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Abstract 

The discoveries of myriad non-coding RNA molecules, each transiting 

through multiple flexible states in cells or virions, present major 

challenges for structure determination. Advances in high-throughput 

chemical mapping give new routes for characterizing entire 

transcriptomes in vivo, but the resulting one-dimensional data 

generally remain too information-poor to allow accurate de novo 

structure determination. Multidimensional chemical mapping (MCM) 

methods seek to address this challenge. Mutate-and-map (M2), RNA 

interaction groups by mutational profiling (RING-MaP and MaP-2D 

analysis) and multiplexed •OH cleavage analysis (MOHCA) measure 

how the chemical reactivities of every nucleotide in an RNA molecule 

change in response to modifications at every other nucleotide. A 

growing body of in vitro blind tests and compensatory 

mutation/rescue experiments indicate that MCM methods give 

consistently accurate secondary structures and global tertiary 

structures for ribozymes, ribosomal domains and ligand-bound 

riboswitch aptamers up to two hundred nucleotides in length. 

Importantly, MCM analyses provide detailed information on 
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structurally heterogeneous RNA states, such as ligand-free 

riboswitches, that are functionally important but difficult to resolve 

with other approaches. The sequencing requirements of currently 

available MCM protocols scale at least quadratically with RNA length, 

precluding general application to transcriptomes or viral genomes at 

present. We propose a modify-crosslink-map expansion to overcome 

this and other current limitations to resolving the in vivo ‘RNA 

structurome’. 
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1. Introduction 
RNA molecules underlie many of the core processes of life. RNA’s biological 

roles include catalysis of peptide bond formation and deciphering the genetic 

code in all living systems; elaborate alternative splicing of RNA messages in 

different tissues during metazoan development and evolution; and packaging, 

replication, and processing of pervasive parasitic elements, including viruses and 

retrotransposons [see (Gesteland et al., 2006) and references therein]. Even as 

the RNAs involved in these processes have been under intense investigation, a 

vast number of additional RNA molecules are being discovered in genomic 

segments that do not code for proteins but appear to be transcribed and 

processed in a regulated manner; see (Amaral et al., 2008; Eddy, 2014; Qureshi 

& Mehler, 2012) and references therein. Understanding whether, when, and how 

these RNA molecules functionally impact complex organisms is a major current 

challenge in biology.  

 

Well-studied ‘RNA machines’ such as the ribosome and the spliceosome form 

and interconvert between intricate three-dimensional structures as they sense 

and respond to their protein, nucleic acid, and small molecule partners. It is 

possible that some or many of the newly discovered non-coding RNA molecules 

may transit through such functional structures and even interact to form an 

extended RNA machine (Amaral et al., 2008). However, it is also possible that 

most non-coding RNAs harbor sparse or no regions that form functional 
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structures. In either case, these possibilities are, for the most part, untested. On 

one hand, structure determination methods that achieve high resolution are 

growing in power and applicability, with recent improvements in cryo-electron 

microscopy achieving near-atomic-resolution models for RNA complexes 

extracted from living cells (Amunts et al., 2014; Greber et al., 2014; Hang et al., 

2015; Nguyen et al., 2015). On the other hand, these methods, along with 

crystallography and NMR approaches, continue to face challenges in RNAs that 

form non-compact states, form multiple structures, bind a heterogeneous 

complement of partners, or that have large unstructured regions.  

 

In contrast to high-resolution methods, chemical mapping (also called 

‘footprinting’, ‘chemical probing’, or ‘structure mapping’) experiments can be 

applied to most RNAs under most solution conditions, including molecules that 

form heterogeneous, flexible structures or molecules functioning in their native 

cellular or viral milieu. Chemical mapping methods mark nucleotides that are 

accessible to chemical attack. Such reactivity is typically correlated to nucleotide 

solvent accessibility or flexibility, key features of RNA structure. As these 

techniques are read out by nucleic acid sequencing, chemical mapping methods 

have undergone accelerations over the last decade as sequencing technologies 

have rapidly advanced, enabling characterization of RNA chemical accessibilities 

of entire transcriptomes in vivo; see, e.g.,  and refs. therein. These experiments 

raise the prospect of nucleotide-resolution structural portraits of all RNAs being 
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transcribed in an organism – the ‘RNA structurome’. Nevertheless, when tested 

through independent experiments, de novo models derived from chemical 

mapping and computational modeling have not always given consistently 

accurate structures, even on small domains folded into well-defined states and 

probed in vitro (Deigan et al., 2009; Kladwang et al., 2011c; Leonard et al., 2013; 

Tian et al., 2014). These issues can be traced to the poor information content of 

chemical mapping measurements, which typically give single or few 

measurements per nucleotide, compared to high-resolution technologies such as 

crystallography, NMR, or cryo-electron microscopy, which can return data sets 

with ten or more measurements per nucleotide. 

 

Multidimensional chemical mapping (MCM) techniques were proposed recently to 

address the limited information content of conventional chemical mapping data 

(Das et al., 2008; Kladwang & Das, 2010). MCM methods seek to determine not 

just chemical reactivities at each nucleotide but also how these reactivities are 

affected by systematic perturbations – nucleotide mutations, chemical 

modifications, or radical source attachments – at every other nucleotide (Figure 

1). Analogous to multidimensional forms of NMR spectroscopy, such 

multidimensional chemical data were hypothesized to give sufficient constraints 

to accurately model RNA secondary structure and tertiary structure at nucleotide 

resolution and to give detailed empirical information on heterogenous ensembles. 

If successful, MCM would provide a needed ‘front-line’ technique for inferring 
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RNA structure: structured domains of long RNA transcripts could be rapidly 

defined and visualized from in vivo experiments. If a domain interconverts 

between multiple structural states, such states could be further parsed and 

separately stabilized through mutation, again with rapid nucleotide-resolution 

tests by MCM. After initial MCM-guided analysis, these domains would then 

become candidates for more detailed biochemical analysis, including discovery of 

protein partners; functional analysis through in vivo mutation and epistasis 

experiments; and detailed structural dissection through high-resolution 

techniques, such as crystallography and cryo-electron microscopy. However, 

prior to investing efforts into developing an MCM-initialized pipeline, it has been 

necessary to test the hypothesis that MCM methods will actually produce 

sufficient information to model RNA structures de novo. The purpose of this 

article is to review recent studies on model systems and newly discovered RNAs 

that have evaluated this basic hypothesis, setting the stage for in vivo 

expansions. 

 

The organization of the review is as follows. The next section (Section 2) briefly 

summarizes recent improvements to conventional 1D chemical mapping methods 

and their current limitations, motivating the development of MCM. Section 3 

describes the best-tested MCM approach, the mutate-and-map (M2) technique, 

including its conception, its experimental evaluation, and a recent acceleration 

through mutational profiling (MaP). Section 4 describes and evaluates a second 
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MCM method hypothesized to complement M2 with longer-distance data needed 

for three-dimensional modeling, called multiplexed •OH cleavage analysis 

(MOHCA). Section 5 illustrates first applications of MCM to characterize RNA 

states with significant secondary structure or tertiary structure heterogeneity, 

including ligand-free riboswitch states intractable to other high-throughput 

methods. Section 6 summarizes current challenges in bringing MCM to bear on 

RNA transcripts longer than a few hundred nucleotides, especially within their 

biological milieu. These challenges include not only technical issues in making 

comprehensive nucleotide-level perturbations to cellular RNAs but also a more 

fundamental problem in how MCM sequencing costs scale with RNA length. A 

modify-crosslink-map protocol – not yet put into practice – is proposed to solve 

these problems. A summary of the MCM methods reviewed herein is presented 

in Table 1. Conclusions in the review make use of publicly available data 

deposited in the RNA Mapping Database (Cordero et al., 2012b); accession IDs 

are listed in figure legends. Section 7 summarizes the review. 

2. Prelude: one-dimensional RNA chemical mapping  

RNA structure has been empirically probed by ‘one-dimensional’ chemical 

mapping experiments for more than three decades. As a classic example, 

dimethyl sulfate (DMS) was tested as a structural probe almost immediately after 

its development for nucleic acid sequencing (Peattie & Gilbert, 1980). DMS 

remains in use to methylate the N1/N3 atoms of A/C nucleobases that have their 
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Watson-Crick edges exposed to solution. Modification by DMS thus reports that a 

nucleotide is not engaged in a Watson-Crick pair in the secondary structure 

(Cordero et al., 2012a; Tijerina et al., 2007). Chemical modification by DMS or 

other probes can be rapidly read out at every nucleotide of an RNA through 

primer extension reactions that terminate immediately 3´ to the modified bases, 

followed by electrophoresis or next-generation sequencing of the resulting cDNA 

products. The currently available set of chemical and enzymatic probes of RNA 

structure and several methodological accelerations have been described in 

several recent reviews (Eddy, 2014; Kwok et al., 2015; Weeks, 2010) and these 

methods continue to be advanced; see, e.g., (Kielpinski & Vinther, 2014b; 

Poulsen et al., 2015; Spitale et al., 2015). 

 

Chemical mapping measurements provide one-dimensional (1D) profiles of 

structure along entire transcripts (Figure 1A). These data, even in their raw form, 

can yield biological insights. For example, in recent transcriptome-wide studies, 

comparisons of in vitro and in vivo averaged structural accessibilities over 

numerous transcripts have illuminated the pervasive remodeling of RNA structure 

in cells, presumably by protein partners . Nevertheless, de novo structure 

determination from chemical mapping data has been more challenging. The 

protection of a given nucleotide from chemical modification does not directly 

reveal the nucleotide’s interaction partner, which may be any of the other 

protected nucleotides in the transcript or, in the case of multi-molecular 
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complexes, other molecular partners. Chemical cross-linking approaches can 

pinpoint pairing partners but give sparse data (few cross-links per molecule) and, 

not infrequently, artifacts that have strongly distorted 3D structure models; see, 

e.g., studies on tRNA, ribosomes, group II introns, and the spliceosome 

(Anokhina et al., 2013; Dai et al., 2008; Hang et al., 2015; Levitt, 1969; Robart et 

al., 2014; Sergiev et al., 2001; Whirl-Carrillo et al., 2002). The information content 

of chemical mapping is therefore low. Until recently, expert intuition and ad hoc 

manual comparison of chemical mapping data with phylogenetic information and 

computational methods have been necessary to integrate chemical data into 

structure models, sometimes leading to significant errors (Anokhina et al., 2013; 

Dai et al., 2008; Deigan et al., 2009; Hang et al., 2015; Levitt, 1969; Robart et al., 

2014; Sergiev et al., 2001; Tian et al., 2014; Whirl-Carrillo et al., 2002). 

