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! Abstract

2 Post-translational modifications of histone residue tails are an important compo-
3 nent of genome regulation. It is becoming increasingly clear that the combinatorial
4 presence and absence of various modifications define discrete chromatin states which
5 determine the functional properties of a locus. An emerging experimental goal is
6 to compare genome-wide chromatin state maps across different conditions, such as
7 experimental treatments, cell-types or developmental time points. Here we present
8 chromstaR, an algorithm for the computational inference of combinatorial chro-
9 matin state dynamics across an arbitrary number of conditions. ChromstaR uses
10 a multivariate Hidden Markov Model to assign every genomic region to a discrete
1 combinatorial chromatin state based on the presence/absence of each modification
12 in every condition. This interpretation makes it easy to relate the inferred chro-
13 matin states back to the underlying histone modification patterns. Moreover, the
14 algorithm computes the number of combinatorial chromatin states that are present
15 in the genome without having to specify them a priori, thus providing an unbi-
16 ased picture of their genome-wide frequencies. We demonstrate the advantages of
17 chromstaR in the context of three common experimental data scenarios. First, we
18 study how different histone modifications combine to form combinatorial chromatin
19 states in a single tissue. Second, we infer genome-wide patterns of combinato-
20 rial state differences between two cell types or conditions. Finally, we study the
21 dynamics of combinatorial chromatin states during tissue differentiation involving
2 up to six differentiation points. chromstaR is a versatile computational tool that
23 facilitates a deeper biological understanding of chromatin organization and dynam-
24 ics. The algorithm is written in C++ and freely available as an R-package at
25 https://github.com/ataudt/chromstaR.
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. Introduction

>  Epigenetic marks such as DNA methylation or histone modifications play a central role

3 in genome regulation. They are involved in a diversity of biological processes such as lin-

4+ eage commitment during development (Mikkelsen et al. [2007), maintenance of cellular

s identity (Barski et al 2007; Koch et all 2007) and silencing of transposable elements

¢ (Huda et al. 2010). The modification status of many histone marks has been exten-

7 sively studied in recent years, first with ChIP-chip and later with ChIP-seq, now the

s de-facto standard procedure for genome wide mapping of protein-DNA interactions and

o histone modifications. Since its advent in 2007 (Mikkelsen et all [2007; Barski et al.,

1 [2007; Robertson et all [2007), ChIP-seq technologies have been widely used to survey

1 genome-wide patterns of histone modifications in a variety of organisms (Pokholok et al.)

12 2005; Rintisch et all) [2014; Barski et al., |2007), cell lines (Bernstein et al., 2012)) and

13 tissues (Bernstein et all 2010; Consortium et al., 2015).

14

15 The multitude of possible histone modifications has led to the idea of a “histone code”

16 (Jenuwein and Allis, |2001), a layer of epigenetic information that is encoded by com-

17 binatorial patterns of histone modification states (Fig. ) Major resources have been

18 allocated in recent years to decipher this code, culminating in projects such as the EN-

v CODE (Hoffman et al., 2013) and Epigenomics Roadmap (Consortium et al., |2015).

20 Following their examples, most experiments nowadays are designed to probe several
21 histone modifications at once, and often in various cell types, strains and at different
» developmental time points. These types of experiments pose new computational chal-
23 lenges, since initial solutions were designed to analyze one modification and condition at
2 a time, therefore treating them as independent. Indeed, a commonly used strategy has

s been to perform peak calling for each experiment separately (univariate analysis) and

2 to combine the peak calls post-hoc into combinatorial patterns (Luo et al., 2013; Wang
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1 fet al.,|2008]). This approach is problematic for several reasons: Because of the noise asso-
> ciated with ChIP-seq experiments and peak calling, combining univariate peak calls will
s lead to the discovery of spurious combinatorial states that do not actually occur in the
4 genome. Furthermore, different tools or parameter settings are often used for different
s modifications (e.g. peak calling for broad or narrow marks), making the outcome sensi-
6 tive to parameter changes and control of the overall false discovery rate difficult. Lastly,
7 this approach requires ample time and bioinformatic expertise, rendering it impractical

s for many experimentalists.

