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Abstract 
While forming and updating beliefs about future life outcomes, people tend to consider good news and to disregard bad news. This 
tendency is supposed to support the optimism bias. Whether learning bias is specific to “high-level” abstract belief update or a 
particular expression of a more general “low-level” reinforcement learning process is unknown. Here we report evidence in favor of 
the second hypothesis. In a simple instrumental learning task, participants incorporated worse-than-expected outcomes at a lower 
rate compared to better-than-expected ones. This asymmetry was correlated across subjects with standard measure of dispositional 
optimism. Multimodal imaging indicated that inter-individual variability in the expression of asymmetric update relies on the 
dorsomedial prefrontal cortex at both morphological and functional levels. Our results constitute a new step in the understanding of 
the genesis of optimism bias at the neurocomputational level. 

 
Introduction  
"It is the peculiar and perpetual error of the human 

understanding to be more moved and excited by affirmatives 
than negatives; whereas it ought properly to hold itself 
indifferently disposed towards both alike" (p. 36)a. 

People typically underestimate the likelihood of negative 
events and overestimate the likelihood of positive events. This 
cognitive trait in (healthy) humans is known as the optimism bias and 
has been repeatedly evidenced in many different guises and 
populations (Shepperd et al., 2013, 2015; Weinstein, 1980) such as 
students projecting their salary after graduation (Shepperd et al., 
1996), women estimating their risk of getting breast cancer (Waters et 
al., 2011) or heavy smokers assessing their risk of premature 
mortality (Schoenbaum, 1997).  One mechanism hypothesized to 
underlie this phenomenon is an asymmetry in belief updating, 
colloquially referred to as “the good news / bad news effect” (Eil and 
Rao, 2011; Sharot et al., 2011). Indeed, preferentially revising one’s 
beliefs when provided with favorable compared to unfavorable 
information constitutes a learning bias which could, in principle, 
generates and sustains an overestimation of the likelihood of desired 
events and a concomitant underestimation of the likelihood of 
undesired events (optimism bias) (Sharot and Garrett, 2016).  

 
This good news/bad news effect has recently been 

demonstrated in the case where outcomes are hypothetical future 
prospects associated with a strong a priori desirability or undesirability 
(estimation of post-graduation salary or the probability of getting 
cancer) (Shepperd et al., 1996; Waters et al., 2011). In this 
experimental context, belief formation triggers complex interactions 
between episodic, affective and executive cognitive functions (Eil and 
Rao, 2011; Sharot et al., 2011, 2007), and belief updating relies on a 
learning process involving abstract probabilistic information (Garrett et 
al., 2014; Moutsiana et al., 2015, 2013; Sharot et al., 2011). However, 
it remains unclear whether this learning asymmetry also applies to 
immediate reinforcement events driving instrumental learning directed 
to affectively neutral options (i.e. with no a priori desirability or 
undesirability). If an asymmetric update is also found in a task 
involving neutral items and direct feedbacks, then the good news/bad 

                                                                    
aBacon, F. (1939). Novum organum. In Burtt, E. A. (Ed.), The 
English philosophers from Bacon to Mill (pp. 24-123). New 
York: Random House. (Original work published in 1620) 
bOriginal French citation: "Qu’est-ce qu’optimisme? disait 
Cacambo. – Hélas! dit Candide, c’est la rage de soutenir que 

news effect could be considered as a specific – cognitive – 
manifestation of a general reinforcement learning asymmetry. If the 
asymmetry is not found at the basic reinforcement learning level, this 
would mean that the asymmetry is specific of abstract belief updating, 
and this would require a theory explaining this discrepancy.  

 
To arbitrate between these two alternative possibilities, we 

analyzed instrumental behavior of subjects performing a simple two-
armed bandit task, involving neutral stimuli and actual and immediate 
monetary outcomes, with two learning models. The first model (a 
standard RL algorithm) confounded individual learning rates for 
positive and negative feedbacks and the second one differentiated 
them, potentially accounting for learning asymmetries.  

 
Over two experiments, we found subjects’ behavior was 

better explained by the asymmetric model, with an overall difference 
in learning rates consistent with preferential learning from positive, 
compared to negative, prediction errors. Furthermore, this tendency 
of using the asymmetric model covaried with optimistic trait as 
measured with standard psychometric scale (LOT-R). The good 
news/bad news effect can then be considered as a particular 
consequence of a more general asymmetry in reinforcement learning, 
accounting for the optimism bias. 

 
Our and previous studies suggest that the good news/bad 

news effect is highly variable across subjects. Behavioral differences 
in optimistic beliefs and optimistic update have been shown to be 
reflected by differences in brain activation in the prefrontal cortex 
(Sharot et al., 2011). However the question remains, whether or not 
such interindividual differences are related to specific anatomical, 
supposedly developmental, variability as revealed by voxel-based 
morphometry (VBM). Our imaging results indicate that the inter-
individual variability in the tendency in optimistic learning correlates 
with grey matter density in the dorsal prefrontal cortices. Finally, our 
fMRI results confirmed at the functional level the assumptions of our 
computational model as well as the VBM results.  

 
 
Results 
Behavioral task and dependent variables 
Healthy subjects performed a probabilistic instrumental 

learning task with monetary feedbacks, previously used in brain 
imaging, pharmacological and clinical studies13–15 (Figure 1A). In this 
task, options (abstract cues) were presented in fixed pairs (i.e. 
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conditions). In all conditions each cue was associated with a 
stationary probability of reward. In asymmetric conditions, the two 
reward probabilities differed between cues (25/75%). From 
asymmetric conditions we extracted the rate of “correct” response 
(selection of the best option) as a measure of performance (Figure 
1B, left). In symmetric conditions, both cues had the same reward 
probabilities (25/25% or 75/75%), such that there was no intrinsic 
“correct response”. In symmetric conditions we extracted for each 
subject and each symmetric pair, a “preferred response” rate, defined 
as the choice rate of the option most frequently selected by a given 
subject (i.e.by definition in more than 50% of trials). The preferred 
response rate in the 25/25% conditions should be taken as a measure 
of the tendency to overestimate the value of one instrumental cue 
compared to the other, in absence of actual outcome-based evidence. 
(Figure 1B, right).  In a first experiment (N=50) that subjects 
performed while being fMRI scanned, the task involved reward 
(+0.5€) and reward omission (0.0€), as the best and worst outcome 
respectively. In a second purely behavioral experiment (N=35), the 
task involved reward (+0.5€) and punishment (-0.5€), as the best and 
worst outcome respectively. In addition to performing the instrumental 
learning task, subjects of this second experiment filled the Life 
Orientation Test – Revised (LOT-R), a standard assessment of 
optimistic trait. 