 

Several studies suggested that direct integration of one-dimensional chemical 

mapping data into energy-optimizing computational algorithms as 

‘pseudoenergies’ would enable automated de novo secondary structure 

determination with high accuracy. There have been promising results on several 

model RNAs of known structure, including large molecules such as the 1542-

nucleotide E. coli 16S ribosomal RNA (Deigan et al., 2009; Hajdin et al., 2013; 

Rice et al., 2014). However, the general level of accuracy of these techniques for 

new RNAs has been questioned (Kladwang et al., 2011c; Sukosd et al., 2013; 

Tian et al., 2014). For example, reanalysis of a model based on selective 2´-OH 
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acylation by primer extension (SHAPE) of the 9173-nucleotide HIV-1 RNA 

genome (Watts et al., 2009) suggested that more than half of the presented 

helices were not well-determined (Kladwang et al., 2011c), and subsequent work, 

including both experimental and computational improvements, have significantly 

revised these uncertain regions (Pollom et al., 2013; Siegfried et al., 2014; 

Sukosd et al., 2015). The debate over whether these methods produce 

acceptable structure accuracies continues (Deigan et al., 2009; Eddy, 2014; 

Kladwang et al., 2011c; Leonard et al., 2013; Rice et al., 2014; Sukosd et al., 

2013; Tian et al., 2014) and will not be reviewed in detail here. There is general 

agreement, however, on some points. First, combination of chemical mapping 

data with automated algorithms provides more predictive power and more 

reproducible results than using either method separately. Second, these methods 

face limitations when applied to RNAs that form significant tertiary structure, that 

form complexes with proteins or other molecular partners, or that populate 

multiple states (Leonard et al., 2013). These issues preclude the application of 

one-dimensional chemical mapping to automated RNA domain structure 

detection – much less de novo structure determination – in many biological 

contexts of interest. 
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3. Mutate-and-map for 2D structure 

3.1 Mutate-and-map (M2) concept 

The secondary structure and tertiary interactions of an RNA structure are defined 

by a list of which nucleotides come together to form Watson-Crick base pairs or 

non-canonical interactions. As noted above, conventional one-dimensional 

chemical mapping constrains but does not directly return this list of pairings. In 

particular, the data do not directly report the pairing partner(s) of each protected 

nucleotide (Figure 1A).  

 

The Mutate-and-Map (M2) approach was proposed in 2010 as a potentially 

general experimental route to resolve the ambiguity of RNA pairing partners 

(Kladwang & Das, 2010). The proposal was conceptually straightforward: If two 

nucleotides are paired in the RNA structure, mutation of one nucleotide might 

‘release’ both partners, producing localized changes observable in single-

nucleotide-resolution chemical mapping profiles. The proposed effect is 

illustrated in Figure 1B, and was supported by observations in prior mutational 

studies on group I introns (Garcia & Weeks, 2004; Pyle et al., 1992). In general, 

disruption by a single mutation might not give precise release of partners but 

instead produce global unfolding of the RNA, localized unfolding of stems, or 

refolding of the RNA into an alternative structure. Fortunately, chemical mapping 

data would still discriminate between these scenarios based on the number and 

pattern of nucleotides with perturbed chemical reactivity. If even a subset of 
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mutations give the desired pinpointed disruption of partners, this would provide 

strong information on RNA structure. However, at the time of the proposal, it was 

unclear if such an informative subset of mutations would generally be found in 

structured RNAs. 

3.2 Proof-of-concept in designed systems 

The M2 proposal motivated the development of methods to synthesize variants 

mutating every position in a nucleic acid sequence, analogous to alanine 

scanning in proteins but not carried out routinely in RNA biochemical studies. The 

proposal also motivated advances in high-throughput protocols for chemical 

mapping of these variants, replacing radioactive labeling of primers and slab gel 

electrophoresis with fluorescent readouts and capillary electrophoresis 

instruments developed for Sanger sequencing (Kladwang et al., 2011a; Mitra et 

al., 2008; Yoon et al., 2011). These accelerations now allow M2 measurements to 

be carried out and analyzed in two days, after receipt of automatically designed 

primers for template assembly from commercial DNA companies (Cordero et al., 

2014; Lee et al., 2015; Tian et al., 2015). 

 

Proof-of-concept experiments for M2 were encouraging. A first study was carried 

out on a 20 base-pair DNA/RNA hybrid helix (Kladwang & Das, 2010). This X-

20/H-20 system was chosen since every possible single-nucleotide mutation and 

deletion to the DNA could be ordered without further processing, and the RNA’s 

DMS modification profile could be mapped with gel and capillary electrophoresis 
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readouts. Visualization of the raw data showed ‘punctate’ events marking 15 of 

the 17 base pairs involving an A or C (the nucleotides visible to DMS read out by 

primer extension) on the RNA strand (outlined in orange, cyan, and green 

outlines; Figure 2A). Inferring these base pairs did not require visual inspection 

but could also be captured by an automated algorithm. The algorithm was based 

on Z-scores, the number of standard deviations by which reactivity at a 

nucleotide exceeded its mean reactivity over all constructs when a putative 

partner was mutated.  

 

Further experiments on a 35-nucleotide ‘Medloop’ RNA hairpin confirmed that M2 

could be applied to infer RNA-RNA base pairs, using data from DMS, SHAPE, 

and CMCT, a reagent specific to exposed G and U Watson-Crick edges. In 

Figure 2B, perturbations near the site of each mutation and at partners are 

highlighted (cyan and yellow outlines). Not every mutation gave punctate release 

of partners. Some showed no perturbations, presumably due to replacement of 

the original Watson-Crick pair with a non-Watson-Crick pair; and others gave 

more delocalized perturbations (yellow arrows, Figure 2A-B; see Section 5 for 

further discussion). Some nucleotides appeared to be ‘hotspots’, becoming 

exposed by many different mutations (see, e.g., G27 in Figure 2B). Nevertheless, 

nine of the hairpin’s ten base pairs could be inferred from a sequence-

independent analysis searching for punctate features. The analysis was again 

based on finding M2 features with high Z-scores; enforcing that multiple such 
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features clustered together was important in eliminating any of the 1460 possible 

false positives. This study also revealed that the strongest effects were seen 

when mutating each nucleotide to its complement. These most informative 

substitutions became the default mutation set in later studies. These early results 

also highlighted the importance of collecting data on mutants at all sequence 

positions, not only to capture base pairs throughout the RNA but also to establish 

whether observed perturbations were significant compared to the variability of 

chemical reactivity at a given site, as captured in the Z-score. Overall, these data 

suggested that the majority of single base pairs in a non-coding RNA might be 

discovered through systematic and unbiased M2 experiments. 

 

3.3 Tests on natural RNAs 

After the proofs of concept above, M2 studies were carried out on several RNA 

domains drawn from biological sources. These RNAs included a benchmark of 

several riboswitches and ribozyme domains that had challenged prior chemical 

mapping approaches (Kladwang et al., 2011b), a ribosomal domain for which 

(one-dimensional) SHAPE-directed modeling gave a misleading structure (Tian et 

al., 2014), newly discovered RNA regulons in vertebrate homeobox mRNA 5´ 

untranslated regions (Xue et al., 2015), and molecules presented to the RNA 

modeling community as ‘RNA-Puzzle’ blind challenges before publication of their 

crystal structures (Miao et al., 2015).  
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Initial benchmark on six natural RNAs 

Visual inspection of M2 data for an initial benchmark of six natural non-coding 

RNAs provided informative lessons after the previous small, artifical proof-of-

concept systems (Figure 2). As hypothesized, punctate mutation-release signals 

appeared in the raw M2 data for the natural non-coding RNAs, signaling Watson-

Crick base pairs occurring in these non-coding RNAs. For example, for a double-

glycine riboswitch aptamer, six helices that had been predicted by expert 

phylogenetic analysis – but not yet confirmed by crystallography – were visible as 

six cross-diagonal features in raw M2-SHAPE data (outlined in six different 

colors, Figure 3A). Nevertheless, these M2 data sets on biological non-coding 

RNA domains showed fewer punctate mutation-release signals compared to the 

original proof-of-concept systems (Kladwang et al., 2011a; Kladwang & Das, 

2010). Indeed, for some helices, all mutations tested either gave no detectable 

change in chemical reactivity or produced delocalized changes in chemical 

mapping profiles relative to the starting sequence, suggesting unfolding or 

refolding of entire helices (yellow, Figure 3A). Signatures for non-canonical base 

pairs, including those mediating tertiary contacts, were similarly delocalized (red 

arrows, Figure 3A); tertiary structure will be discussed in more detail in Section 4 

below. This initial visual inspection indicated that the Z-score-based inference 

developed with artificial systems would, on its own, not allow complete secondary 

structure inference, much less tertiary structure inference, of natural non-coding 

RNAs.  
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Integration with automated secondary structure prediction 

The benchmark results described above (Kladwang et al., 2011b) motivated the 

integration of M2 data with well-developed secondary structure prediction 

methods, inspired by prior work involving one-dimensional chemical mapping 

(Deigan, 2009). RNAstructure and other methods predict the lowest energy 

(highest probability) secondary structure for an RNA sequence, given an 

energetic model. To guide these calculations to higher accuracy secondary 

structures, nucleotide pairs that gave high Z-scores in M2 data were assigned a 

proportionally strong energy bonus in RNAstructure. Across the benchmark, the 

resulting automatically generated secondary structures were consistently 

accurate, with only 1 of 185 base pairs missed, and any mispredicted base pairs 

occurring at only at the edges of helices (Figures 3A-3C) (Kladwang et al., 

2011b) . Furthermore, building on prior efforts to estimate reliability of 1D-

mapping-guided secondary structures (Kladwang et al., 2011c), an analysis was 

developed to estimate the helix-by-helix uncertainty in M2-guided secondary 

structures, based on the recovery of each helix in ‘mock’ analyses in which the 

M2 data were randomly resampled with replacement [nonparametric 

boostrapping (Efron & Tibshirani, 1998)]. These analyses exposed misleading 

inferences from conventional chemical mapping methods (Deigan et al., 2009; 

Tian et al., 2014), and uncertainties in register shifts (Figure 3D, P5 vs. alt-P5) or 
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in helices (typically short 2-bp stems) that could be further tested (see below, 

Section 3.4).  

 

RNA-Puzzle tests 

As in other areas of macromolecule modeling (Das & Baker, 2008; Fleishman et 

al., 2010), the strongest tests of structure prediction have been blind tests. For 

most of the recent blind RNA-Puzzle targets, M2 data were acquired and shared 

with all modelers during the prediction period, before crystal structures were 

released after modeling. These targets include two problems (the D. iridis lariat-

capping GIR1 ribozyme and the S. thermophilum adenosylcobalamin riboswitch) 

recently summarized in the RNA-Puzzles Round II paper (Meyer et al., 2014; 

Miao et al., 2015; Peselis & Serganov, 2012) and four others for which crystal 

structures have since been reported (Ren & Patel, 2014; Suslov, 2012; Suslov et 

al., 2015; Trausch et al., 2015; Trausch et al., 2014).  

 

The M2-based analysis has consistently achieved accurate secondary structures, 

including stems that are scrambled with standard computational modeling and 1D 

chemical mapping analysis [see, e.g., Supporting Information in (Miao et al., 

2015)] and features that could not be captured by prior phylogenetic analysis 

(Figures 3B and 3D). For example, the precise mutation-release signals in M2 

data revealed novel interactions for the lariat-capping GIR1 ribozyme (RNA-

Puzzle 5). Mutations in nucleotide G144 and A145 exposed nucleotides C92 and 
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U91, respectively, making apparent a P2.1/P4 pseudoknot (yellow box, Figure 

3B) missed by conventional chemical mapping and by prior sequence 

comparisons and expert inspection (Beckert et al., 2008).  The entire M2-derived 

secondary structure was accurate compared to the subsequently released crystal 

structure, up to edge base pairs (Figure 3B). In addition, a tertiary contact 

involving an A-minor interaction was detected by visual inspection of the M2 data; 

mutation of P2 sequences changed the reactivity of the apical loop of P9. These 

inferences enabled 3D modeling of the GIR1 ribozyme at better than 1 nm 

resolution  (Miao et al., 2015); see also Section 4.3 below.  