10 Accurate inferences regarding combinatorial histone modification patterns are neces-
11 sary to be able to understand the basic principles of chromatin organization and its role in
12 determining gene expression programs. One way forward is to develop computational al-
13 gorithms that can analyze all measured histone modifications at once (i.e. combinatorial
1 analysis) and across different conditions (i.e. differential analysis). Several such methods
15 have been proposed in recent years, all of which employ graphical probabilistic methods
16 such as Hidden Markov Models (HMM) or dynamic Bayesian networks. ChromHMM
17 (Ernst and Kellis, 2012)) employs a multivariate HMM to classify the genome into a
18 preselected number of chromatin states and was used to annotate the epigenome in the
19 ENCODE (Hoffman et al., 2013) and Epigenomics Roadmap (Consortium et al., 2015)
20 projects. Segway (Hoffman et al. |2012) is another tool based on dynamic Bayesian net-
2z works that classifies the genome into a preselected number of states. It requires, however,
» extensive computational resources and special cluster management, limiting its usabil-
23 ity. TreeHMM (Biesinger et al., |2013)) is an extension of ChromHMM which explicitly
2+ takes lineage information into account. Another tool, hiHMM (Sohn et al., 2015)), was
s designed to share state definitions across different genomes. Finally, ChromDiff (Yen
% and Kellis, |2015)) has been proposed for the group-wise comparison of chromatin states

27 between two conditions.
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2 A major drawback of these approaches is the need to specify the number of distinct
s chromatin states beforehand, which is usually not known a priori. Furthermore, the
4 learned states are probabilistic, meaning that each state can consist of multiple and
s overlapping combinatorial states (Fig. ) This probabilistic state definition is useful
6 to reduce noise and to identify functionally similar genomic regions for the purpose of an-
7 mnotation, but at the same time it obscures a more direct interpretation of combinatorial

s states in terms of the presence/absence patterns of the underlying histone modifications.

10 To adress some of these issues we developed chromstaR, a method for multivariate
1 peak- and broad-region calling. chromstaR has the following conceptual advantages:
12 1) Every genomic region is assigned to a discrete, readily interpretable combinatorial
13 chromatin state, based on presence/absence of every histone mark. 2) The number of
14 chromatin states does not have to be preselected but is a result of the analysis. 3) Histone
15 modifications with narrow and broad profiles can be combined in a joint analysis along
16 with an arbitrary number of conditions. 4) The same approach can be used for mapping
17 combinatorial chromatin states in one condition, or for identifying differentially enriched
18 regions between several conditions, or for both situations combined. 5) Our formalism
19 offers an elegant way to include replicates as separate experiments without prior merging.
20

21 We demonstrate the advantages of chromstaR in the context of three common ex-
22 perimental scenarios (Fig. [S1b). First, we consider that several histone modifications
23 have been collected on a single tissue at a given time point (Fig. , Application 1).
24 The goal is to infer how these different modifications combine to form distinct combi-
»s  natorial chromatin states and to describe their genome-wide distribution. Second, we
26 consider that several histone modifications have been collected in two different cell types

27 or conditions (Fig. , Application 2). Here, the goal is to infer genome-wide patterns
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1 of combinatorial state differences between cell types or conditions. Third, we consider
> the more complex secenario where several histone modifications have been collected for
s multiple different time points or tissue types (Fig. , Application 3). In this case, the
4 goal is to infer how combinatorial chromatin states are modified during tissue differen-
5 tiation or development. These three experimental scenarios broadly summarize many of
6 the data problems that biologists and bioinformaticians currently face when analyzing
7 epigenomic data. We show that chromstaR provides efficient computational solutions to
s these types of data problems, and facilitates deeper biological insights into the dynamic

o co-ordination of combinatorial chromatin states in genome regulation.