  
Computational models 
We fitted the behavioral data with two reinforcement-learning 

models (Sutton and Barto, 1998). The “reference” model was 
represented by a standard Rescorla-Wagner (Rescorla and Wagner, 
1972), thereafter referred to as RW model. The RW model learns 
option values by minimizing reward perdition errors. It uses a single 
learning rate (alpha: a) to learn from positive and negative prediction 
errors. The “target” model was represented by a modified version of 
the RW model, thereafter referred to as RW± model. In the RW± 
model, learning from positive and negative prediction errors is 
governed by different learning rates (alpha: a+ and alpha: a- 
respectively). For a+ > a- the RW± model instantiates optimistic 
reinforcement learning (i.e. the good news/bad news effect); for a+ = 
a-, the RW± instantiates realistic (or unbiased) reinforcement learning, 
just as in the RW model (the RW model is thus nested in the RW± 
model); finally for a+ < a- the RW± instantiates pessimistic 
reinforcement learning. In both models the choices are taken by 
feeding the option values into a softmax decision rule, whose 
exploration/exploitation trade-off is governed by a parameter (b).  

 
Model comparison and model parameters analysis 
We implemented Bayesian model comparison to establish 

which model better accounted for the behavioral data. For each 
model we estimated the optimal free parameters by maximization the 
likelihood of the participants’ choices, given the models and sets of 
parameters. For each model and each subject, we calculated the 
Bayesian Information Criterion (BIC) by penalizing the maximum 
likelihood with the number of free parameters in the model. Group-
level BIC analysis indicated that the RW± model better explains the 
behavioral data compared to the RW model (BICRW=99.4±4.4, 
BICRW±=93.6±4.7; t(49)= 2.9, p=0.006, paired t-test), even accounting 
for its additional degrees of freedom (Table 1). RW± being the best 
fitting model we compared the learning rates fitted for positive (good 
news: a+) and negative (bad news: a-) prediction errors. We found a+ 
significantly higher compared to a- (t(49)= 3.8, p<0.001  paired t-test). 
To summarize, model comparison indicated that, in our simple 
instrumental learning task, the best fitting model is the model with 
different learning rates for learning from positive and negative 
predictions errors (RW±). Crucially, learning rates comparison 
indicated that instrumental values are preferentially updated following 
positive prediction errors, which is consistent with an optimistic bias 
operating when learning from immediate feedback (optimistic 
reinforcement learning). 

 
Computational characterization of inter-individual 

variability 
To explore inter-individual variability, we computed for each 

subject the between-model BIC difference (DBIC=BICRW - BICRW±). 
The ∆BIC quantifies at the individual level the goodness of fit 
improvement moving from the RW to the RW± models, hence 
approximates a measure of optimism. Subjects with a positive DBIC 
(N=25, in the first experiment) are subjects whose behavior is better 

explained by the RW± model (thereafter refereed as RW± subjects); 
subjects with a negative DBIC (N=25, in the first experiment) are 
subjects whose behavior is better explained by the RW model 
(thereafter refereed as RW subjects) (Figure 2A).  Importantly the 
maximum likelihood of reference model (RW) was not different 
between the two groups of subjects, indicating similar baseline quality 
of fit (t(48)= -1.0, p=0.314, two-sample t-test).. 

 
To characterize the computational profiles of these two 

groups of subjects and the validity of the ∆BIC as a measure of 
optimism, we analyzed and compared their free parameters (α+ and α- 
and 1/β) (figure 2C). Learning rates fitted with the RW± model entered 
a two-way ANOVA with group (RW and RW±) and learning rates type 
(a+ and a-) as respectively between- and within-subjects factors. The 
ANOVA showed a main effect of learning rate type (F(1,48)=16.5, 
P<0.001) with a+ higher than a-. We also found a main effect of group 
(F(1,48)=10.48, P=0.002) and a significant group x learning type 
interaction (F(1,48)= 7.8, P=0.007). Post-hoc tests revealed that 
average learning rates for positive prediction errors were not different 
among the two groups, a+

RW=0.45 ± 0.08 and a+
RW±= 0.27 ± 0.06 

(t(48) = 1.7, p=0.086, two-sample t-test). On the contrary, average 
learning rates for negative prediction errors were significantly different 
between groups a-

RW= 0.41 ± 0.08 and a-
 RW±= 0.04 ± 0.02 (t(48)= 4.6, 

p<0.001, two-sample t-test). In addition, an asymmetry in learning 
rates was detected within the RW± group, where a+ was higher than 
a- (t(24)=5.1, p<0.001, paired t-test) but not within RW group 
(t(24)=0.9, p=0.399, paired t-test). Thus, RW± subjects specifically 
drove the learning rates asymmetry found in whole population. On the 
other side the RW subject display “realistic” (as opposed to 
“optimistic”) instrumental learning (Figure 2B and 2C). 

Interestingly, the choice randomness (captured by the 1/β, 
“temperature” parameter) was also found to be significantly different 
between the two groups of subject, 1/βRW=0.20 ± 0.05 and 
1/βRW±=0.06 ± 0.01. (t(48)= 2.9, p=0.006, two-sample t-test). This 
suggests that optimistic reinforcement learning, observed in RW± 
subjects, is also associated with exploitative, as opposite to 
explorative, behavior (Figure 2C). Finally, the ∆BIC (our classification 
variable) was found significantly correlated significantly with the 
normalized learning rate asymmetry ([a+ - a-]/[a+ + a-]; R=0.5455, 
p<0.001) and with the temperature (R=-0.3343, p=0.0177). To 
summarize, RW± subjects tend to weight more positive feedbacks 
and, as a consequence, to exploit more consistently the previously 
rewarded options (optimism). Both computational features of this 
optimistic computational phenotype are quantitatively captured by the 
∆BIC index. 