 

Further surprising results arose during automated M2 secondary structure 

modeling of RNA-Puzzle 12, the cyclic-di-adenosine monophosphate ydaO 

riboswitch from T. tengcongensis. Here, automated M2 secondary structure 

modeling returned a model with nearly all the stems expected from prior expert 

analysis of sequence conservation and covariation, including a long-range 

pseudoknot PK1 (Figure 3C). However, this analysis did not recover one hairpin 

stem P4, even though the target sequence included a GAAA tetraloop introduced 

to stabilize this stem (Figure 3C). During the prediction period, our group 

assumed this to be a failure of the M2 approach, and all models from our group 

and all other groups included P4. Nevertheless, when the crystal structure was 

released, the M2 analysis turned out to be accurate: the crystallized RNA did not 

show electron density for the P4 tetraloop, and the conserved nucleotides in this 
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region formed a non-canonical internal two-way junction instead of a hairpin stem 

(Gao & Serganov, 2014; Ren & Patel, 2014).   

 

Overall, the studies carried out to date on well-structured RNAs have strongly 

supported the M2 strategy. Systematic mutagenesis can be coupled to chemical 

mapping to yield rich structural information hidden in or missed by conventional 

chemical mapping data. The data by themselves allow direct single-nucleotide-

resolution inference of some Watson-Crick base pairs through punctate mutation-

release signals. More generally, modeling that integrates M2 data with state-of-

the-art secondary structure prediction methods give full models of all Watson-

Crick pairs. This automated M2 approach has been consistently accurate at 

nucleotide resolution for RNAs that have been challenging for prediction methods 

based on computational modeling, conventional one-dimensional mapping data, 

phylogenetic analysis, expert analysis, or combinations thereof (Kladwang et al., 

2011b; Miao et al., 2015; Tian et al., 2014). These conclusions have been borne 

out in 12 noncoding RNAs whose structures have been solved through 

crystallography, including 6 RNA-Puzzle blind modeling targets. 

 

3.4 Stringent tests through mutation/rescue 

The majority of RNA transcripts in biological systems will not necessarily form a 

single well-defined structure. Thus, the tests of the M2 concept above, which 

relied on crystallization of an RNA to give ‘gold standard’ reference structures, 
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were incomplete. The need for more general validation or falsification motivated a 

further expansion of the M2 concept to enable not only the discovery but also the 

incisive testing of RNA base pairs (Figure 1C).  

 

The Mutate-Map-Rescue (M2R) proposal is a high-throughput variant of 

compensatory rescue experiments, which have provided strong tests of Watson-

Crick base pairing in nearly every well-studied RNA system, including striking 

examples in vivo (Graveley, 2005; Lehnert et al., 1996; Madhani & Guthrie, 1994; 

Reenan, 2005; Singh et al., 2007). In these experiments, two partners in a 

putative base pair are separately mutated to their complement. If concomitant 

introduction of these separately disruptive mutations restores the RNA’s function, 

the pairing is strongly supported. One issue with conventional compensatory 

mutation analysis is that it requires both knowing an RNA’s function a priori and 

having a precise experimental assay for that function. Another issue is that lack 

of rescue does not provide information for or against the tested base pair; in 

general, several base pairs for each helix, mutated not only to their complement 

but also to other Watson/Crick pairs, need to be tested in these studies. Mutate-

map-rescue (M2R) proposes to use chemical mapping as a general and high 

throughput readout of the experiment, even for RNAs whose functions are 

unknown or are difficult to assay (Figure 1C). 

 

Mutate-map-rescue (M2R) results 
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Recent studies have established high-throughput mutate-map-rescue as a tool 

for rapidly validating or refuting RNA structure models, and have provided strong 

support for M2-derived models. For an E. coli 16S ribosomal RNA domain 126-

235, modeling guided by 1D SHAPE data gave a solution-state secondary 

structure model different from the structure seen in the crystallized protein-bound 

small ribosomal subunit (Deigan et al., 2009). In contrast, M2 recovered a 

secondary structure that matched the crystallographic structure up to single-

nucleotide register shifts, and M2R experiments involving 36 sets of 

compensatory mutations supported the M2 model, with no evidence for the one-

dimensional SHAPE-based alternative structure (Tian et al., 2014). This study 

demonstrated the use of M2R as a tool for disambiguating fine-scale 

uncertainties, including register shifts. Figure 3D shows an additional example to 

distinguish between two register shifts of a helix P5/alt-P5 in the lariat-capping 

GIR1 ribozyme (S.T., R.D., unpublished data). The restoration of the chemical 

profile of the wild type RNA from double mutations predicted to rescue P5, but 

not alt-P5, was visually apparent and confirmed by the subsequently released 

crystal structure of the ribozyme (Meyer et al., 2014).  

 
It is important to note here that the confident interpretation of M2R measurements 

does not require the 'punctate' release of partners nucleotides upon single 

mutations. For example, if single mutations of both partners in a base pair lead to 

alternative secondary structures with dramatically different chemical profiles [see 

Section 5, and several examples in (Tian et al., 2014)], M2 analysis would not 
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provide clean evidence of their pairing. However, in M2R, restoration of the wild 

type profile upon double mutation would still provide strong experimental 

evidence for the base pairing of the nucleotides.  

 

The M2R experiment has further provided strong tests of several stems of a 

recently discovered internal ribosome entry site (IRES) in the HoxA9 mRNA, 

including a previously uncertain pseudoknot predicted with low bootstrap support 

(56%) (Xue et al., 2015). Further cellular assays tested the in vivo relevance of 

the M2–rescue structural model, again through compensatory rescue but with a 

functional readout of IRES activity.  

 

Prospects for higher-dimensional chemical mapping (mutate-mutate-map, 

M3) 

The nucleotides targeted by M2R have been limited to base pairs that remain 

uncertain after M2 analysis. The method might, in principle, be generalized to 

cases in which no secondary structure hypotheses or energetic models are 

assumed or modeled a priori, as was the original goal of M2 (Section 3.2). Such a 

‘model-free’ method would involve profiling the effects of all double mutants of 

target RNA on the chemical reactivities of all other nucleotides, and cataloging 

the pairs of mutations that rescue perturbations of single mutations. These data 

would give a ‘three-dimensional’ data set (Figure 1C); we refer to the procedure 

as a mutate-mutate-map analysis (M3).  The expected sequencing costs of M3 
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(see Section 6 below) have prevented broad testing of the concept, although 

massively parallel synthesis and sequencing methods may allow such data sets 

to be collected for short transcripts. At present, the M2R method, which provides 

a targeted subset of a full M3 data set (Figure 1C),  has turned out to be sufficient 

– and, in some cases, necessary – to achieve confidence in secondary structure 

models.  

3.5 Acceleration from mutational profiling (MaP) 

M2 measurements require separate synthesis and purification of single mutants 

of the target RNA. This is possible for RNA molecules that can be transcribed 

from DNA templates that can in turn be constructed through PCR assembly of 

small primers. This synthesis process is straightforward for domains up to a few 

hundred nucleotides but becomes difficult for RNAs of longer length or for 

transcripts that require in vivo biogenesis to assemble into functional structures. 

A method that yields M2-like data without single mutant libraries has recently 

been achieved (Homan et al., 2014; Siegfried et al., 2014). In this method, the 

initial perturbation to the RNA structure is not a mutation at an initially protected 

nucleotide but a chemical modification at that nucleotide when it is transiently 

available for modification. The effect of this first perturbation then affects the 

chemical modifications at other nucleotides that occur later in the reaction period 

(Figure 4A). Unlike conventional chemical mapping approaches where one 

typically seeks ‘single-hit’ modification kinetics (fewer than one average number 

of modifications per transcript), this protocol explicitly seeks multiple hits per 
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transcript to enable detection of correlations between modification events at 

different sites. Detection of multiple hits per transcript was enabled by the 

development of mutational profiling (MaP), a protocol for primer extension and 

next-generation sequencing that allows reverse transcriptases to bypass 

modification sites and incorporate mutations into the cDNA transcript instead of 

terminating at those sites (Siegfried et al., 2014). 

 

For several RNAs, novel RING-MaP (RNA Interaction Groups by Mutational 

Profiling) analysis of multiple-hit DMS data revealed statistically significant 

modification-modification correlations between several nucleotide pairs in the 

same helices, pairs involved in tertiary contacts, and pairs that were not directly 

in contact but might be exposed concomitantly in weakly populated states 

(Homan et al., 2014). Figure 4B shows an alternative two-dimensional view of 

these same data for the P4-P6 domain of the Tetrahymena ribozyme: a heat-map 

of the modification frequency at one site given that a modification is observed at 

a second site (S.T., R.D., C.Y.Cheng, unpublished data). This view, termed 

herein ‘MaP-2D’ analysis, illustrates the similarities between this protocol that 

maps correlations between multiple chemical modifications and the M2 approach 

(Figure 4C). In both panels, vertical striations correspond to the general one-

dimensional DMS modification pattern: there is a high rate of modification at 

unpaired regions independent of where other modifications appear. Both panels 

also show detailed 2D information correlating the exposure of generally protected 
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nucleotides with modifications at other nucleotides. Cross-diagonal features 

corresponding to all the RNA’s helices are visible as punctate dots (in colored 

outlines) as well as signals for the tetraloop/tetraloop-receptor tertiary contact 

(magenta arrows). Interestingly, in the MaP-2D data, a punctate signal at, for 

example, an A-U Watson-Crick base pair involves DMS modification at both the 

adenosine and a ‘non-canonical’ modification at the uracil. It is not yet clear if the 

latter events are due to modification at uracil transiently deprotonated at the N1 

position or to other kinds of modification. 

 

Given the visual similarity of the M2 and MaP-2D data, automated secondary 

structure analysis developed for M2 measurements apply readily to MaP-2D data, 

allowing the recovery of all helices of this as well as other RNA domains that 

have been challenging for chemical-mapping-derived secondary structure 

modeling (S.T., R.D., unpublished data). These results suggest that MaP-2D will 

be able to achieve data and secondary structure models with quality comparable 

to M2 through a simpler protocol that obviates preparation of sequence mutants. 

Independent validation procedures for MaP-2D experiments have not been 

developed, so testing the resulting models will still likely require synthesizing 

variants with single and double mutations and testing for compensatory rescue, 

as described in Section 3.4 above.  
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3.6 Summary 

Critical benchmarks and blind tests of the mutate-and-map (M2) concept, high-

throughput mutate-map-rescue, and MaP-2D have been carried out on more than 

a dozen RNA systems. These studies have supported the basic MCM 

hypothesis, especially with regards to secondary structure: multidimensional 

expansions of chemical mapping give rapid, automated, and consistently 

accurate solution-state structure models of RNA molecules.  

4. Multiplexed •OH cleavage analysis for 3D structure 

4.1 MOHCA proof-of-concept 

Many RNAs are known to form specific tertiary structures to carry out catalysis or 

to recognize small molecule, protein, or nucleic acid binding partners. While the 

studies above have supported application of M2 and related methods to infer 

secondary structure, these data have not in general returned information needed 

to resolve the global tertiary arrangement of those helices, much less atomic-

resolution tertiary structure. Tertiary information from M2 has been limited 

typically to pseudoknots or a fraction of the structure’s other non-canonical base 

pairs, as in the P2/P9 A-minor interaction in the GIR1 ribozyme (Figure 3B). As 

an illustration of the difficulty of inferring non-canonical pairs, mutations in each 

A-minor interaction interconnecting the two aptamers of a double-glycine 

riboswitch successfully disrupted these interactions but also disrupted numerous 

other tertiary interactions as well (Kladwang et al., 2011b) (yellow arrows, Figure 
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3A). 3D modeling is difficult without such precise tertiary contact information, and 

has been carried out only for favorable cases such as an adenine riboswitch 

aptamer (Kladwang et al., 2011b) or at low resolution (Homan et al., 2014). 

Recent RNA-Puzzle blind trials further illustrate the problem: M2-guided 3D 

models with the correct global tertiary structure modeled at sub-helical (better 

than 1 nm) resolution have been submitted for most problems, but modelers have 

not been able to rank their most accurate submissions as their top models (Miao 

et al., 2015).  