0 Results

n Brief overview of analytical approach

12 Consider N ChIP-seq experiments: N histone modifications measured in one condition,
13 or one histone modification measured in N conditions, or a combination of the two. After
12 mapping the sequencing reads to the reference genome our method can be summarized
15 in three steps (Fig. : (1) For each ChIP-seq experiment, we partition the genome into
16 non-overlapping bins (default 1kb) and count the number of reads that map into each
17 bin (i.e. the read count) (Lawrence et all [2013)). (2) For every ChIP-seq experiment,
18 we consider that the read count distribution is a two-component mixture of zero-inflated
19 negative binomials (Rashid et al.l 2011; |[Spyrou et al.; [2009), with one component at
20 low number of reads that describes the background noise and one component at high
21 number of reads describing the signal. We use a univariate Hidden Markov Model
22 (HMM) with two hidden states (i.e. unmodified, modified) to fit the parameters of these
23 distributions (van der Graaf et al., [2015). (3) We consider all ChIP-seq experiments at
24 once and assume that the multivariate vector of read counts is described by a multivariate

25 distribution which is a mixture of 2V components. We use a multivariate HMM to
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1 assign every bin in the genome to one of the multivariate components. The multivariate
> emission densities of the multivariate HMM, with marginals equal to the univariate
s distributions from step (2), are defined using a Gaussian copula (Sklar, [1959). A detailed

4 description can be found in Supplementary Materials.

s Application 1: Mapping combinatorial chromatin states in a reference tissue

¢ Lara-Astiaso et al. (Lara-Astiaso et al., [2014) measured four histone modifications
7 (H3K4mel, H3K4me2, H3K4me3 and H3K27ac) and gene expression in 16 mouse hematopoi-
s etic cell lines and their progenitors (Fig. . The authors’ goal was to document the
9 dynamic enhancer landscape during hematopoietic differentiation. With four measured
10 histone modifications there are 2* = 16 possible combinatorial states defined by the
1 presence/absence of each of the modifications. In order to provide a snapshot of the
12 genome-wide distribution of these combinatorial states in a given cell-type, we applied
15 chromstaR to the ChIP-seq samples collected from monocytes (see Fig. [S2]for the analysis
1 of other cell types). In the following we introduce a shorthand notation where combi-
15 natorial states are denoted between brackets [ | and each mark is abbreviated by its
16 chemical modification. For example, the combination [H3K4mel+H3K4me2-+H3K27ac]
17 will be abbreviated as [mel/2+ac|. If we use the full name of a mark (e.g. “H3K4mel”)
18 we are referring to the mark in a classical, non-combinatorial, context. See Fig. for
19 all combinations with shorthands.

20

21 chromstaR found that many of the 16 possible combinatorial states were nearly absent
22 at the genome-wide scale, with 7 of the 16 states accounting for nearly 100% (99.998%)
23 of the genome (Fig. ) This observation indicates that the “histone code” defined by
24 these four histone modifications is much less complex than theoretically possible, per-
25 haps as a result of biochemical constraints on the co-occurance of certain modifications

26 on the same or neighboring aminoacid residues. The empty state, which we here define
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1 as the simultaneous absence of all measured marks at a given genomic position, was the
> most frequent state, covering 93.10% of the genome. The high prevalence of this state
3 reflects the fact that Lara-Astiaso et al. (Lara-Astiaso et al., [2014) focused on marks
4 that had previously been shown to occur proximal to genic sequences (Bernstein et al.),
s [2005; Barski et al.l 2007; Koch et al., [2007). Indeed, only 36% of the empty state over-
6 lapped known genes while the remaining 64% mapped to non-genic regions throuhgout
7 the genome, and probably tag other (unmeasured) histone modifications, such as repres-
s sive heterochromatin-associated marks. In order to explore this possibility we analyzed
o human Hippocampus tissue data from the Epigenomics Roadmap (Consortium et al.),
10 [2015)), where seven histone modifications, both expressive and repressive, had been mea-
1 sured (Supplementary Materials). We found in this case that only 21 out of the 128
12 possible combinatorial states were necessary to explain more than 99% of the epigenome,
13 and indeed the empty state covered only ~ 32% of the genome (Fig. [S3)).