 
Behavioral signature distinguishing optimistic from 

realistic subjects 
In order to analyze the behavioral consequences of optimistic, 

as opposed to realistic, learning and to confirm our model-based 
results with model-free behavioral observations, we compared the 
task’s dependent variables between our two groups of subjects 
(Figure 2D, Table 2). Correct response rate did not differ between 
groups (t(48)=-0.7323, p=0.467,  two-sample t-tests). However, the 
preferred response rate in the 25/25% condition was significantly 
higher for RW± group in comparison to RW group (t(48)= -3.4, 
p=0.001, two-sample t-test).  

In order to validate the ability of RW± model to capture this 
difference, we performed simulations using both models and 
submitted them to the same statistical analysis as actual choices 
(Figure 2D). The RW± model simulated preferred response rate was 
significantly higher for RW± group compared to the RW group (t(48)= 
-5.4496, p<0.001, two-sample t-test), which replicated human 
behavior.  However,  the simulated preferred response rates from the 
RW model were similar in the two groups (t(48)= -0.6, p=0.566, two-
sample t-test), which departed from our observations in real subjects. 
We found that a higher preferred response rate in the 25/25% 
condition was a specific signature of optimistic learning: in poorly 
rewarding environment (and where there is no intrinsic correct 
response), optimistic subjects tend to overestimate the value of one of 
the two options (Supplementary Figure 1). Finally, we found that the 
preferred response rate in the 25/25% condition was significantly 
correlated with our classification computational variable ∆BIC 
(R=0.6366, p<0.001). The preferred response rate thus provides a 
model-free signature of optimistic reinforcement learning that is 
congruent with our computational analysis: the preferred response 
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rate was higher in RW± group in comparison to RW group and only 
simulations realized with RW± model were able to replicate this 
pattern of responses.  

 
Anatomical signature distinguishing optimistic from 

realistic subjects 
To investigate the neuroanatomical basis of the inter-

individual computational variability observed in our task, we used 
voxel-based morphometry (VBM).  We devised a multiple regression 
model with our computational classification variable ∆BIC as a 
continuous variable of interest. We used the ∆BIC since it captures 
two the computational features distinguishing the RW± from the RW 
subjects: the learning rate asymmetry and the higher tendency to 
explore. This analysis showed a significant positive correlation 
between theΔBIC and grey matter density in only two brain regions; 
the dorsolateral and dorsomedial prefrontal cortices (DLPFC and the 
DMPFC; Figure 3A and B). This result implies that the better the 
behavioral fit by the RW± (optimistic learning), the higher is the grey 
matter density in DLPFC and DMPFC. Moreover, in order to validate 
this model-based result with a model-free analysis, we also analyzed 
the correlation between the grey matter density in these regions and 
preferred response rate in the 25/25% condition. We found significant 
correlations in both the DMPFC and the DLPFC (respectively R=0.45, 
p<0.001, and R=0.42, p=0.003; Figure 3C and D). Our VBM then 
indicates that the computational variability observed in our task is 
linked to structural difference in the dorsal prefrontal cortex (both in 
the medial and the lateral part). More precisely, the more a subject’s 
computational strategy diverges from an unbiased - “realistic” - model, 
the higher is the grey matter density in these areas. These results 
lend further support, based on  biological data, to the computational 
phenotyping based on the learning task. 

 
Functional signature distinguishing optimistic from 

realistic subjects 
To investigate the functional consequence of the anatomical 

difference between the RW± and RW subjects (i.e. different grey 
matter density in in DLPFC/DMPFC), we analyzed the brain activity in 
these regions, using functional Magnetic Resonance Imagining 
(fMRI). We devised a general linear model in which we modeled as 
separated events the choice and the outcome onset, each modulated 
by different parametric modulators. The choice onset was modulated 
by the reaction time (RT), which counts as a proxy of decision value 
and complexity and reflects the decision process(Kolling et al., 2012; 
Shenhav et al., 2014). The outcome onset was modulated by the 
outcome obtained (0.5€ or 0.0€) in a given trial. Overall, we found 
both the DMPFC and the DLPFC as significantly encoding reaction 
times (t(49)=5.9751, P<0.001 and t(49)=2.0873, P=0.042 
respectively, one-sample t-tests). However regression coefficients 
were not different between the two groups in either region (t(48)=-
0.0253, P=0.9799 and t(48)=0.1658, P=0.869 respectively, two-
sample t-tests). On the contrary, when all subjects were analyzed 
together, the activity in the DMPFC and DLPFC did not correlate with 
the outcome value (t(49)=0.5967, P=0.5535 and t(49)=0.648, P=0.52 
respectively, one-sample t-tests).  We tested whether the two 
computational phenotypes differed in the way their DMPFC and 
DLPFC react to the outcome value. We found a significant difference 
in the DMPFC (t(48)=-2.4919, p=0.016, two-sample t-test); post-hoc 
comparison showed that the DMPFC activity covaried positively with 
the outcome value in the RW± group (t(24)=2.1326, P=0.043, one-
sample t-test), but not in the RW group (t(24)=-1.3669, P=0.1843, 
one-sample t-test). We found a similar trend  in DLPFC, but the effect 
did not reach significance (Figure 4E). It therefore seems that the 
difference in grey matter density identified with VBM between the RW 
and the RW± groups has a functional counterpart. More precisely, the 
two phenotypes differ in that only in the RW± the DMPFC responds to 
the outcome value. On the other side, decision process related 
activations (RT) were found to be similar in the two groups.  

 
Optimistic life attitude correlates with optimistic 

reinforcement learning 
In order to validate our “low level” (computational and 

instrumental) measures of optimistic reinforcement learning in respect 
to classical “high level” (psychological and attitudinal) measure of 
optimism, we ran an additional experiment. In this second behavioral 
experiment (N=35), subjects completed the Life Orientation Test 
revised (LOT-R) assessing optimism trait, in addition to our task. 