 

Precedents for pairwise data from tethered radical cleavage 

A different MCM protocol has been developed to help address the need for high-

throughput RNA tertiary proximities, based on RNA-tethered radical sources. The 

protocol involves chemical attachment of iron chelates to single positions in the 

RNA backbone during or immediately after in vitro synthesis. After folding, 

hydroxyl radicals (•OH) are produced from these iron centers via the Fenton 

reaction, with Fe(II) being regenerated from Fe(III) by a reducing reagent such as 

ascorbate. The radicals attack nucleotides that are at distances of 15–30 Å to the 

radical source; oxidation of sugars can result in backbone cleavage (purple 

arrows leading to red lightning bolt, Figure 5A). While probing distance scales 2-5 

fold longer in distance scale than the ~6 Å separation of adjacent nucleotides, 

these data are expected to be powerful for constraining tertiary folds. (An analogy 

to smaller distance scales may be helpful: NMR approaches achieve near-atomic 
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resolution on small macromolecules using rich sets of NOE-derived proximities 

between atom pairs separated by 3-5 Å, several fold longer than the 1 Å atomic 

length scale.) Indeed, classic work with sources tethered to single residues of 

transfer RNA, ribosomes, and other non-coding RNAs calibrated the relationship 

of RNA backbone cleavage with distance and established the utility of these data 

for nucleotide-resolution RNA and RNA-protein modeling; see, e.g., (Bergman et 

al., 2004; Culver & Noller, 2000; Han & Dervan, 1994; Lancaster et al., 2002). 

The accuracy of pairwise constraints from tethered radical source experiments 

has been further supported by comparison of these and other types of 

biochemical data on the ribosome to subsequently solved crystal structures 

(Sergiev et al., 2001; Whirl-Carrillo et al., 2002).  

 

MOHCA with gel readout 

Multiplexed •OH cleavage analysis (MOHCA) was reported in 2008 to give 

secondary and tertiary structure information on RNA structure from a chemical 

mapping method (Das et al., 2008). MOHCA involved random incorporation of 

radical sources at all possible sites of an RNA, identification of the positions of 

radical cleavage through gel electrophoresis, and identification of which source 

position produced which cleavage events through in-gel RNA scission at radical 

source sites and electrophoresis in a perpendicular direction. Data from this first 

MCM technique gave two-dimensional maps that reflect not base pairing, as in 

M2, but spatial proximity extending over tens of Angstroms. While necessarily 
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lower in resolution, these maps confirmed the secondary structure of this RNA in 

several solution conditions and, crucially, described lower resolution proximities 

between helical elements arranged in space. MOHCA maps were sufficiently 

information-rich to guide Rosetta 3D modeling methods to a 13 Å-RMSD 

accuracy model of the tertiary structure of an RNA model system, the P4-P6 

domain of the Tetrahymena ribozyme. The MOHCA-Rosetta method also gave 

initial ensemble models of the conformationally heterogeneous states of the P4-

P6 RNA without magnesium. Several groups developed methods to incorporate 

MOHCA data into 3D computational methods (Jeon et al., 2013; Parisien & 

Major, 2012; Seetin & Mathews, 2011). However, the MOHCA experimental 

protocol required custom-synthesized nucleotides with double modifications (2´-

NH2 for source attachment; α-phosphorothioate for iodine-catalyzed scission), 

two-dimensional gel electrophoresis, and numerous gel replicates for separate 5´ 

and 3´ end-labeled samples and with different running times to resolve different 

lengths. These requirements prevented MOHCA from being subjected to blind 

tests or entering routine use for RNA structure inference. 

 

4.2 Acceleration through MOHCA-seq 

The advent of paired-end next generation sequencing  resolved the difficulties of 

the original MOHCA method. An updated MOHCA-seq protocol has been 

developed, which uses commercially available nucleotides and iron chelate 

reagents to prepare the library of RNAs with radical sources (Cheng et al., 
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2015b). After folding and fragmentation, an RNA-seq-inspired protocol allows 

readout of radical cleavage events and associated source locations. Primer 

binding sites are ligated onto the cleaved RNA ends, and reverse transcription 

from these primers (green arrows, Figure 5A) terminate at the radical source. 

Unlike the original scission-based protocol, the reverse transcription can also 

terminate at and read out other oxidative damage events associated with the 

radical source, giving additional pairs of nucleotides that are both proximal to the 

radical source (red pins and lightning bolts, Figure 5B). A second adapter ligation 

step enables paired-end sequencing of these cDNA fragments and determination 

of these pairs of nucleotides. Because the final data are digital, background 

subtraction, correction for reverse transcription attenuation, and error estimates 

can be carried out through an automated procedure (closure-based •OH 

correlation analysis, COHCOA). Single MOHCA-seq experiments give data as 

rich as experiments involving dozens of gels with the original MOHCA method, 

mainly due to the readout of double-modification events (Figure 4B) and the 

ability to carry out digital data processing.  

 

In a benchmark on five RNA domains of known structure with lengths up to 188 

nucleotides, MOHCA-seq maps consistently gave signals that confirmed the 

RNA’s solution-state secondary structure and, most importantly, gave information 

that enabled tertiary structure modeling. For a double glycine riboswitch aptamer, 

all six helices observed previously with M2 (Figure 3A) gave distinct hits in 
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MOHCA-seq data (black features inside cyan contours, Figure 5C). Furthermore, 

the MOHCA-seq map marked riboswitch regions brought together by cross-

domain A-minor contacts (magenta arrows in Figure 5C), information that could 

not be resolved by M2 (Figure 3A) due to cooperative loss of all cross-domain 

tertiary contacts upon mutation.  

 

While these interactions could be seen through visual inspection, the MOHCA-

seq map did not allow compilation of a complete list of non-canonical pairs at 

nucleotide resolution, much less a global tertiary structure model. On the tested 

domains and in prior work (Cheng et al., 2015b; Das et al., 2008; Sergiev et al., 

2001; Whirl-Carrillo et al., 2002), the median distance of MOHCA-seq-connected 

hits was ~30 Å, on the same scale as the diameter of an RNA helix (26 Å) and 

larger than the ~6 Å sugar-to-sugar separation of sequence-adjacent nucleotides. 

This intrinsic resolution is unlikely to improve significantly, even if the iron-chelate 

can be tethered more closely to the RNA, since pairs of nucleotides that are 

brought into distance much closer than 15 Å are typically buried within contacts 

and protected from radical attack. Given this likely intrinsic limit in resolution, 

achieving 3D structural pictures requires integration of MOHCA-seq data with de 

novo computational methods, analogous to the integration of M2 analysis with 

automated algorithms to give secondary structures (Section 2.3).  
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4.3 Tests for MCM 3D modeling 

Integration with computational tertiary structure modeling 

To test its information content for 3D structure, MOHCA-seq was integrated with 

the Rosetta Fragment Assembly of RNA with Full Atom Refinement (FARFAR) 

method for 3D structure modeling (Cheng et al., 2015a). Analogous to the 

guidance of RNA secondary structure prediction with M2 data (Section 3.2), a list 

of nucleotide pairs with strong MOHCA intensities was compiled for each RNA. A 

low-resolution scoring function guides initial FARFAR modeling, and 3D 

structures that brought these pairs of nucleotides were awarded an energy/score 

bonus. When carried out using the benchmark data described above and taking 

advantage of M2 data to predefine secondary structure, this M2-MOHCA-Rosetta 

pipeline achieved 8–12 Å RMSD accuracies, a resolution that allowed accurate 

visualization of the tertiary arrangement of helices at near-nucleotide resolution 

(Figure 5C). Modeling without MOHCA-seq data gave significantly worse RMSD 

(e.g., 30.5 Å instead of 7.9 Å for the glycine riboswitch aptamer), confirming the 

necessity of these MCM data. For a newly discovered HoxA9 mRNA IRES, 

MOHCA-seq data supported a secondary structure and pseudoknot detected by 

previous M2R experiments (Xue et al., 2015) and allowed 3D modeling of the 

RNA as a ‘loose tertiary globule’ (Cheng et al., 2015a). 

 

Blind tests 
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As with the secondary structure tests for M2, the most important tests of MOHCA-

seq tertiary structure inference have been blind trials. To date, two partial blind 

tests have been carried out. The first involved refinement of nearly 40% of a 

GIR1 lariat-capping ribozyme model before the release of this RNA-Puzzle’s 

crystal structure (Figure 5D). The MOHCA-seq-guided refinement indeed 

improved the accuracy of the refined regions from 17.0 Å to 11.2 Å and, for the 

whole ribozyme, from 9.6 Å to 8.2 Å (Cheng et al., 2015b). A second blind test 

involved an RNA-Puzzle on a cyclic-di-adenosine monophosphate riboswitch 

aptamer (Ren & Patel, 2014). In this case, the MOHCA-seq protocol (which had 

only recently been developed) was carried out on the target molecule only a few 

days before the modeling deadline, too late to influence modeling. Nevertheless, 

post facto comparisons highlighted the discriminatory potential of MOHCA-seq 

maps. Several MOHCA-seq hits involved residue pairs that were more than 45 Å 

distant in the submitted models (MCM Predicted Model, Figure 5E), but these 

discrepancies were resolved when plotting distances derived from the 

subsequently released crystal structure (Crystal Structure, Figure 5E). These 

results suggest that inclusion of MOHCA-seq data during 3D modeling could 

significantly improve accuracy. Collection and dissemination of MOHCA-seq data 

for more recent RNA-Puzzles are offering further rigorous tests of this hypothesis 

(C.Y. Cheng, M. Magnus, K. Kappel, R.D., unpublished data).   
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4.4 Towards mature MOHCA-seq modeling  

The above studies have given initial support to the overall hypothesis that 

MOHCA-seq can complement M2 to produce RNA 3D models with useful sub-

helical resolution. Nevertheless, there are at least two important aspects of the 

tertiary structure modeling that are underdeveloped in comparison with the M2-

based secondary structure modeling: uncertainty estimation and independent 

validation protocols. 

 

First, the studies above gave estimates of the 3D modeling precision based on 

the similarity of different low energy models from a single computational modeling 

run, but these values may be biased towards overestimating accuracy, as occurs 

in NMR modeling (Rieping et al., 2005). A bootstrapping procedure, similar to 

that used for M2-derived secondary structure models in Section 3, might achieve 

more conservative estimates. While resampling MOHCA-seq constraint lists can 

already generate bootstrapped ‘mock’ data sets, Rosetta modeling is currently 

too computationally expensive to allow replicate runs with these data sets. 

Accelerations in Rosetta modeling, or use of alternative 3D modeling protocols 

(Krokhotin et al., 2015; Parisien & Major, 2012), will be needed to attain such 

uncertainty estimates.  

 

Second, there is no tertiary structure analog yet of the compensatory rescue 

experiments that test secondary structure. MOHCA-seq modeling does not 
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typically resolve individual base pairs of RNA tertiary contacts, precluding design 

of compensatory mutations. Even the modeling could achieve such resolution, 

most tertiary interactions involve non-canonical pairs, often making additional 

interactions with other nucleotides. These pairs are not expected to be 

replaceable with alternative pairs without energetic cost.  

 

As an alternative, one can envision a motif-level testing procedure involving 

substitution of entire motifs of the RNA. For example, if a 3D MCM model 

predicts a sharp bend and twist at a two-way junction, one could replace that 

junction with a previously solved junction known to form a similar bend and twist. 