14

15 Contrary to the empty state, on average 67.11% (range: 57.34-80.42%) of the genomic
16 regions found to be in one of the 6 most frequent (non-empty) combinatorial states
17 in mouse monocytes overlap known genes (Fig. ), thus suggesting an active role in
18 the regulation of gene expression. To assess this, we examined the combinatorial state
19 profiles of the 6 most frequent states relative to the transcription start site (TSS) of
20 expressed and non-expressed genes (Fig. 4h). In contrast to non-expressed genes, ex-
21 pressed genes were clearly characterized by the presence of state [mel/2/34ac] proximal
2 to the TSS. This is consistent with previous reports that have used H3K4me3 together
23 with H3K27ac to tag promoters (Heintzman et al., [2009). However, our analysis also
2« uncovered a more subtle enrichment of state [mel] shouldering the TSS (Fig. ) We
25 found that 42% of [mel] sites occur in regions directly flanking state [mel/2/3+ac] and
26 74% of all [mel] can be found within 10kb of [mel/2/3+ac] sites (see Fig. [5| for an ex-

27 ample). These two states therefore constitute a single, broad chromatin signature that
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1 defines a subset of expressed genes. Interestingly, this subset of genes had significantly
> higher expression levels (p ~ 107101 t-test) and distinct GO terms compared with genes
s marked only by the active promoter state (i.e. [mel/2/3+ac] at the TSS and no [mel]
4 in flanking regions, Fig. |§| and Table . This observation suggests that the co-occurance
s of [mel/2/3+ac| and [mel] in broad regions surrounding the TSS marks what may be

6 called “enhanced” active promoters ([mel/2/3+ac]+[mel]).

8 To compare the results obtained with chromstaR to other computational approaches,
o we analyzed the same datasets using MACS2 (Zhang et al.l [2008), one of the most
10 widely used univariate peak callers, and ChromHMM (Ernst and Kellis| [2012). When
1 using a multivariate segmentation method like ChromHMM, the number of chromatin
12 states needs to be decided beforehand, which is difficult as this number is rarely known
13 a priori. In the absence of detailed guidelines we fitted a 16 state model to the mouse
14 hematopoietic data. Our comparison uncovered substantial method-specific differences
15 in state frequencies (Fig.[3]). Both ChromHMM and MACS2 found all 16 states present in
16 the genome with more than 0.01% genome coverage. To understand how state-calls com-
17 pared between methods, we evaluated to which extent the states detected by one method
18 coincided with those detected by the other method(s) (Fig. . Most notable, we found
19 that genomic regions corresponding to chromstaR’s active promoter state [mel/2/3+ac]
20 were assigned to two alternative states (E7 and E9) by ChromHMM. These latter two
2 states were very similar in terms of their emission densities, but significantly different at
» the level of gene expression (p ~ 107, t-test, Fig. ) Moreover, chromstaR’s single
23 empty state corresponded to two functionally similar (nearly) empty states (E2, E3) de-
2 tected by ChromHMM. A third almost empty state E4 with very weak H3K27ac signal
»s  had slightly higher expression levels than the other two empty states and partially over-
26 lapped with chromstaR states [mel] and [mel+ac| (Fig. [S4). These state redundancies

27 highlight the difficulty in selecting the number of chromatin states for ChromHMM, for
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1 without extensive manual curation it is difficult to know if two states are truly redundant

2> or if they are biologically different on some level.

4 Although MACS2 is not designed for multivariate analysis, we constructed ad hoc
s combinatorial state calls from the univariate analyses obtained from each ChIP-seq ex-
6 periment. As expected, MACS2 results were noisy: many of the combinatorial states
7 detected by chromstaR showed very heterogenous state calls with MACS2 (Fig. . For
s instance, a considerable proportion (45%) of genomic regions detected by chromstaR as
o being in the active promoter state [mel/2/3+ac] were assigned to another promoter
10 state (containing H3K4me3) by MACS2. We suspect that this is due to the limitations
1 of MACS2 in calling broader marks (e.g. H3K4mel) or moderate enrichment with the
12 default parameters, which results in frequent missed calls for individual modifications,
13 and subsequently also in the limited detection of ‘complex’ combinatorial states such as
14 [mel/2/3+ac] that are defined by the presence of all modifications.