Importantly the computational and behavioral results obtained in this 
second experiment fully replicated the behavioral and computational 
findings reported above (see Supplementary Materials and 
Supplementary FigureS2). We derived from the LOT-R scale the 
optimism score that we found correlated with the ∆BIC (our model-
based index of optimistic learning: R=0.3814, p=0.024) (Figure 4A 
and C). We also found a positive and significant correlation between 
the LOT-R and the preferred response rate in the 25/25% condition 
(our model-free signature of optimistic behavior: R=0.3350, p=0.049). 
Thus, the more the subjects are optimist according the “high level” 
standard psychological measure of optimism, the more they show 
“low level” computational and behavioral signatures of the RW± 
phenotype. 

 
Discussion 
We found that, in a simple instrumental learning task involving 

neutral visual stimuli associated to actual monetary rewards, 
participants preferentially updated option values following better-than-
expected, compared to worse-than-expected, outcomes. This learning 
asymmetry was replicated in two experiments and proved to be 
robust across different conditions (see Supplementary Materials).  

At the individual level, the learning asymmetry was 
differentially expressed across subjects. We were able to capture this 
variability with a computational measure (the ΔBIC), which quantifies 
the extent to which a subject’s fit improves when moving from the 
unbiased “realistic” learning model to a biased one. Importantly, this 
computational metric was strongly related to a (model-free) behavioral 
signature of optimistic reinforcement learning: the preferred response 
rate in the poorly rewarding condition.  

We further tested the validity of our computational and 
behavioral assessment of inter-individual variability by confronting it to 
external (i.e. task-independent) neurobiological and psychometric 
measures. First, quantitative neuroanatomical imaging indicated that 
grey matter density in both the DMFPC and the DLPFC positively 
correlates with both computational and behavioral measures of 
optimistic reinforcement learning. This relation was found to have 
specific functional consequences in the DMPFC, in the form of 
differential neural response to outcome value in realistic compared to 
optimistic subjects. Finally, computational and behavioral measures of 
optimistic learning also correlated with a standard measure of 
dispositional optimism (LOT-R), providing a link between 
computational and personality traits. 

 
Our results support the hypothesis that the good news/bad 

news stands as a core psychological process generating and 
maintaining unrealistic optimism (Eil and Rao, 2011). In addition, our 
study has the originality of showing that this effect is not specific to 
probabilistic belief updating, and that the good news/bad news effect 
can parsimoniously be considered as an amplification of a primary 
instrumental learning asymmetry. In other terms, following 
nomenclature recently proposed by Sharot and Garrett, we found that 
asymmetric update applies to both “estimation errors” and “prediction 
errors” (Sharot and Garrett, 2016).  

 
The asymmetric model (RW±) included two different learning 

rates following positive and negative prediction errors and we found 
the “positive” learning rate higher compared to the “negative” one 
(Doll et al., 2011; Niv et al., 2015). Distinct learning rates should be 
taken as supplementary evidence that the systems used to learn from 
positive and negative prediction errors are dissociable across different 
brain circuits and areas (Frank et al., 2004; Palminteri et al., 2012). 
Note that since our first experiment did not implicate losses, but only 
reward omissions, our results cannot be interpreted as a 
consequence of loss aversion (Kahneman and Tversky, 1979). In 
other terms the learning asymmetry is not outcome sign-based, but 
prediction error sign-based.  

However, higher learning rates for positive compared to 
negative prediction errors was not the only computational metric 
distinguishing optimistic from realistic subjects. In fact, we also found 
that optimistic subjects had a greater tendency to exploit previously 
rewarded option, as opposed to realistic subjects who were more 
prone to explore both options. Importantly the higher stochasticity of 
realistic subjects was associated neither with lower performance in 
the asymmetrical conditions, nor with a lower baseline quality of fit, as 
measured by the maximum likelihood. This overexploitation tendency 
was particularly striking in the symmetrical 25/25% condition, in which 
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both options are poorly rewarding compared to the average task 
reward rate 

We found an interesting association between optimistic 
update and lower propensity to explore. Indeed, the tendency to 
ignore negative feedback about chosen options was linked to 
considering the preferred option better than it is, and hence to stick to 
this preference. A natural link between optimism and such 
“conservatism” is not new; it can be dated back to Voltaire’s work 
“Candide ou l’Optimisme”, where the belief of “living in the best of the 
possible worlds” was consistently associated with a strong rejection 
and condemnation of progress and explorative behavior. In the word’s 
of the 18th century philosopher:  

“Optimism," said Cacambo, "What is that?" "Alas!" 
replied Candide, "It is the obstinacy of maintaining that 
everything is best when it is worst”b.  

Accordingly, optimism bias has been recently recognized as 
an important psychological factor helping maintain inaction regarding 
pressing social problems, such as climate changes (Gifford, 2011).  

 
Recent studies investigated the neural implementation of the 

good news/bad news effect when analyzed in the context of 
probabilistic belief updating. Decreased belief updating after worst-
than-expected information has been associated with a diminished 
correlation between negative prediction errors and BOLD signal in the 
right inferior prefrontal gyrus (IFG) (Sharot et al., 2011) and with a 
stronger white matter connectivity in a system including left IFG and 
left subcortical regions   (Moutsiana et al., 2015). Congruent with 
those studies indicating prefrontal cortex implication in the good 
news/bad news effect, we found that the tendency to implement 
optimistic reinforcement learning was associated with a greater grey 
matter density in dorso-medial prefrontal cortex (DMPFC) and dorso-
lateral prefrontal cortex (DLPFC). Our VBM results therefore suggest 
that inter-individual anatomical differences – either genetically 
programmed or induced by interaction with environment during 
development (Moutsiana et al., 2013)- in the aforementioned region 
could determine the way people learn from good and bad news. 
Importantly, as opposed to task-elicited fMRI activations, where inter-
individual activation differences could be simply derived from 
differences in the behavioral variable, structural measures are not 
affected by performing the task and could therefore provide insight 
into stable neural markers of a trait of interest (Kanai and Rees, 
2011).  