Positive evidence for the predicted junction geometry would come from chemical 

mapping or functional experiments showing that separately substituting one 

strand or the other produces a disruption in 3D structure/function and that 

concomitant mutation rescues the structure/function. Similar replacements for 

three-way, four-way, and higher order junctions and for tertiary contacts might 

also be feasible. One challenge for this motif-by-motif approach would be to 

automatically find and design the appropriate substitutes. It is presently unclear if 

the database of known structures is large enough to provide such substitutes. 

Another challenge would be to ensure that false positives do not arise from 

simple rescue of secondary structure rather than tertiary structure. The 

development of incisive testing procedures of 3D model features, analogous to 

compensatory rescue of Watson/Crick pairs, is an important frontier for MCM and 
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other RNA structural biology methods, especially as they seek to visualize 

transcripts whose functionally relevant structures may only form in vivo. 

 

4.5 Summary 

Benchmarks and a blind test of the MOHCA (multiplexed •OH cleavage analysis) 

concept for RNA proximity mapping have been carried out on nearly a dozen 

RNA systems. Complementary to mutate-and-map data that pinpoint RNA 

secondary structure, MOHCA seeks proximal nucleotide pairs that would enable 

computer modeling of RNA tertiary structure at nanometer resolution. The studies 

to date have extended support of the basic MCM hypothesis from secondary to 

tertiary structure: multidimensional expansions of chemical mapping enable 

consistently accurate three-dimensional structure models of RNA molecules.  

 

 

5. Deconvolving multiple RNA structures with MCM 

5.1 Multiple states of RNA as a major challenge 

As noted in the Introduction, most biological RNA molecules that have been 

studied in detail transit through multiple structures during their functional cycles. 

For example, viral RNA genomes interconvert between compact structures in 

packaged forms, less-structured cellular states that can recruit and organize host 
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proteins, and states available for translation or replication [see, e.g., (Bothe et al., 

2011; Filbin & Kieft, 2009; Schneemann, 2006) and refs. therein]. On one hand, 

one-dimensional chemical mapping data are sensitive to multiple structures, and 

recent studies in vivo and in vitro support a picture of many, and perhaps most, 

regions of RNA transcripts interconverting between complex conformational 

states [see, e.g., (Kwok et al., 2015; Rouskin et al., 2013; Spitale et al., 2015)]. 

On the other hand, whether these conformational changes are functional or 

simply ‘structural noise’ is unknown for most regions, and the uncertainty is 

exacerbated by the difficulty of deconvolving the component structures from data 

that average over the entire ensemble of structures (Eddy, 2014; Washietl et al., 

2012). Multidimensional chemical mapping measurements give rich data on RNA 

structure and, in favorable cases, allow deconvolution of ensembles of secondary 

and tertiary structures from experiments. 

 

5.2 Deconvolving riboswitch secondary structures with M2-REEFFIT 

Although M2 measurements were not originally developed to deconvolve multiple 

states of an RNA, early measurements suggested that these data captured 

evidence of alternative states. Even for well-structured RNAs, some single 

mutations produce changes in chemical reactivity over extended regions (yellow 

arrows in Figure 3A-3C), and similar patterns of changes occur in several 

mutants. The secondary structure dominating the RNA ensemble apparently 

shifts to a distinct secondary structure in those variants. Indeed, for certain 
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RNAs, the majority of mutations have been observed to produce such 

delocalized rearrangements. Examples have included riboswitches that are 

known from other techniques to form multiple structures, engineered sequences 

that failed to fold into target structures, and engineered switches explicitly 

designed to form multiple structures (Figure 6) (Cordero & Das, 2015; Lee et al., 

2014; Reining et al., 2013; Serganov et al., 2004). For these cases, it is not 

possible to define a single secondary structure for the RNA, and a separate 

analysis method has been developed that models an ensemble of secondary 

structures and, importantly, estimates the associated increase in modeling 

uncertainty.  

 

Modeling of full conformational ensembles from experimental data is a general 

problem in structural biology that is under active investigation in many labs. Since 

data must be used to infer not just a single structural model but instead the 

weights of a potentially large number of structures, no experimental method can 

directly read out an ensemble in a ‘model-free’ manner. Several approaches 

being currently developed for ensemble modeling find the minimal perturbations 

to a predefined, physically reasonable ensemble model that are necessary to 

recover experimental observables [see, e.g., (Beauchamp et al., 2014; Pitera & 

Chodera, 2012; Stelzer et al., 2011; van den Bedem & Fraser, 2015) and refs. 

therein]. RNA Ensemble Extraction from Footprinting Insights Technique 

(REEFFIT) is the first such approach developed for M2 data (Cordero & Das, 
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2015). The prior ensemble comes from automated prediction of equilibrium 

secondary structure ensembles. REEFFIT assumes that M2 data reflect a mixture 

of RNA secondary structures whose relative populations are shifted with 

mutation. While similar in concept to spectral analysis or principal component 

methods (Halabi et al., 2009; Homan et al., 2014), REEFFIT provides detailed 

models of the full ensemble and can make additional predictions. The method 

optimizes the ensemble model’s posterior probability, based on a well-defined 

likelihood model and Bayesian priors defined by empirical relationships between 

RNA pairing and chemical reactivity and the initial model of population fractions 

of each structure within each mutant, estimated from current RNA secondary 

structure energetic models. Figures 6A and 6B shows an example of M2-

REEFFIT applied to understand an imperfectly engineered switch.  

 

The probed multi-state RNA was designed as part of the EteRNA internet-scale 

RNA engineering project, which seeks basic design rules for RNA structure and 

function (Lee et al., 2014). The molecule was designed to change its favored 

structure in response to flavin mononucleotide (FMN); chemical mapping 

confirmed the desired behavior for the starting sequence as well as for a large 

number of mutants. However, these data suggested that a region near nucleotide 

30 that should have been protected prior to FMN binding was instead exposed 

(red rectangle, Figure 6A). In this case, automated REEFFIT analysis provided a 

satisfactory fit to the entire data set (Figures 6A-B, right panels), automatically 
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recovering the desired two states (TBWN-A and TBWN-B, respectively; the state 

names derive from the sequence’s name ‘Tebowned’). As expected, the 

populations of these states (their ‘weights’ in the secondary structure ensemble) 

varied in different mutants (middle panels, Figures 6A and 6B), allowing 

automated estimation of the component reactivities, and the populations in the 

starting sequence were 56 ± 16% and 27 ± 12%. In addition, REEFFIT exposed 

an unexpected third state (TBWN-C, population 17 ± 11%, Figure 6C), which 

explained the anomalous reactivity of A30 (Figure 6D). Each states’ population in 

the starting sequence was greater than expected from the modeling uncertainty, 

estimated through bootstrapping, motivating further tests. As predicted, the 

population of TBWN-B, which presents an FMN aptamer sequence in the correct 

secondary structure context, increased significantly in conditions with FMN 

(compare weights in Figure 6B to Figure 6A). Additional evidence for the three 

states and modeled structures came from design of mutations to strongly 

stabilize each mutant (Figure 6D); when synthesized, these constructs gave 

chemical reactivity patterns in agreement with predictions from REEFFIT on the 

original M2 data (Cordero & Das, 2015).  

 

Current limitations to secondary structure ensemble modeling 

Applications of M2-REEFFIT to date have been limited to sequences of lengths of 

100 nucleotides or less due to the computational expense of optimizing energies 

of structural ensembles. For longer RNAs, alternative structure detection 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 4, 2016. ; https://doi.org/10.1101/038679doi: bioRxiv preprint 

https://doi.org/10.1101/038679


	 44 

methods that produce less detailed pairing information but require less 

computational power, such as RING-MaP, may be more appropriate tools for 

automatically detecting alternative secondary structure states in MCM data. 

Nevertheless, in any of these methods, the problem of validating proposed 

alternative structures remains a challenge. Unlike M2R in single-structure RNAs 

(Section 3.4), compensatory mutations that restore the stability of a weakly 

populated structure are expected to change the population of this state relative to 

others in the RNA’s ensemble, leading to chemical mapping profiles different 

from the starting sequence even if ‘rescue’ of the single target structure is 

successful. For the cases to date, isolation of predicted alternative structures 

through the design of multiple stabilizing mutations has provided evidence of 

those structures, but these experiments neither constrain the population of these 

states in the starting sequence nor reveal whether those populations might be 

biologically relevant. While an independent approach, MOHCA-seq, gave 

independent support to M2-based secondary structure models above (Figure 5), 

RNAs with multiple structures give diffuse, low signal-to-noise MOHCA-seq maps 

that do not strongly falsify or validate secondary structure ensembles (W. 

Kladwang, R.D., unpublished data). It seems likely that strong tests of MCM 

detections of alternative states will require probing their involvement in an RNA’s 

functional cycle. In cases where the function is known, compensatory 

mutation/rescue can be read out through functional assays interpreted in detailed 

kinetic and thermodynamic frameworks. Such studies have been carried out for 
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RNA machines and viruses but require significant specialized effort; see, e.g., 

(Fica et al., 2013; Villordo et al., 2010). 

 

5.3 Preformed tertiary contacts in heterogeneous states with 

MOHCA-seq 

In addition to the alternative secondary structures probed by M2, information on 

3D conformational dynamics can be captured by MCM data. RNAs like the 

ribosome and some aptamer domains of riboswitches have largely preformed 

secondary structure but transit through multiple states as they fold or transit 

through their functional cycles; for examples, see (Baird et al., 2010a; Baird et al., 

2010b; Behrmann et al., 2015; Das et al., 2003; Noller, 2005). For most RNAs 

with this property, however, it is unclear if tertiary structures are retained 

throughout the conformational cycle. For example, one-dimensional chemical 

mapping measurements applied to riboswitch aptamers for glycine and for 

adenosylcobalamin, show loss of protections around ligand binding sites and in 

tertiary contacts in ligand-free states compared to ligand-bound states (Kwon & 

Strobel, 2008; Nahvi et al., 2004; Sudarsan et al., 2008), but these data do not 

resolve whether these tertiary structural features might still be present at low 

population in the ligand-free states. In contrast, MOHCA-seq positively detects 

tertiary interactions in these three aptamers even in ligand-free states. These hits 

occur at the same residue-pairs that give hits in ligand bound states, but at lower 

strength (Figure 7) (Cheng et al., 2015b). These measurements, along with 
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mutational analysis, suggest that the contacts are sampled transiently and 

perhaps without well-defined base pairing; such contacts would otherwise be 

difficult to resolve without specialized experiments such as single molecule FRET 

studies with probes introduced at interacting residues. The MOHCA-seq data do 

not constrain whether these transient contacts occur independently or in an all-

or-none fashion; ensembles based on low-energy conformations from MCM-

guided Rosetta modeling (Figure 7) give initial visualizations but are, at present, 

difficult to test or refine. Future work involving systematic mutagenesis coupled to 

a MOHCA readout (‘mutate-and-MOHCA’) and computational methods that 

produce better-converged 3D ensembles may enable the expansion of REEFFIT-

like procedures for data-driven secondary structure ensemble modeling to tertiary 

structure ensemble modeling.  

  

5.4 Summary 

Non-coding RNA states without single secondary or tertiary structures are 

functionally important and likely pervasive in vivo but available experimental 

methods have difficulty in characterizing them. Benchmarks of M2-REEFFIT 

support its use to recover known secondary structure ensembles and to detect 

unexpected alternative RNA structures. Extending MCM to flexible tertiary 

structures, application of MOHCA-seq to ligand-free states of three riboswitch 

aptamers detects preformed RNA tertiary contacts. These results support the use 
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of multidimensional chemical mapping to visualize RNA states that involve 

heterogeneous secondary structure or tertiary structure. 