15

16 To better understand the functional implications of the state frequency and state pat-
17 tern differences between these methods, we evalute the chromatin state signatures of both
15 ChromHMM and MACS2 around TSS of expressed and non-expressed genes (Fig. [db,c).
19 In contrast to chromstaR, chromatin signatures obtained by the other two methods did
20 not as effectively distinguish these two classes of genes, suggesting that chromstaR has

21 a higher sensitivity for detecting these signatures (Supplementary Materials).

»» Application 2: Differential analysis of combinatorial chromatin states

23 In order to understand combinatorial chromatin state signatures that are specific to a
2 given cell type or disease state, it is necessary to compare at least two different tissues
25 with each other, or a case and a control. In this context, the goal is to identify genomic

26 regions showing differential (or non-differential) combinatorial state patterns. Such dif-

10
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1 ferential patterns are indicative of regions that underly the tissue differences and are
2> therefore of substantial biological or clinical interest. chromstaR solves this problem by
s considering all 22V possible combinatorial /differential chromatin states (Fig. ), where
4 N is the number of histone modifications measured in both conditions. Out of the 22V

N are differential.

s states, 2V are non-differential and 22V — 2
7 We anlayzed two differentiated mouse hematopoietic cells (monocytes versus CD4
s T-cells) from (Lara-Astiaso et al. |2014), with four histone marks each (H3K4mel,
o H3K4me2, H3K4me3 and H3K27ac). We found that 5.37% of the genome showed
10 differences in combinatorial state patterns between the two cell types (Fig. ma, exam-
1 ple browser shot in Fig. . The most frequent differential regions involved the [mel]
12 combination (2.37%) followed by regions with the [mel/2/3+ac] combination (0.92%).
13 These differences are even more striking when viewed in relative numbers: 59% of the
1 [mel/2/3+ac| sites were concordant between the two cell types, while only 8% of the
15 [mel] sites were concordant. This is in line with previous findings showing that H3K4mel
16 is highly cell type specific (Leung et al., |2015; |Andersson et al., 2014; |Dixon et al., [2015}
17 |Amin et al.l 2015).

18

19 In order to determine if these differences in chromatin play a role in cellular iden-
20 tity, we explored gene expression differences for differential chromatin states. We found
21 that loss of state [mel] as well as of state [mel/2/34ac| is correlated with a decrease
2 in expression levels (Fig. [7b). This is consistent with our previous observation (section
23 Application 1) that [mel/2/34ac| defines active promoters and [mel] together with
2 [mel/2/34ac] defines enhanced active promoters (Fig. [6). To investigate the function
»s  of the differential loci, we performed a GO term enrichment of these regions (McLean
2% et al., [2010) and found an impressive confirmation of cell type identity in the GO terms

2z (Table[SI): While regions that are marked by [mel/2/3+ac] or [mel] in both cell types

11
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1 show enrichment for general immune cell differentiation terms, regions that are marked
2 with [mel] or [mel/2/3+ac] only in CD4 T-cells show terms such as “T-cell activation
s and differentiation”. Vice versa, regions that are marked with those signatures in mono-
4 cytes but not in T-cells show enrichment of terms such as “response to other organism”

5 and “inflammatory response”.

7 Again, we compared our results on the same dataset with MACS2 (Zhang et al.,
s [2008) and ChromHMM (Ernst and Kellis, [2012). Neither method was specifically de-
o signed to deal with differences between combinatorial states, but both tools represent
10 approaches that could have been chosen for that task in the absence of other suitable
1 methods. For both methods, the percentage of the epigenome that was differentially
12 modified was found to be 2.5 times higher than predicted by chromstaR, 13.02% for
13 MACS2 and 13.59% for ChromHMM. MACS2 found most differences (3.90%) in state
14 [mel], followed by the combination [me2+ac] (2.11%). None of these states yielded any
15 significant enrichment in GO terms or showed correlation with expression data (Fig.
16 and Table [S2). The third most frequent differential state was [mel4ac] (1.88%) and
17 this state yielded GO term enrichments which reflect cellular identity. ChromHMM pre-
18 dicted two “enhancer-like states” E8 and E9 (Fig.|S5b) as most differential between cell
19 types (2.71% and 2.54%) which also showed cell type specific terms in the GO analy-
20 sis (Table . However, expression analysis showed that ChromHMM'’s most frequent
21 differential state (CD4:E12 and Mono:E14) corresponded to proximal genes that were
22 transcriptionally nearly inactive (Fig.[SHb), which raises the question if these differential
23 chromatin states produce cell-specific functional differences.