Structural imaging leaves the question of the functional 
consequence of inter-individual differences unanswered. To fill this 
gap, we analyzed fMRI activity within the regions that have been 
shown to discriminate between optimists and realists at the 
anatomical level. We analyzed both decision (reaction time) and 
learning (outcome encoding) related activations. The results 
confirmed the implication of the DMPFC in the decision process 
(Shenhav et al., 2013). However, decision-related activity was not 
different between optimists and realists. On the other side, outcome-
related activity in optimistic subjects was found significantly different 
from zero and significantly higher compared to realistic subjects. 
These results suggest that, firstly, anatomical differences have 
functional specific effects and, secondly, that optimistic update (i.e. 
the good news/bad news effect) is associated with increased outcome 
representation in the DMPFC (Ullsperger et al., 2014).  

 
We defined subjects as optimists or pessimists, based on 

their computational phenotype that we extracted from an instrumental 
learning task analyzed in the framework of reinforcement learning 
models. To liken our model-based definition to the psychological 
concept of optimism, we confronted the computational and behavioral 
variables capturing optimistic reinforcement learning with a standard 
measure of dispositional optimism: the Life Orientation Test – revised. 
The LOT-R is the most commonly used self-report measure of 
dispositional optimism (Glaesmer et al., 2012) and has been 
accordingly found in previous studies to correlate with behavioral and 
neural signatures of the good news/bad news effect (Sharot et al., 
2011). We found a positive and significant correlation between 

                                                                    
bOriginal French citation: "Qu’est-ce qu’optimisme? disait 
Cacambo. – Hélas! dit Candide, c’est la rage de soutenir que 
tout est bien quand on est mal." Voltaire (2014), Candide ou 
l'optimisme,  Arvensa editions, p56, Ch. XIX. (Original work 
published in 1759).  

learning optimistically in our task and being optimistic in real life, 
meaning that answering to question about the expectation of good 
things to happen in one’s life is connected to the way one 
incorporates positive and negative prediction errors in simple 
reinforcement situations. 

 
An important question is unanswered by our study and 

remains to be addressed. Whereas our results clearly show an 
asymmetry in the learning process, we cannot decide whether the 
learning process itself involves the representational space of values 
or in that of probabilities. This question is related to the broader 
debate whether the reinforcement or the Bayesian learning framework 
better captures learning and decision-making: two views that has 
been hard to disentangle, because of largely overlapping predictions, 
both at the behavioral and neural level (Hampton et al., 2006; 
Lebreton et al., 2015; Mathys et al., 2011).  

 
A legitimate question is why such learning bias survived in the 

course of evolution? An obvious answer to this question is that being 
(unrealistically) optimistic is and/or has been, at least in certain 
conditions, adaptive, meaning that it confers an advantage. 
Consistent with this idea, in everyday life dispositional optimism 
(Carver et al., 2010) has been linked for instance to better global 
emotional well-being, interpersonal relationship or physical health. 
Optimists are less likely to develop coronary heart disease (Tindle et 
al., 2009), have broader social network (Macleod and Conway, 2005) 
and are less subject to distress when facing adversity (Scheier et al., 
1994). Such advantages of dispositional optimism could explain, at 
least in part, the pervasiveness of an optimistic bias in human. 
Concerning the specific context of optimistic reinforcement learning a 
recent paper Cazé and al. showed that in certain conditions (low 
rewarding environments), an agent learning asymmetrically in an 
optimistic manner (i.e. with a higher learning rate for positive than for 
negative feedback) objectively outperforms another “unbiased” agent 
in a simple probabilistic learning task. Thus, before any social, well-
being or health consideration, it is normatively advantageous (in 
certain contingencies) to take more into account positive than 
negative feedback. Thus a possible explanation for an asymmetric 
learning system is that the conditions identified by Cazé et al. closely 
resemble to the statistics of the natural environment that shaped the 
evolution of our learning system.    

Finally, when reasoning about the adaptive value of optimism, 
a crucial point to take into account is the significant inter-individual 
variability of unrealistic optimism (Garrett et al., 2014; Moutsiana et 
al., 2015, 2013; Sharot et al., 2011). As a social animal humans face 
both private and collective decision-making problems (Raafat et al., 
2009).  An intriguing possibility is that multiple “sub-optimal” 
reinforcement learning strategies are maintained in the natural 
population to ensure an “optimal” learning repertoire, flexible enough 
to solve at the group-level the value learning and exploration-
exploitation tradeoff (Hills et al., 2014). This hypothesis needs to be 
formally addressed using evolutionary simulations.  

 
To conclude, our findings shed new light on the nature of the 

good news/bad news effect and therefore on the mechanistic origins 
of unrealistic optimism. We found that the optimistic learning is “not 
specific” to high-level belief updating but a particular consequence of 
a more general “low-level” instrumental learning asymmetry, both 
anatomically and functionally linked to the dorsomedial prefrontal 
cortex. 

 
Methods 
Subjects.  
The first dataset (N=50) served as a cohort of healthy control 

subjects in a previous clinical neuroimaging study (Worbe et al., 
2011). The second dataset involved the recruitment of new subjects 
(N=35). The local ethics committees approved both experiments. All 
subjects gave written informed consent before inclusion in the study 
and the study was carried out in accordance with the declaration of 
Helsinki (1964, revised 2013). In both studies the inclusion criteria 
were being older than 18 years and having no history of neurologic or 
psychiatric disorders. In experiments 1 and 2, men / women ratios 
were 27/23 and 20/15 respectively and the age means 27.1 ± 1.3 and 
23.5 ± 0.7 respectively (expressed as mean ± S.E.M). In the first 
experiment subjects believed that they would be playing for real 
money, but to avoid discrimination between healthy subjects and 
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patients, the final payoff was rounded up to a fixed amount of 80€ for 
every participant. In the second experiment subjects were paid the 
exact amount of money earned in the learning task, plus a fixed 
amount (average payoff 15.7±7.6€). Table 3 reports the demographic 
features of the two cohorts. 

 
Behavioral task and analyses 
Subjects performed a probabilistic instrumental learning task 

described previously (Palminteri et al., 2009) (Figure 1A). Briefly, the 
task involved choosing between two cues that were associated with 
stationary reward probability (25% or 75%). There were 4 pairs of 
cues, randomly constituted and assigned to the 4 possible 
combinations of probabilities (25/25%, 25/75%, 75/25%, and 
75/75%). Subjects were encouraged to accumulate as much money 
as possible and were informed that some cues would result in a win 
more often than others (the instructions have been published in 
appendix of the original study (Palminteri et al., 2009)). Subjects were 
given no explicit information regarding reward probabilities, which 
they had to learn through trial and error. The positive outcome reward 
was winning money (+0.50€); the negative outcome was getting 
nothing (0.0€) in the first experiment and losing money (-0.50€) in the 
second experiment. Subjects made their choice by pressing left or 
right response buttons with a left or right hand finger. Two given cues 
were always presented together, thus forming a fixed pair (choice 
context).  