	

6. Towards solving RNA structures in vivo with MCM 

6.1 Upcoming challenges: from in vitro to in vivo 

The development of multidimensional chemical mapping (MCM) techniques 

raises the prospect of de novo secondary structure and tertiary structure 

inference for the rapidly growing number of RNA molecules discovered in cells 

and viruses. Nevertheless, all MCM studies have been carried out in vitro, with 

separate experiments on each model system. Can MCM methods be extended to 

myriad RNA molecules interacting with their numerous other partners in their 

actual cellular or viral milieus? Several challenges will have to be solved before 

this is feasible. 

 

Protection of RNA within RNPs and complexes  

In terms of RNA biophysical states, it is possible that the binding of proteins and 

other partners will protect structurally important residue pairs from chemical 

modification and therefore obscure readout via MCM methods. Tests on the 

ribosome fully assembled with proteins and on riboswitches complexed to large 

ligands suggest that protections from molecular partners still leave significant 

MCM-detectable nucleotide-nucleotide pairing information [(Cheng et al., 2015b) 
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and C.Y. Cheng, R.D., unpublished data]. However, the secondary structure and 

tertiary structure modeling methods that are currently used to integrate MCM 

data will need to take into account the possibility of these protections. 

 

Making chemical perturbations and modifications in vivo  

All MCM methods require perturbing and reading out structural effects on 

transcripts at single nucleotide resolution. In terms of chemistry, several methods 

are now available for making chemical modifications in cells and then reading out 

modification sites by high-throughput sequencing [reviewed in (Ding et al., 

2014)]. It has also long been possible to make single-nucleotide-level 

perturbations on entire transcriptomes through, e.g., chemical mutagens. 

Correlating the perturbations with their structural effects may be possible with 

RING-MaP/MaP-2D-style protocols but will be challenging. More fundamentally, 

these modifications will generally disrupt more than just localized RNA structure. 

The modifications will lead to loss of functional interactions for each transcript, 

activation of stress responses, and other cell-wide perturbations, possibly 

including cell death. Possible solutions to this issue may be rapid delivery of 

chemical probes and quenching, as has been carried out in recent in vivo DMS 

and SHAPE measurements, although RING-MaP/MaP-2D approaches will 

require significantly higher modification rates than achieved in those experiments. 

Alternatively, MCM protocols might seek to introduce correlated chemical 

modifications into flash-frozen cells. For example, literature reports suggest that 
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double-hit correlated modifications arise during irradiation of nucleic acids in 

frozen samples, although tests have only been described for double-stranded 

DNA (Chatterjee et al., 1994; Krisch et al., 1991). 

 

Computational challenges  

Obtaining structural models from MCM data requires integration via 

computational methods. Even for the least computationally expensive of these 

methods, which predict secondary structure without taking into account 

pseudoknots, modeling molecules longer than 2000 nucleotides remains 

challenging. For methods seeking three-dimensional structure at sub-helical 

resolution, molecules longer than 200 nucleotides have been intractable, even 

with predefined secondary structures and use of supercomputers, and, even for 

these cases, some steps remain non-automated (Cheng et al., 2015a; Miao et 

al., 2015). Multi-scale computational pipelines involving low resolution domain 

parsing, separate 3D folding of domains, assembly, and refinement will need to 

be developed as MCM data become available for viruses, ribosomes, and other 

large transcripts.  

 

Sequencing costs 

Multidimensional chemical mapping methods seek more information than one-

dimensional chemical mapping approaches, and thus necessarily incur larger 

sequencing costs, e.g., in terms of necessary numbers of reads. Since MCM 
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perturbs every nucleotide of an RNA and assays the response of every other 

nucleotide, the number of measurements should scale quadratically with the 

number of nucleotides (see, however, Section 6.2 below). Will these quadratic 

costs be acceptable for large RNA transcripts? To get a preliminary answer, we 

have estimated the minimal number of reads needed to achieve signal-to-noise 

acceptable for modeling secondary structure (M2, MaP-2D) or tertiary structure 

(MOHCA-seq), through sub-sampling from available data sets (see Figure 8 and 

its legend). As expected, the numbers of reads required to obtain such good 

quality data sets fit to a quadratic dependence with RNA length (Figure 9A). 

Compared to mutate-and-map (M2), which uses only the terminus of the read 

(orange), the MaP-2D analysis of RING-MaP data (red) gain efficiency by 

resolving multiple modification events via different mutations in a sequenced 

fragment. However, the most informative modifications occur at nucleotides that 

are most frequently sequestered into structure; these nucleotides contribute the 

fewest reads to the MaP-2D data, while they are mutated one-by-one in M2 to 

ensure sufficient signal-to-noise at all nucleotides. Overall, MaP-2D ends up 

requiring ~50% more reads than M2. For tertiary contact discovery, MOHCA-seq 

maps are necessary, but those maps give comparably few features that report 

tertiary information compared to features that report secondary structure helices 

(compare number of cyan contours with all contours in Figure 5). Acquiring 

MOHCA-seq data for tertiary structure modeling is thus 2–3 times more 
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expensive than M2 and MaP-2D data that target secondary structure (compare 

purple to red and orange curves, Figure 9A).  

 

When plotted on a log-log scale and extrapolated to longer RNA lengths (Figure 

9B), the strong rise of MCM sequencing costs with number of nucleotides is 

apparent, especially compared to one-dimensional chemical mapping 

approaches, which scale linearly with RNA length (blue curve in Figure 9). At the 

time of writing, four billion reads can be achieved in a large-scale sequencing 

experiment if all lanes of an Illumina HiSeq machine are put to use (top dashed 

line, Figure 9B). A single experiment thus allows one-dimensional chemical 

mapping of most of the highly expressed transcripts in a eukaryotic transcriptome 

(106–107 nucleotides) (Kwok et al., 2015). For the same cost, MCM methods 

could, in principle, be applied to a single transcript with a length of at most 10,000 

nucleotides. In practice, however this is still overly optimistic. First, available 

sequencing technologies remain limited to read lengths of a few hundred 

nucleotides, though this is improving. More fundamentally, all current MCM 

methods require primer extension by reverse transcriptase to connect events at 

one nucleotide to a second nucleotide (see, e.g., green arrows in Figures 5A and 

5B). With currently tested reverse transcriptases, primer extension is inefficient 

for lengths beyond 1000 nucleotides even on unmodified transcripts; and, after 

chemical treatment, modified nucleotides either stop the enzyme (in M2 and 

MOHCA-seq) or reduce its processivity (under conditions tested for RING-
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MaP/MaP-2D). Based on these considerations, structure determination of a 

thousand-nucleotide RNA appears to be the upper limit for current MCM 

methods, and even then would require significant methods development, such as 

characterization of newly available reverse transcriptases (Mohr et al., 2013). 

These calculations indicate that application of MCM to infer structures larger than 

1000 nucleotides will require a fundamental advance in the methodology. Similar 

fundamental limitations will prevent application of current MCM methods to model 

a multitude of transcripts or to uncover intermolecular interactions. 

   

6.2 Proposal to overcome sequencing costs 

Modify-crosslink-and-map 

Inspection of current data and new sequencing protocols suggests an 

experimental strategy to bypass the ~1000-nucleotide limit to MCM imposed by 

the quadratic growth of sequencing costs with sequence length. Most of the 

sequencing reads in an M2 or MaP-2D experiment (Figures 3 and 4) correspond 

to modifications at unstructured nucleotides that are not informative about RNA-

RNA contacts (Figure 9A). Even for MOHCA-seq, which focuses its reads on 

proximal nucleotide pairs, background reverse transcriptase stops at non-

proximal nucleotide pairs (which are subtracted from the maps in Figure 5) 

dominate the sequencing cost for long RNAs (Figure 9). Therefore, any 

experimental workup that filters out these uninformative hits at unstructured 

nucleotides and thereby focuses sequencing onto pairs of regions that are 
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roughly proximal could bring the scaling of sequencing costs to be less than 

quadratic in RNA length. Assuming that each segment of an RNA molecule has a 

bounded number of possible neighbors within a bounded number of possible 

states, the sequencing costs would become linear and not quadratic in transcript 

size. 

 

A method to coarsely filter for proximal segment pairs prior to sequencing can be 

envisioned by analogy to recently developed crosslinking/sequencing protocols. 

For example, Cross-linking Ligation And Sequencing of Hybrids (CLASH) and 

similar approaches (Helwak & Tollervey, 2014) target RNA-RNA interactions by 

carrying out chemical cross-linking (primarily of nucleic acids bound to proteins), 

separation of these cross-linked species, removal of unstructured nucleotides 

through limited nuclease digestion, and ligation of the remaining segments into 

chimeric sequences (Figure 10B). See also RNA proximity ligation (Ramani et al., 

2015), which relies on ligation steps. The ligated segments are then reverse 

transcribed into chimeric cDNAs for amplification and sequencing; the cross-

linked regions are recognized by aligning subsequences against the original 

transcript or transcriptome sequences (Figure 10C). These methods for inferring 

nucleotide-nucleotide contacts are powerful for inferring nucleic-acid interactions 

at the domain level but, in general, their resolutions are too poor for nucleotide-

resolution de novo structure inference. Ligation boundaries are typically distal to 

the sites of the crosslinks, and even when mapped through mutational profiling, 
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these nucleotide-nucleotide chemical crosslinks are sparse  and can give false 

positives (Anokhina et al., 2013; Dai et al., 2008; Hang et al., 2015; Levitt, 1969; 

Robart et al., 2014; Sergiev et al., 2001; Whirl-Carrillo et al., 2002) . However, if 

chemical modifications correlated at a large number of proximal nucleotide pairs 

are introduced prior to the crosslinking (Figure 10A), they will later give rise to 

mutations in the final chimeric cDNAs (Figure 10C) upon reverse transcription via 

the MaP protocol (Homan et al., 2014; Siegfried et al., 2014). The recovery of 

these correlations induced by single-nucleotide chemical modifications (rather 

than by crosslinks) would yield rich and accurate MCM measurements, but 

focused on RNA segment pairs that are roughly proximal in vivo, trapped by 

crosslinking. The cost of this modify-crosslink-map method (MXM) protocol would 

scale in a reasonable manner– linearly with RNA length, if carried out as 

described above. A series of cross-linking and nuclease digestion times might 

need to be tested, varied in 2-fold increments to separately capture fragments 

from easily digested or difficult-to-digest RNA structures. In this case, the scaling 

of MXM would still increase only loglinearly with RNA length (Figure 9, green 

dashed line). As a result, MXM should be a viable approach to de novo RNA 

structure characterization for bacterial transcriptomes and for targeted subsets of 

eukaryotic transcriptomes. 

 

Additional advantages but multiple steps 
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The MXM protocol would give additional advantages besides reduced 

sequencing costs. First, by crosslinking and ligating separate RNAs brought 

together by direct interaction or by colocalization in complexes, MXM would 

expand MCM to detect pairwise structural interactions across transcripts rather 

than just within each transcript. Second, MXM would address current 

inefficiencies in reverse transcription of long RNAs and in sequencing of the 

associated long cDNAs; the long RNAs would be processed through digestion 

and ligation into smaller chimeras before sequencing (Figure 10C). Third, MXM 

could aid in experimentally separating multiple states of RNA transcripts prior to 

applying the computational deconvolution methods of Section 5. For example, 

suppose a region of a viral RNA genome forms three distinct local structures – 

one in the capsid, another while sequestering host factors such as miRNAs, and 

another while being translated by the ribosome. If these three states give rise to 

separable crosslinked species or are ligated to different RNA partners (miRNAs, 

ribosome), MXM maps could determine separate structural maps for the different 

states.  