24

12


https://doi.org/10.1101/038612

bioRxiv preprint doi: https://doi.org/10.1101/038612; this version posted February 4, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Application 3: Tracking combinatorial chromatin state dynamics in time

2 Arguably the most challenging experimental set up is when several histone modifications
3 have been collected for a large number of conditions, such as different cell types along
s a differentiation tree or different terminally differentiated tissues (Fig. [S1)). We consider
s M conditions with N histone modifications measured in each of them. This leads to 2V
s possible combinatorial states per condition, or alternatively to 2 differential states per
7 mark across all samples. Therefore, the number of possible dynamic combinatorial chro-
s matin states is 2¥*N. For M x N < C the whole dynamic/combinatorial chromatin
o landscape is treatable computationally, while for M x N > C' the problem becomes
10 intractable with current computational resources. The value of C' is dependent on com-
1 putational resources, genome length and bin size (see section Limitations).

12

13 We considered again the mouse hematopoietic data from (Lara-Astiaso et al., [2014)),
1 with four histone modifications (H3K4mel, H3K4me2, H3K4me3 and H3K27ac) mea-
15 sured in 16 different cell types during hematopoietic differentiation (stem cells, progen-
16 itor and terminally differentiated cells). We explored the chromatin dynamics during
17 the differentiation process for every hematopoietic branch (Fig. ): first, long term
18 hematopoietic stem cells (LT-HSC) are transformed into short term hematopoietic stem
19 cells (ST-HSC) and further into multipotent progenitors (MPP). The MPP cells dif-
20 ferentiate into the several common lineage oligopotent progenitors, giving rise to the
21 three different hematopoietic branches (myeloid, leukocyte and erythrocyte). Finally,
2 after another one or two stages, cells become fully differentiated at the bottom of the
23 tree. Every branch from root to leaf consists therefore of four histone marks in five
24 or six time points, with 2M*N = 1048576 or 16777216 possible dynamic combinatorial
»s chromatin states, respectively. Because this number is computationally intractable, we
26 implemented the following two-step approach for each branch: (1) for each of the four

27 histone marks separately, we performed a multivariate differential analysis along the five

13
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1 or six cells in the brach, therefore assigning every bin in the genome to one of the 32 or
2 64 possible differential combinatorial states; (2) We reconstructed the full combinatorial
s chromatin state dynamics by combining the differential calls of all four marks in step 1,

4+ bin by bin (Fig. [S6p).

6 Using this two-step approach, we studied the dynamics of the inferred chromatin states
7 over developmental time. We observed an initial increase in the frequency of the [mel]
s state from the LT-HSC to intermediate progenitor stages, followed by a decrease to the
o fully differentiated stages (Fig.[S7)). This decrease in [mel] was especially pronounced
10 in the lymphoid and erythroid lineage. In the [mel/2/3+ac| signature we found a small
11 but continuous decrease from LT-HSC to terminally differentiated stages. These observa-
12 tions are consistent with the view that chromatin transitions from an open configuration
13 in multipotent cells to a closed configuration in differentiated cells. Figure [S§ shows
14 two examples of pluripotency genes that lose their open chromatin configuration in the
15 differentiated stage.

16

17 We next explored the specific dynamic chromatin state transitions that occur in every
18 region of the genome during the differentiation process. We found that the majority of
19 all possible dynamic chromatin state transitions were not present in this system. For
20 example, in the CD4 T-cell branch of the hematopoietic tree there are 5 developmen-
21 tal time points and at each stage 16 combinatorial states can be theoretically present.
2 This leads to 16° = 1048576 potential transitions between combinatorial states in this
23 branch. However, we found only 1086 different chromatin transitions and the first most
2 frequent 99 transitions (with frequency > 0.01%) already involved 99.60% of the genome.
s To summarize these transitions further, we grouped them into 4 different classes: (1)
6 “Empty” transitions, i.e. those regions that have no histone modification in any of