Regarding payoff, learning mattered only for pairs with 
unequal probabilities (75/25% and 25/75%). As dependent variable 
we extracted the correct response rate in asymmetric conditions (i.e. 
the left response rate for the 75/25% pair and right response rate in 
the 25/75% pair) (Figure 1B). In symmetrical reward probability 
conditions, we calculated the so-called “preferred response rate”. The 
preferred response was defined as the most chosen option, i.e. 
chosen by the subject more than 50% of the trials. This quantity is 
therefore, by definition greater that 50%. The analyses focused on the 
preferred choice rate in the low reward condition (25/25%), where 
standard models predict greater frequency of negative prediction 
errors. Behavioral variables were compared within-subjects using 
paired two-tailed t-test and between-subjects using two-sample two-
tailed t-test. Interactions were assessed using ANOVA. 

 
Optimistic trait 
In the second experiment, subjects also completed the 

French version of Life Orientation Test – Revised (LOT- R), which is a 
classical and the most frequently used (Glaesmer et al., 2012) 
psychological self report measure of dispositional optimism (Scheier 
et al., 1994; Trottier et al., 2008). Furthermore, recent studies showed 
that this scale might also explain part of the inter-individual variability 
associated with the prefrontal neural signature of the good news/bad 
news effect (Sharot et al., 2011). The scale includes ten sentences to 
be graded from 0 to 4 (from total disagreement to total agreement) 
and gives a score from pessimistic to optimistic. Subjects were then 
ranked according their scoring as previously described and their 
ranking was used to assess the correlation of individual scores with 
behavioral and computational measures of optimistic behavior (Sharot 
et al., 2007). We nonetheless note that the same analysis with raw 
scores lead to similar results.  

 
Computational models 
We fitted the data with reinforcement learning models. The 

model space included a standard Rescorla-Wager model (or Q-
leanring) (Rescorla and Wagner, 1972; Sutton and Barto, 1998) 
(thereafter referred to as RW) and a modified version of the latter 
accounting differentially for learning from positive and negative 
prediction errors (thereafter referred to as RW±) (Frank et al., 2007; 
Niv et al., 2015). For each pair of cues, the model estimates the 
expected values of left and right options, 𝑄! and 𝑄!, on the basis of 
individual sequences of choices and outcomes. These 𝑄  values 
essentially represent the expected reward obtained by taking a 
particular option in a given context. In the first experiment, that 
involved only reward and reward omission, 𝑄 values were set at 0.25€ 
before learning, corresponding to the a priori expectation of 50% 
chance of winning 0.5€ plus a 50% chance of getting nothing. In the 
second experiment, which involved reward and punishment, 𝑄 values 
were set at 0.0€ before learning, corresponding to the a priori 
expectation of 50% chance of winning 0.5€ plus 50% chance of losing 
0.5€. After every trial t, the value of the chosen option (e.g., L) was 

updated according to the following rule:  
(1) 

𝑄! 𝑡 + 1 = 𝑄! 𝑡 + 𝛼 ∗ 𝛿(𝑡). 
In the equation, 𝛿(𝑡) was the prediction error, calculated as:  
(2) 

𝛿 𝑡 = 𝑅 𝑡 − 𝑄!(𝑡), 
and 𝑅 𝑡  was the reward obtained as an outcome of choosing 

𝐿 at trial 𝑡. In other words, the prediction error 𝛿(𝑡) is the difference 
between the expected reward 𝑄𝐿(𝑡) and the actual reward 𝑅(𝑡). The 
reward magnitude 𝑅 was +0.5 for winning 0.5€, 0 for getting nothing 
and -0.5 for losing 0.5€. The learning rate, 𝛼, is a scaling parameter 
that adjusts the amplitude of value changes from one trial to the next. 
Following this rule, option values are increased if the outcome is 
better than expected and decreased in the opposite case and the 
amplitude of the update is similar following positive and negative 
prediction errors.  

The modified version of Q-Learning algorithm (RW±) differs 
from the original one (RW) by its 𝑄 values updating rule as follows: 

(3) 

  𝑄! 𝑡 + 1 = 𝑄! 𝑡 + 𝛼
! . 𝛿 𝑡                     𝑖𝑓  𝛿 𝑡 > 0
𝛼! . 𝛿 𝑡                     𝑖𝑓  𝛿 𝑡 < 0 

The learning rate 𝛼! adjusts the amplitude of value changes 
from one trial to the next when prediction error is positive (when the 
actual reward 𝑅(𝑡) is better than the expected reward  𝑄𝐿(𝑡)) and the 
second learning rate 𝛼!  does the same when prediction error is 
negative. Thus the RW± model allows for the amplitude of the update 
being different, following positive (“good news”) and negative (“bad 
news”) prediction errors and permits to account for individual 
differences in the way subjects learn from positive and negative 
experience. If both learning rates are equivalent, 𝛼! = 𝛼! , RW± 
model equals the RW model. If 𝛼! > 𝛼!, subjects learn more from 
positive than negative events. We refer to this case here as optimistic 
reinforcement learning. If 𝛼! < 𝛼!, subjects learn more from negative 
than positive events. We refer to this case here as pessimistic 
reinforcement learning (Figure 2B). 

Finally, given the 𝑄  values, the associated probability (or 
likelihood) of selecting each option was estimated by implementing 
the soft-max rule for choosing 𝐿, which is as follows: 

(4) 
𝑃𝐿 𝑡 = 𝑒(!�(!)∗!) (𝑒(!!(!)∗!) + 𝑒(!!(!)∗!)). 

This is a standard stochastic decision rule that calculates the 
probability of selecting one of a set of options according to their 
associated values. The temperature, 𝛽, is another scaling parameter 
that adjusts the stochasticity of decision-making and by doing so 
controls the exploration/exploitation trade-off.  