 

As with all high-throughput sequencing approaches, turning MXM into a 

quantitative technique for de novo structure inference will require significant 

investment of time and resources. Optimization and accounting for biases at the 

many steps – modification, cross-linking, separation, digestion, ligation, reverse 

transcription, amplification, sequencing, and computational dissection – will each 
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be major challenges. Nevertheless, analogous sequencing approaches of 

comparable complexity are being developed and numerous groups have 

recognized steps to bring the methods onto a quantitative footing (Eddy, 2014; 

Konig et al., 2011; Kwok et al., 2015). Excitingly, rich microscopy data becoming 

available for actively translating ribosomes (Behrmann et al., 2015) will provide 

gold standard data to test MXM before its in vivo application to RNA messages, 

long non-coding RNAs, and viral genomes that will be difficult to probe with other 

methods. 

7. Conclusion 

Multidimensional chemical mapping (MCM) seeks detailed structural information 

about RNA molecules by measuring how the chemical reactivity of each 

nucleotide changes in response to perturbations at every other nucleotide. 

Single-nucleotide perturbations developed in recent years include mutations 

(mutate-and-map, M2), chemical modification (MaP-2D), and radical source 

attachment (multiplexed •OH cleavage analysis, MOHCA). MCM experiments 

provide rich information to guide automated computer modeling methods. In the 

studies to date, MCM methods have given rich data on secondary and tertiary 

structure that can be assessed through direct visual inspection. When combined 

with automated computer modeling, the data have given consistently accurate 

secondary and tertiary structures at nucleotide resolution. The tests include blind 

structure prediction trials and modeling of RNA domains for which conventional 
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chemical mapping methods have given incorrect or misleading results. RNA 

molecules that interconvert between multiple states – which are difficult for or 

require specialized interrogation with other structural techniques – can be 

dissected by rapid MCM approaches, albeit with lower resolution than single-

structure cases. Incisive validation or falsification can be achieved by high-

throughput compensatory rescue experiments for RNA secondary structure, but 

analogous tests for tertiary structure or ensemble models need to be developed.  

 

The most important frontier for MCM will be the rapid de novo structure inference 

of RNA molecules in their native cellular or viral environments, eventually in a 

transcriptome-wide manner. Numerous chemical, computational, and sequencing 

challenges can be foreseen in applying MCM in vivo. Nevertheless, there appear 

to be no fundamental limitations precluding the development of such 

technologies, particularly if integration with crosslinking can reduce sequencing 

costs and recover nucleotide-resolution interactions across different RNA 

strands. 
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Table 1. Multidimensional chemical mapping methods 396 
for RNA structure characterization. 397 
 398 

Method References 
Perturbation Data acquired  for 

perturbation Total no. 
dataa 

Type Numbera Type Numbera 

Mutate-and-map 
(M2) 

(Kladwang et al., 
2011a; Kladwang 
& Das, 2010; 
Kladwang et al., 
2011b)  

Mutation, 
encoded in 
DNA template 

O(N) Modification/clea
vage sites 

O(N) O(N2) 

Multiplexed •OH 
cleavage analysis 
(MOHCA) 

(Cheng et al., 
2015b; Das et al., 
2008) 

Fe(II) chelate 
introduced 
during 
transcription 

O(N) RNA cleavage 
sites 

O(N) O(N2) 

RNA Interaction 
Groups by 
Mutational Profiling 
(RING-MaP) and 
MaP2D 

(Homan et al., 
2014) Covalent 

modification by 
solution probe 

O(N) Modification 
sites at other 
nucleotides 

O(N) O(N2) 

Mutate-map-rescue 
(M2R) 

(Tian et al., 2014) 
Single/double 
mutations, 
encoded in 
DNA template 

O(N) Modification/clea
vage sites 

O(N) O(N2) 

Mutate-mutate-map 
(M3) 

Unpublished All single & 
double 
mutations 

O(N2) Modification/clea
vage sites 

O(N) O(N3) 

Modify-crosslink-
map (MXM) 

Proposed herein Covalent 
modification by 
solution probe  

O(N) Modification 
sites in cross-
linked fragments 

O(log N) O(N log N) 