27 the developmental stages. (2) “Constant” transitions, i.e. those regions that show the

14
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1 same (non-empty) combinatorial state in all stages of differentiation. (3) “Stage-specific”
2> transitions, i.e. those regions that show a combinatorial state only in a subset of differ-
s entiation stages and are in the “empty” state otherwise. (4) All other transitions (see
+ Fig. |§| for examples). In the CD4 T-cell branch, 85.98% of the genome has no mea-
s sured chromatin signature in all 5 stages (class 1). The constant transitions (class 2)
¢ comprise 5.87% of the genome, stage-specific transitions 5.69% (class 3) and all other
7 transitions 2.46% (class 4), respectively. Altogether, only 8.15% of the genome changes
s its chromatin state during differentiation and more than half of these changes are due
o to changes in the [mel] signature. This signature is highly cell type specific and gains
10 and losses correspond to stage-specific terms in a GO analysis (Table and to changes
u in gene expression (Fig. [S%). Among the constant transitions, regions with signature
12 [mel/2/3+ac] mark constitutively expressed genes (Fig.[S9%). Therefore we expect those
13 regions to be enriched with housekeeping functions, which is confirmed by the GO anal-
u ysis (Table [SH).

15

16 We compared our results on the CD4 T-cell branch with MACS2 (Zhang et al., |2008)
17 and ChromHMM (Ernst and Kellis, [2012). Strikingly, MACS2 found 34470 different
18 chromatin state transitions with the most frequent 330 (with frequency > 0.01%) cov-
10 ering only 94.47% of the genome. This large number is expected since MACS2 is a uni-
20 variate peak caller and not designed for differential analysis. Furthermore, this dataset
an represents a differential analysis not between 2 cell types, but between 5 different cell
22 types and thus boundary effects (false positives, e.g. falsely detected differences) are
23 extremely likely. This interpretation is supported by the expression data, which could
2 not find clear expression differences for the most frequent differentially modified re-
s gions (Fig. ) Also the GO analysis could not identify any significant GO terms.
26  ChromHMM found 38288 different state transitions of which the first 656 cover only

a7 91.21% of the genome. This large number of transitions is dependent on the number of
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1 states that are used to train ChromHMM, since extra states will artificially inflate the
> number of chromatin state transitions. However, consistent with the chromstaR pre-
3 dictions, ChromHMM predicts many stage-specific enhancer (state E15 and E16) and
4 constant promoter (state E9) regions among the most frequent transitions. The expres-

s sion profiles associated with those transitions show the expected behaviour (Fig. [S9b).

¢ Limitations and Solutions

7 The number of possible combinatorial states for N ChIP-seq experiments is 2, meaning
s that for each additional ChIP-seq experiment the number of combinatorial states dou-
9 bles. Thus it soon becomes computationally prohibitive to consider all combinatorial
10 states. We found that with current computational resources (Intel Xeon E5 2680v3, 24
1 cores @ 2.5 GHz, 128GB memory) a practical limit seems to be 256 states (= 8 ex-
12 periments) with a run-time of several days for a mouse genome (= 2.6 - 10°bp) and a
13 bin size of 1000bp (= 2.6M datapoints). We investigated several possibilities to extend
1 the usability of chromstaR beyond this limit: (1) The run-time of our algorithm scales
15 linearly with the number of data points, and thus the easiest strategy is to decrease
16 the resolution, e.g. halfing the run-time by doubling the bin size. (2) Calculations can
17 be performed for each chromosome separately, allowing for easy parallelization of the
18 task. (3) For the case of one cell type or tissue where the number of measured histone
10 modifications N exceeds the upper limit, chromstaR provides a strategy to artificially
20 restrict the number of combinatorial states to any number lower than 2%V. This strategy
21 can yield proper results if the correct states are included, since our results have shown
2» that the majority of combinatorial states are absent in the genome. In order to identify
23 the states which are the most present in the genome, chromstaR ranks the combinatorial
2 states based on their presence according to the combination of univariate results from
2 the first step of the chromstaR pipeline. This ranking is a good approximation of the

2 true multivariate state-distribution (Fig. [S10). (4) If there are multiple marks N in

