity to profile may not be feasible, depending on the efficiency of available separation techniques, 264 

amount of admixed tissue that can be collected in practice. 265 

The lack of independent validation within the lymphocyte sub-types is a limitation, though cross-266 

validation performance was good across all cell types. We believe it is unlikely that poor performance in 267 

some or all lymphocyte sub-types would result in good performance when summed and compared to 268 

CBC/Diffs. Model fit exhibits some degree of shrinkage (flattening of the plot of predicted vs. observed 269 

away from the 45 degree line). This is expected, however, and related to the phenomenon of regression 270 

to the mean. Performance in cross-validation was notably worse for CD8+ T cells. This could be because 271 

of the preponderance of zero values for this particular cell type. We also note that performance in 272 

monocytes drops significantly in the validation cohort. It is unclear why this is, but one possibility is the 273 

difference in the distribution of values in the validation cohort (mean monocyte proportion in training: 274 

0.073 vs. 0.090 in the validation; p = 1.39 x 10-7). We have observed poor performance of various 275 

deconvolution approaches in quantifying monocytes in the past [13, 24]. It might be that circulating 276 

monocyte diversity is poorly reflected in our current framework and we may be selecting poor marker 277 

genes for this cell type as a result. A similar rationale could be applied to explain the poor CD8+ T cell 278 

performance results in cross-validation. Certainly, it offers the opportunity for further exploration of the 279 

true complexity of these cell types in peripheral blood. 280 
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In summary, our freely-available, open source statistical model is capable of accurately inferring the 281 

composition of peripheral whole blood samples from Affymetrix Gene ST expression profiles. The 282 

strategy we adopted to derive this model is readily applicable to other tissues and/or platforms, which 283 

would allow for the development of tools to accurately segment and quantify a variety of admixed 284 

tissues from their gene expression profiles, to account for cellular heterogeneity across indications or 285 

model interactions between gene expression, some cell types and the indication under study. The 286 

described model outperforms other current methods when applied to Gene ST data and significantly 287 

improves our ability to study disease pathobiology in blood. We provide the opportunity to enrich the 288 

>10,000 Affymetrix Gene ST blood gene expression profiles currently available on GEO, by allowing a 289 

more complete study of the various components of the immune compartment of blood from whole 290 

blood gene expression. 291 
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Tables 367 

Table 1: Description of predicted leukocytes 368 

Cell name Abbreviation Used Description 

Granulocytes Gran CD15+ granulocytes 

Monocytes Mono CD14+ monocytes 

B cells Bcell CD19+ B-lymphocytes 

T cells (CD4+)  CD4T CD3+CD4+ T-lymphocytes 

T cells (CD8+)  CD8T CD3+CD8+ T-lymphocytes 

NK NK CD56+ Natural Killer (NK) cells 

 369 

Figures 370 

Figure 1: Schematic representation of the experiment 371 

The model was trained using 172 blood gene expression profiles from the Rapid Transition Program 372 

cohort (RTP). For all training samples, cellular composition was first estimated from their DNA 373 

methylation profiles (using minfi’s ‘estimateCellCounts’) and then used as the response matrix to fit a 374 

multi-response Gaussian model (using glmnet) on the blood gene expression profiles (1). The 375 

performance of this model on new data was estimated using cross-validation (2) and confirmed using 376 

192 blood expression profiles from the Chronic Heart Failure Program (CHFP), an independent test 377 

cohort (3). 378 
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Figure 2: Assessing model fit 379 

Predicted proportions from the model are plotted against the DNA methylation-derived cell proportions 380 

for each sample in the training data (A) or that obtained from CBC/Diffs (B). For A, linear best-fit line to 381 

the data is plotted (blue line) with 95% point-wise confidence interval for fit (grey band) and compared 382 

with perfect agreement (red dashed line). For B, the sum of the predicted B, CD4+ T, CD8+ T and NK cell 383 

proportions is compared to the total lymphocyte proportions from the CBC/Diffs. For each cell type, 384 

Spearman’s rank correlation (ρ) and the root mean squared error (rmse) are reported. 385 

Figure 3: Cross-validation performance 386 

Distribution of root mean square error (rmse; A), scaled to the expected frequency for each cell, and 387 

Spearman’s rank correlation (ρ; B) for out-of-sample predictions across a 20 x 10 fold cross-validation 388 

are visualized using box-and-whisker plots. The mean and 95% CI are shown as a point and range in the 389 

center of each boxplot and represent the expected out-of-sample performance. 390 

Figure 4: Our model accurately predicts the cellular composition of blood 391 

samples and outperforms existing approaches in Affymetrix Gene ST data 392 

Predicted cell proportions are plotted against the cell proportions obtained from CBC/Diffs in an 393 

independent dataset (CHFP cohort) for the model (A) or using the method from Abbas et al. (B). The 394 

sum of the predicted B, CD4+ T, CD8+ T and NK cell proportions is compared to the total lymphocyte 395 

proportions from the CBC/Diffs. For each cell type, Spearman’s rank correlation (ρ) and the root mean 396 

squared error (rmse) are reported. 397 
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Figure 5: Our model identifies better performing marker genes for use with 398 

reference-free approaches in Affymetrix Gene ST data 399 

Surrogate proportion variables obtained from CellCODE are plotted against the cell proportions 400 

obtained from CBC/Diffs in an independent dataset (CHFP cohort). The sum of the surrogate proportion 401 

variables obtained for B, CD4+ T, CD8+ T and NK cells is compared to the total lymphocyte proportions 402 

from the CBC/Diffs. Marker genes used by CellCODE were derived from the coefficients of the model (A) 403 

or using the recommended set of marker genes (B) derived from the IRIS reference dataset. For each cell 404 

type, Spearman’s rank correlation (ρ) is reported. 405 

Figure 6: Model predicted cell proportions highlight prednisone-dependent 406 

changes in peripheral blood composition 407 

Treatment of acute exacerbations (AE) in COPD with prednisone results in important changes in the 408 

cellular composition of peripheral blood. The distributions of granulocyte, monocyte, B, CD4+ T, CD8+ T 409 

and NK cell proportions are visualized for patients from the Rapid Transition Program (RTP) cohort that 410 

were given prednisone or not (p-value is for the unpaired Student’s t-test comparing the two groups in 411 

each case). 412 

Supplementary Figure S1: DNA methylation-derived composition vs. CBC/Diffs 413 

Predicted proportions were obtained by applying the ‘estimateCellCounts’ function from the ‘minif R 414 

package to peripheral blood derived DNA methylation profiles in the Rapid Transition Program (RTP) 415 

cohort and plotted against cell proportions obtained from CBC/Diffs. The sum of the predicted B, CD4+ 416 

T, CD8+ T and NK cell proportions is compared to the total lymphocyte proportions from the CBC/Diffs. 417 

For each cell type, Spearman’s rank correlation (ρ) and the root mean squared error (rmse) are 418 

reported. 419 
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