a N is the number of nucleotides in the RNA. 399 
400 
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Figure Captions 401 
 402 
Figure 1. Schematics for multidimensional expansions of chemical 403 
mapping to infer RNA structure.  404 
(A). Schematic of one-dimensional (1D) chemical mapping and simulated 405 
reactivity profile. The red pin illustrates a chemical modification event on an 406 
exposed (non base-pairing) nucleotide. The red and green circles highlight a 407 
reactive (exposed) and unreactive (protected) nucleotide, respectively.  408 
(B). Schematic of two-dimensional (2D) chemical mapping through the mutate- 409 
and-map (M2) strategy. A sequence mutation (cyan) breaks a base-pair, 410 
exposing both itself and its partner (red), resulting in measurable increases in 411 
chemical reactivity at the partner (right). On a full dataset with mutations made 412 
separately at every position (right), a diagonal feature should trace perturbations 413 
near each single mutation position, while cross-diagonal features should report 414 
individual residues released upon mutation of their pairing partners. 415 
(C). Schematic of 3D chemical mapping. When all double mutants are chemically 416 
mapped, the entire dataset would fill a cube (mutate-mutate-map, M3, right). In 417 
practice, a smaller set of single and compensatory double mutations can target 418 
particular base-pair hypotheses. A quartet of chemical mapping profiles (WT, 419 
MutA, MutB, and MutAB) illustrates mutate-map-rescue (M2R, bottom). Here, 420 
perturbations that occur upon single mutations (at base pair partners, in MutA; or 421 
delocalized changes, in MutB; outlined in red) are rescued upon concomitant 422 
double mutation (outlined in green, MutAB). 423 
In all panels, simulated data are shown to illustrate concepts; see subsequent 424 
figures for experimental data. Orange dotted lines connect specific nucleotides or 425 
nucleotide pairs in RNA (left) to corresponding positions in multidimensional data 426 
(right). 427 
 428 
Figure 2. Experimental proof-of-concepts of the M2 methodology. 429 
(A). Experimental M2 measurements (left) and secondary structure (right) of a H- 430 
20/X-20 DNA/RNA hybrid construct (Kladwang & Das, 2010). Single mutations of 431 
the H-20 DNA result in mismatches in the hybrid helix, exposing nucleotides in 432 
the X-20 RNA (purple) to DMS chemical modification. Purple line outlines region 433 
with expected base pair features; orange, blue, and green circles highlight a few 434 
strong features that correspond to expected base pairs.  (B). M2 data and 435 
secondary structure of a MedLoop test RNA (Kladwang et al., 2011a). The test 436 
helix is designed to be mostly A/C on one side and U/G on the other. DMS (blue) 437 
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and CMCT (red) M2 datasets are overlaid. Regions corresponding to expected 438 
base pairs from the step are outlined in green on the data. Yellow and cyan 439 
circles mark a few single-nucleotide features in the M2 data (left) that demarcate 440 
specific base pairs (right). In both (A) and (B), yellow arrows mark perturbations 441 
from mutation that extend beyond 'punctate' release of a single base pair and 442 
involve disruption of an entire helix.  443 
 444 
RMDB Accession IDs for datasets shown: (A). X20H20_DMS_0001; (B). 445 
MDLOOP_DMS_0002 and MDLOOP_CMC_0002. 446 
 447 
Figure 3. M2 reveals secondary structure of natural non-coding RNA 448 
domains. 449 
(A). M2 data and secondary structures of a double glycine riboswitch from F. 450 
nucleatum (Butler et al., 2011; Lipfert et al., 2007; Lipfert et al., 2010). RNA was 451 
probed in presence of 10 mM glycine. M2–SHAPE data are shown with helices 452 
outlined according to their assigned color. Solid outlines mark helices in which at 453 
least one mutation increases SHAPE reactivity around its expected partner and 454 
other mutations generally keep the partner protected, providing evidence for the 455 
helix; dashed outlines mark other helix locations. Red arrows mark exposure of 456 
P3-I loop upon disruption of tertiary structure that results not only from mutation 457 
of its tertiary contact partner (PI-II) but also from mutations in other helices. In 458 
secondary structures, bootstrapping confidence scores are marked under helix 459 
labels. The M2 predicted model using the automated Z-score analysis captured 460 
all 6 helices with > 80% bootstrapping support except for P3-I, which also has an 461 
extra base pair.  462 
(B). M2 data and secondary structures of the GIR1 lariat-capping ribozyme from 463 
D. iridis, RNA-Puzzle 5 (Miao et al., 2015). The data captured all helices and the 464 
pk2-5 tertiary contact observed in the subsequently release crystal structure 465 
(Meyer et al., 2014). Both a P5 helix (dark green) and an alternative alt-P5 (dark 466 
red), differing by a single-nucleotide register shift, were modeled by M2 with 467 
similar bootstrap supports. Visual inspection of M2-DMS [not shown; see (Miao et 468 
al., 2015)] suggested a tertiary contact involving non-canonical pairs between P9 469 
and P2 (gray) that was indeed observed in the subsequently released crystal 470 
structure.  471 
(C). M2 data and secondary structures of the ydaO cyclic-di-adenosine 472 
riboswitch, RNA-Puzzle 12 (Gao & Serganov, 2014; Ren & Patel, 2014). RNA 473 
was probed in presence of 10 μM c-di-AMP. The differences of each model 474 
compared to subsequently released crystallographic structure are marked by 475 
magenta and gray lines. The secondary structure based on expert sequence 476 
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analysis (left), assumed by all RNA-Puzzle modelers, included an incorrect P4 477 
(dark red), while the M2 predicted model (right) correctly rearranged this region.  478 
(D). M2-rescue data and secondary structures of the GIR1 lariat-capping 479 
ribozyme from D. iridis. The discrepancy in M2-predicted model was resolved by 480 
M2-rescue data testing base-pairs in P5 and alt-P5, showing that compensatory 481 
double mutations predicted to rescue P5 succeeded in restoring the sequence’s 482 
chemical mapping profile (outlined in green) after their disruption by single 483 
mutations (outlined in red), while double mutants based on alt-P5 failed to rescue 484 
the profile. 485 
 486 
In panels (A)-(C), yellow arrows mark perturbations from mutation that involve 487 
disruption of helices or formation of alternative secondary structure.  488 
 489 
In panels (A) and (B), rows with red asterisks are mutants for which data were 490 
not acquired; to aid visual inspection, these rows have been filled in with wild 491 
type data. 492 
 493 
RMDB Accession IDs for datasets shown: (A). GLYCFN_SHP_0004; (B). 494 
RNAPZ5_1M7_0002; (C). RNAPZ12_1M7_0003; (D). unpublished result. 495 
 496 
Figure 4. Schematic of single-molecule correlated modification mapping 497 
and data comparison for the Tetrahymena group I intron P4-P6 domain. 498 
(A). Schematic of how multiple modifications can read out RNA structure. A 499 
primary modification serves as a ‘mutation’ similar to M2, leading to a correlated 500 
secondary modification at its base-pairing partner. Multiple chemical modification 501 
events on the same RNA are read out by reverse transcription under conditions 502 
in which mismatch nucleotides are incorporated into cDNA at modification sites. 503 
Simulated data are shown. (B). Secondary structure of  theTetrahymena group I 504 
intron P4-P6 domain. (C). M2-DMS measurements for the P4-P6 RNA; helix 505 
features color-coded as in (B). (D). Data using DMS in multiple-hit conditions, 506 
collected previously for RNA Interaction Group (RING-MaP) analysis (Homan et 507 
al., 2014) but displayed here in a distinct ‘MaP-2D’ view. The rate of 508 
modifications at each nucleotide position, given a detection of nucleotide 509 
modification at every other position, is shown. Each row shows such a profile, 510 
normalized by the sum of counts at each position.  511 
In panels (C) and (D), red arrows mark exposure of the P5b loop upon disruption 512 
of the RNA tertiary structure from not only mutation of this loop's 'receptor' 513 
(J6a/b) but also other helix perturbations.  514 
 515 
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RMDB Accession IDs for datasets shown: (C). TRP4P6_DMS_0002; (D). 516 
adapted from (Homan et al., 2014). 517 
 518 
Figure 5. MOHCA-seq provides pairwise tertiary proximity information of 519 
RNA. 520 
(A). Schematic of MOHCA-seq (multiplexed •OH cleavage analysis read out by 521 
deep sequencing). After generation of hydroxyl radicals (•OH, purple), a strand 522 
scission event (red lightning bolt) and the corresponding iron chelate radical 523 
source position (yellow circle marked Fe) can be mapped out by subsequent 524 
reverse transcription to cDNA (green arrow) and paired-end sequencing. 525 
Simulated data are shown. 526 
(B). Additional oxidative damage events (red pins) that were not detectable in the 527 
original gel-based readout of MOHCA but are detectable by MOHCA-seq through 528 
termination of reverse transcription (green arrows). 529 
(C-E). MOHCA-seq data and tertiary structure models of (C) a double-aptamer 530 
glycine riboswitch from F. nucleatum with 10 mM glycine with cross-aptamer 531 
tertiary contacts (magenta arrows in MOHCA-seq map), (D) the GIR1 lariat- 532 
capping ribozyme from D. iridis, RNA-Puzzle 5, and (E) the ydaO cyclic-di- 533 
adenosine riboswitch with 10 μM c-di-AMP, RNA-Puzzle 12. The latter two are 534 
blind tests. Structures labeled ‘MCM predicted model’ were based on a 535 
multidimensional chemical mapping (MCM) pipeline of M2 secondary structure 536 
analysis, MOHCA-seq tertiary proximity mapping, and Rosetta computational 537 
modeling. Crystal structures are from the PDB, (C) 3P49, (D) 4P8Z, (E) 4QK8. In 538 
(D), red asterisks mark two positions that undergo catalytic modification (lariat 539 
formation and hydrolytic scission) by the ribozyme; for visual clarity, data at those 540 
positions are not shown. MOHCA-seq maps of (C-E) are filtered to show features 541 
with signal-to-noise ratios above 2 (different from a cutoff of 1 in (Cheng et al., 542 
2015b)). Cyan contours highlight map features corresponding to each secondary 543 
structure helix. Other contours mark hits that were inferred through visual 544 
inspection of MOHCA-seq maps; to aid visual comparison, only contours 545 
including at least one residue pair with phosphorus-phosphorus (P-P) distance < 546 
45 Å in the crystal structure are shown. Coloring of these tertiary contours reflect 547 
P-P distances of closest approach for residue pairs in the MCM predicted models 548 
(green, < 30 Å; yellow, 30 – 45 Å; red, > 45 Å). The same coloring is shown for 549 
cylinders in bottom panels of structures, which connect pairs of residues of 550 
closest distance corresponding to each contour; thick and thin cylinders 551 
correspond to strong and weak hits in (Cheng et al., 2015b). Each 3D model is 552 
shown with colored cylinders, or helices with matching color as in Figure 3. 553 
MOHCA-seq maps have colored axes matching secondary structure in Figure 3. 554 
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In (E), gray spheres show position of two c-di-AMP ligands in both model and 555 
crystal structure. 556 
 557 
RMDB Accession IDs for datasets shown: (C). GLYCFN_MCA_0002; (D). 558 
RNAPZ5_MCA_0001; (E-F). RNAPZ12_MCA_0000. 559 
 560 
Figure 6. M2-REEFFIT reveals hidden states in secondary structure 561 
ensembles 562 
(A, B). M2 data (left), fitted cluster weights (center), and fits from RNA ensemble 563 
extraction from footprinting insights technique (REEFFIT, right) of the ‘Tebowned’ 564 
riboswitch designed to interconvert between two states upon binding of flavin 565 
mononucleotide (FMN). RNA was probed (A) in absence of FMN and (B) in 566 
presence of 2 mM FMN. Red rectangles in (A) mark nucleotide A30, which was 567 
not expected to be reactive in either of two target states of the riboswitch, but is 568 
explained by a third state uncovered by REEFFIT. 569 
(C). Secondary structures of REEFFIT predicted states. TBWN-A and TBWN-B 570 
were target states of the riboswitch design problem; TBWN-C was an unexpected 571 
state modeled by REEFFIT. 572 
(D) Prospective tests of REEFFIT model. 1D-SHAPE profiles of each state- 573 
stabilizing mutant agree well with the SHAPE profiles predicted from REEFFIT 574 
analysis. Red rectangle marks nucleotide A30, predicted and confirmed to be 575 
exposed in TBWN-C-stabilizing mutants. Data are from (Cordero & Das, 2015). 576 
 577 
RMDB Accession IDs for datasets shown: (A). TBWN_1M7_0000; (B). 578 
TBWN_1M7_0001; (C). TBWN_STB_0000. 579 
 580 
Figure 7. MOHCA-seq detects preformed tertiary contacts in riboswitches. 581 
MOHCA-seq data and tertiary structures (A) a double glycine riboswitch from F. 582 
nucleatum. RNA (including a kink-turning forming leader sequence), probed in 583 
presence of 10 mM glycine (left) or in absence of glycine (right); and (B) an 584 
adenosylcobalamin (AdoCbl) riboswitch from S. thermophilus (Peselis & 585 
Serganov, 2012), probed in presence of 70 μM AdoCbl (left) or in absence of 586 
AdoCbl (right). In each right panel, five MCM predicted models with lowest 587 
Rosetta energy provide an initial visualization of the ligand-free ensemble 588 
compared to the ligand-bound crystallographic structure (left panel). MOHCA-seq 589 
map filtering and color-coded contours in left panels (ligand-bound states) are 590 
same as in Figure 5, except that contours for tertiary contacts are colored 591 
uniformly in magenta. The same contours are shown in right-hand panels (ligand- 592 
free states). Yellow arrows point to regions in the MOHCA-seq maps showing 593 
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tertiary contacts in the ligand-bound states (left) that appear at lower intensity in 594 
the ligand-free states (right). To avoid clutter, not all such hits are shown. 595 
 596 
RMDB Accession IDs for datasets shown: (A). CDIGMP_MCA_0002 and 597 
CDIGMP_MCA_0003; (B). GLYCFN_KNK_0005 and GLYCFN_KNK_0006; (C). 598 
RNAPZ6_MCA_0002 and RNAPZ6_MCA_0003. 599 
 600 
Figure 8. Subsampling of MCM data to determine minimal number of 601 
sequencing reads to infer RNA structure. 602 
MOHCA-seq data of a double glycine riboswitch from F. nucleatum were used 603 
(see also Figure 3A). A subset (1, 1/5, 1/500, and 1/5000) of the raw FASTQ file 604 
was randomly resampled and subjected through the complete COHCOA data 605 
processing and error estimation pipeline (Cheng et al., 2015b). Signal-to-noise 606 
ratio was estimated as the ratio between the mean of reactivity and the mean of 607 
error across the whole data set. Yellow arrows point to tertiary features that 608 
disappear as the number of resampled reads decreases. 609 
 610 
RMDB Accession IDs for datasets shown: GLYCFN_MCA_0002. 611 
 612 
 613 
Figure 9. Scaling of sequencing costs for MCM. 614 
Expected sequencing costs (number of reads) versus RNA lengths, plotted on 615 
(A) linear scale and (B) logarithimic scale, required to achieve usable signal-to- 616 
noise levels for for 1D, 2D, and 3D chemical mapping methods described or 617 
proposed in text. Costs are estimated based on publicly available data for a 618 
number of RNAs and transcriptomes and the subsampling procedure described 619 
in Figure 8. Most M2 data (orange triangles) were collected by capillary 620 
electrophoresis (CE); conversion to number of Illumina reads was achieved by 621 
comparison of signal-to-noise values of CE and Illumina data sets for a 16S 622 
rRNA 126-235 four-way junction, for which both measurements are available.  623 
 624 
References for next-generation sequencing technologies for 1D mapping (blue 625 
circles): SHAPE-Seq (Lucks et al., 2011), MAP-Seq (Seetin et al., 2014), 626 
SHAPE-MaP (Siegfried et al., 2014) (Mauger et al., 2015), HRF-Seq (Kielpinski & 627 
Vinther, 2014b),Mod-Seq (Talkish et al., 2014), PARS (Kertesz et al., 2010; Wan 628 
et al., 2012; Wan et al., 2014), DMS-Seq (Ding et al., 2014; Rouskin et al., 2014), 629 
CIRS-Seq  (Incarnato et al., 2014), icSHAPE (Spitale et al., 2015). For the 630 
studies in which the number of total raw reads were not reported explicitly, 631 
plotted values were estimated by total length * coverage / average read length. 632 
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Statistics (blue squares) from EteRNA cloud lab (Lee et al., 2014) involved up to 633 
a thousand sequences per round; separate rounds are shown as separate data 634 
points.  635 
 636 
RMDB Accession IDs for datasets shown:  637 
(1D). 16SFWJ_STD_0001, TRP4P6_1M7_0006, ETERNA_R80_0001, 638 
ETERNA_R82_0001, ETERNA_R83_0003, ETERNA_R86_0000, 639 
ETERNA_R87_0003, ETERNA_R92_0000, ETERNA_R93_0000, 640 
ETERNA_R94_0000; 641 
(2D-M2). 16SFWJ_1M7_0001, 5SRRNA_SHP_0002, ADDRSW_SHP_0003, 642 
CIDGMP_SHP_0002, CL1LIG_1M7_0001, GLYCFN_SHP_0004, 643 
HOXA9D_1M7_0001, RNAPZ5_1M7_0002, RNAPZ6_1M7_0002, 644 
RNAPZ7_1M7_0001, RNAPZ12_1M7_0003, TRNAPH_SHP_0002, 645 
TRP4P6_SHP_0003; 646 
(2D-MaP). adapted from (Homan et al., 2014); 647 
(2D-MOHCA). 16SFWJ_MCA_0003, 5SRRNA_MCA_0001, 648 
CDIGMP_MCA_0003, GLYCFN_MCA_0002, HCIRES_MCA_0001, 649 
HOXA9D_MCA_0001, RNAPZ5_MCA_0001, RNAPZ6_MCA_0002, 650 
RNAPZ7_MCA_0001, TRP4P6_MCA_0004; 651 
(3D-M2-rescue). 16SFWJ_RSQ_0001. 652 
 653 
 654 
Figure 10. Schematic of the proposed modify-crosslink-map (MXM) 655 
expansion. 656 
(A). Correlated chemical modifications mark nucleotides brought together by 657 
RNA/protein structure in vivo. Shown are two sets of oxidative modifications 658 
produced by localized ‘spurs’ of hydroxyl radicals generated by scattering of a 659 
high-energy electron from water (Chatterjee et al., 1994; Krisch et al., 1991).  (B) 660 
Additional processing steps of (i) sparse chemical crosslinking, (ii) nuclease 661 
digestion, and (iii) RNA ligation (Helwak & Tollervey, 2014) result in compact, 662 
chimeric RNA segments harboring correlated chemical modifications. This 663 
procedure removes unstructured RNA loops that yield no pairwise structural 664 
information and brings together segments distal in sequence or in different RNA 665 
strands. (C) Reverse transcription with mutational profiling (Siegfried et al., 2014) 666 
reads out modifications at nucleotide resolution; sequence contexts for the 667 
modifications allow their alignment to the reference genome sequence. 668 
 669 
 670 
 671 
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