 
Model comparison and subjects categorization 
We optimized model parameters by minimizing the negative 

log-likelihood of the data given different parameters settings using 
Matlab’s fmincon function, as previously described (Palminteri et al., 
2015). Negative log-likelihoods (LLmax) were used to compute at the 
individual level (random effects) for each model the Bayesian 
information criterion as follows: 

(5) 
𝐵𝐼𝐶 = log 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 𝑑𝑓 + 2𝐿𝐿𝑚𝑎𝑥 

We computed then the inter-individual average BIC in order to 
compare the quality of the fit of the two models, while accounting for 
their difference in complexity. The intra-individual difference in BIC 
(DBIC=BICRW - BICRW±) was also computed in order to categorize 
subjects in two groups and to quantitatively describe at the individual 
level the diverge from a realistic model (Figure 2A): RW± subjects, 
whose DBIC is positive, are better explained by RW± model. RW± 
subjects, whose DBIC is negative, are better explained by RW± 
model. We note that lower BIC indicated better fit.  

The model parameters, (𝛼!, 𝛼! and 1/𝛽) were also compared 
between the two groups of subjects. Learning rates were compared 
using a mixed ANOVA with group (RW vs RW±) as a between-subject 
factor and learning rate type (+ or -) as a within-subject factor. The 
temperature was compared using a two-sample two-tailed t-test.  

 
Model simulation 
We also analyzed the models’ generative performance by the 

mean of model simulations. For each participant we devised a virtual 
subject, represented by a set of individual best fitting parameters 
obtained. Each virtual subject dataset was obtained averaging 100 
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simulations, to avoid any local effect of the individual history of choice 
and outcome. The model simulations included all task conditions. The 
evaluation of generative performances involved the assessment of 
the “winning model’s” ability to reproduce the key statistical effects of 
the data, as opposite to the “losing model”. Unlike Bayesian model 
comparison, model simulation comparison is bounded to a particular 
behavioral effect of interest (in our case the preferred response rate. 
The model simulation analysis, which is focused on the evidence 
“against” a given model, it is complementary to the Bayesian model 
comparison analysis, which is focused in the evidence in favor of a 
model (Dienes, 2008; Popper, 1959).  

 
Imaging data Acquisition & Analysis 
Subject of the first experiment (N=50) performed the task 

magnetic resonance imaging (MRI) scanning. T1-weighted structural 
images and T2*-weighted echo planar images (EPIs) were acquired 
during the first experiment and analyzed with the Statistical 
Parametric Mapping software (SPM8; Wellcome Department of 
Imaging Neuroscience, London, England). Acquisition and 
preprocessing parameters were previously and extensively described 
(Palminteri et al., 2009; Worbe et al., 2011). We refer to these 
publications for details about image acquisition and preprocessing.  

 
Voxel-based morphometry 
The aim of the VBM analysis was to link computational 

phenotypes to neuroanatomical signatures, thus providing external 
validity to the computational constructs (optimistic as opposite to 
realistic) identified in the behavioral analysis. As in previous healthy 
subjects and patients studies, VBM analysis relied on the 
Diffeomorphic Anatomical Registration Through Exponentiated Lie 
algebra (DARTEL) toolbox implemented in SPM8 software and 
followed the standard procedure outlined in the VBM tutorial 
(Ashburner and Friston, 2000; Lebreton et al., 2013; Palminteri et al., 
2012). The individual grey matter images images were entered in a 
multiple regression design analysis with one variable of interest 
(∆BIC, as an integrate computational measure of optimistic 
reinforcement learning) and three regressors of no interest: gender, 
age and total intracranial volume used as covariates to control for 
demographic characteristics and confounding effects of brain size. All 
significant disclosed on glass brain and coronal slices (Figure 3A and 
3B), and reported in the text survived a threshold of p<0.001 
(uncorrected) over the whole brain and contained a minimum of 30 
contiguous voxels. The areas identified with this model-based VBM 
analysis (DMPFC and DLPFC) were then used as regions of interest 
(ROIs) for a supplementary VBM analysis, aimed to confirm the result 
with a model-free signature of optimistic learning (the preferred choice 
rate in the 25/25% condition) and for the subsequent fMRI analysis.  

  
Functional magnetic resonance imaging 
The aim of the fMRI analysis was to explore the functional 

consequence of the neuroanatomical differences observed in the 
prefrontal cortex and associated with optimistic trait. The fMRI 
analysis was based on a single general linear model. Each trial was 
modeled as having two time points, stimuli and outcome onsets. Each 
time point was regressed with a parameter modulator. Stimuli onset 
was modulated by the reaction time at each trial (continuous 
variable); outcome onset was modulated by the outcome obtained in 
the trial (reward: 0.50€ and no reward: 0.0€). The parametric 
modulators were z-scored to ensure between subject scaling of 
regression coefficients (Palminteri and Lebreton, 2016). Given that 
different subjects have been shown to implement different 
computational strategies, to allow between-group commensurability 
we opted for taking as parametric modulators model-free quantities: 
reaction times, which reflect the choice difficulty (decision process) 
and outcome representation, which is used in the learning (update 
process). Linear contrasts of regression coefficients were computed 
at the subject level and compared against zero to assess the 
presence of variable encoding effect and between-group to assess 
functional correlates of the two computational phenotypes. The 
comparisons were made within ROIs (DMPFC and DLPFC) identified 
with the VBM analysis that served as hypotheses generator for the 
fMRI analysis.  
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Table 1: models fitting and parameters in the two experiments.  

The table summarizes for each model its fitting performances and its average parameters: LLmax: maximal Log Likelihood; BIC: 

Bayesian Information Criterion (computed from LLmax); Alpha: learning rate for both positive and negative prediction errors (RW 
model); Alpha(+) : learning rate for positive prediction errors; Alpha(-) : average learning rate for negative prediction errors (RW± 
model); 1/Beta: average inverse of model temperature. Data are expressed as mean ± s.e.m. *P<0.01 comparing between the 
two models. #P<0.001 comparing between the two learning rates.   

 
Table 2: Behavioral and simulated data. 
 

The table summarizes for each experiment and each group of subjects, behavioral and simulated dependent variables: Both 
real and simulated Correct Response in asymmetric conditions and both real and simulated Preferred Response in 25/25% 
condition. Data are expressed as mean ± s.e.m (in percentage). *P<0.01 two sample t-test.  
 
  

Experiment / Model LLmax BIC α  α+ α - 1/β  

Experiment 1 (N=50)       

RW Model 45.1±2.2 99.4±4.4 0.32±0.05 - - 0.16±0.03 

RW± Model  40.0±2.4 93.6±4.7* - 0.36±0.05# 0.22±0.05 0.13±0.03 

Experiment 2 (N=35)       

RW Model 44.2±2.9 96.2±5.9 0.24±0.05 - - 0.53±0.16 

RW± Model  38.1±3.0 87.7±6.0* - 0.45±0.06# 0.18±0.05 0.31±0.10 

Experiment / Model Correct 
Response 

Correct 
Response 
(RW  
model) 

Correct 
Response 
(RW ± 
model) 

Preferred Response Preferred Response 
(RW model) 

Preferred 
Response 
(RW± model) 

Condition(s) Asymmetric Symmetric (25/25%) 
 
 

Experiment 1 (N=50)       

RW Group 74.25 ± 3.65 75.20 ± 
2.55 

75.35 ± 
2.42 

61.5 ± 1.94 58.14 ± 0.67 59.47 ± 0.81 

RW± Group  77.83 ± 3.25 75.58 ± 
1.94 

77.75 ± 
1.44 

72.75 ± 2.63*  58.84 ± 0.55 69.36 ± 0.99 

Experiment 2 (N=35)       

RW Group 72.01 ± 4.74 72.63 ± 
3.64 

72.51 ± 
3.51 

61.59 ± 2.23 57.10 ± 0.83 59.22 ± 0.89 

RW± Group  76.21 ± 4.58 76.18 ± 
2.62 

78.55 ± 
1.98 

73.36 ± 3.17* 58.69 ± 0.74 70.72 ± 1.52 
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Figures and legends 

 
Figure 1: behavioral task and variables.  
(A) Task’s conditions and contingencies. Subjects selected between left and right symbols. Each symbol was associated with a 
stationary probability (p = 0.25 or 0.75) of winning 0.50€ and a reciprocal probability (1 – p) of getting nothing (first experiment) 
or losing 0.50€ (second experiment). In two conditions (rightmost column) the reward probability was the same in both symbols 
(“symmetric” conditions) and in two other conditions (leftmost column) the reward probability was different across symbols 
(“asymmetric” conditions). Note that the assignment between symbols conditions was randomized across subjects. (B) 
Dependent variables. In the leftmost panel, the histograms show the correct choice rate (i.e. choices directed toward the most 
rewarding stimulus in the asymmetric conditions). In the rightmost panel the histograms show the preferred option choice rate 
(i.e. the option chosen by subjects in more than 50% of the trials; this measure is relevant only in the symmetric conditions, 
where there is no intrinsic correct response). Bars indicate the mean and error bars indicate the SEM. Data are taken from the 
first experiment (N=85). 
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Figure 2: behavioral and computational identification of optimistic reinforcement learning 
(A) Model comparison. The graphic displays the scatter plot of the BIC calculated for the RW model as a function of the BIC 
calculated for the RW± model. Smaller BIC values indicate better fits. Subjects are clustered in two populations according to the 
BIC difference (∆BIC = BICRW - BICRW±) between the two models. RW± subjects (displayed in red) are characterized by a 
positive ∆BIC, indicating that the RW± model better explains their behavior. RW subjects (displayed in grey) are characterized 
by a negative ∆BIC, indicating that the RW model better explains their behavior. (B) Model parameters. The graphic displays the 
scatter plot of the learning rate following positive prediction errors (𝜶!) as a function of the learning rate following negative 
prediction errors (𝜶!), obtained from the RW± model. “Standard” reinforcement learners are characterized by similar learning 
rates for both types of prediction errors.  “Optimistic” learners are characterized by a bigger learning rate only for positive 
compared to negative prediction errors. “Pessimistic” learners are characterized by the opposite pattern. C The histograms the 
RW± model free parameters (the learning rates + and - and the inverse temperature 1/β) as function of the subjects’ 
populations. D Actual and simulated choice rates. Histograms represent the observed and dots represent the model simulated 
of choices for both populations and both models, respectively for correct option (extracted from asymmetric condition), and from 
preferred option (extracted from the symmetrical condition 25/25%, see Figure 1A). Model simulations are obtained using the 
individual best fitting free parameters. *p<0.05, **, p<0.01, ***p<0.001, two-sample two-sided t-test. 
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Figure 3: neural signatures of the optimistic reinforcement learning  
(A) and (B) Computational correlation. Statistical parametric maps of grey matter density positively correlating with the ∆BIC 
(∆BIC = BICRW - BICRW±). Areas colored in gray-to-black gradient on the axial glass brain and red-to-white gradient on the 
coronal slice showed a significant effect (p<0.001 uncorrected with a cluster extent of minimum 30 contiguous voxels). (C) and 
(D) Behavioral correlation. The scatter plots represent the Gray matter density in the dorsolateral and the dorsomedial prefrontal 
cortex (DLPFC and DMPFC) as a function of the preferred response choice rate (Figure 2C).  RW± subjects (displayed in red) 
are characterized by a positive ∆BIC, indicating that their behavior is better explained by the RW± model. RW subjects 
(displayed in grey) are characterized by a negative ∆BIC, indicating that their behavior is better explained by the RW model. (E) 
and (F) Functional consequences. Histogram shows reward-related and time-related signals change in DLPFC and DMPFC at 
the time of reward onset for both populations. Bars indicate the mean and error bars indicate the SEM. *p<0.05, unpaired t-
tests. 
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Figure 4: relation between optimistic reinforcement learning and optimistic life orientation trait.  
(A) The scatter plot represents the ∆BIC variable (∆BIC = BICRW - BICRW±) as a function of individual ranking in the optimistic life 
orientation trait (derived from the LOT-R scale). (B) The scatter plot represents the preferred option choice rate (calculated in 
the 25/25% condition) as a function of individual ranking in the optimistic life orientation trait (derived from the LOT-R scale).  
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