16
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1 multiple tissues M, and 2V*M is bigger than the maximum number of states that the
> algorithm can handle computationally, two strategies are possible: One can either per-
s form a differential analysis for each mark and then reconstruct combinatorial states in a
4+ classical way (Fig.|S6pa) or one can perform a multivariate peak-calling of combinatorial
5 states for each tissue and then obtain the differences by a simple comparison between
¢ tissues (Fig. [S6b). Both strategies give a different perspective on the data: The former
7 accurately identifies differences between marks, while the combinatorial states might be
s subject to boundary effects (similar to a univariate peak-calling method). The latter
o gives an accurate picture of the combinatorial chromatin landscape, while differences

10 between cells might be overestimated.

1 Discussion

12 Understanding how various histone modifications interact to determine cis-regulatory
13 gene expression states is a fundamental problem in chromatin biology. It is becoming
14 increasingly clear that certain combinatorial patterns of these modifications define dis-
15 crete chromatin states along the genome. These chromatin states “encode” cell-specific
16 transcriptional programs, and constitute funtional units that are subject to dynamic
17 changes in response to developmental and environmental cues.

18

19 Many experimental studies have recognized this and collected ChIP-seq data for a
20 number of histone modifications on the same or different tissue(s) as well as for several
21 developmental time points. Integrative analyses of such datasets often present formidable
22 bioinformatic challenges. Only a few computational methods exist that can analyze mul-
23 tiple ChIP-seq experiments together and cluster them into a finite number of chromatin
2 states (Biesinger et al., 2013; [Ernst and Kellis, [2012; Hoffman et al., 2012; [Sohn et al.)

s |2015; |Zeng et al., 2013)). Interestingly, these methods often demand that the user speci-

17
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1 fies the number of chromatin states beforehand. We find this problematic because this
> number is often a desired output of the analysis rather than an input. Indeed, the true
s number of distinct chromatin states in the genomes of various species is subject to debate.
+ In D. melanogaster 9 chromatin states have been reported (Kharchenko et al.| 2011)),
s while in A. thaliana 4 main states were found (Roudier et al., [2011). In human, Ernst
s et al. found 51 states in human T-cells (Ernst and Kellis, 2010)). The Roadmap Consor-
7 tium reported 15 to 18 states (Consortium et al.,2015)). It remains unclear whether these
s differences reflect species divergence at the level of chromatin organization, or whether
o they are due to differences in the assessed chromatin marks and bioinformatic treatment
10 of the data. Without a formal computational framework for defining chromatin states
11 these two possibilities cannot be confidently distinguished.

12

13 While multivariate methods such as ChromHMM or Segway provide possible compu-
14 tational solutions to such questions, these methods employ probablistic chromatin state
15 definitions that are not always readily interpretatble. A probalistic interpretation means
16 that different combinatorial histone modification patterns can be simultaneously part of
17 different underlying chromatin states. However, it is not immediately obvious whether
18 the underlying chromatin state are biologically distinct or if they are only statistical
19 entities that are otherwise biologically redundant. Identifying such redundancies is not
20 easy, because of a lack of rules to decide whether two or more chromatin states can or
21 cannot be considered to be equivalent. Such decisions require extensive manual curation
» of the output, and often presuppose the kind of biological knowledge that one wishes to
23 obtain from the data in the first place.

2

25 In contrast to this probabilistic state definition, chromstaR outputs discrete chromatin
2 states that are defined on the basis of the presence/absence of various histone modifica-

27 tions. That is, with N histone modifications, it infers all 2V combinatorial chromatin

18
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1 states (Fig. [lp). This interpretation makes it easy to relate the inferred chromatin states
> back to the underlying histone modification patterns and thus fashions a direct mech-
3 anistic link between chromatin structure and function. Moreover, chromstaR’s discrete
4 state defintion also provides an “unbiased” picture of the genome-wide frequency of vari-
5 ous chromatin states and allows for easy genome-wide summary statistics. For instance,
6 in our analysis of four histone modifications in mouse embryonic stem cells we found that
7 only 7 of the 16 possible states covered almost 100% of the genome, and for the human
s hippocampus with seven modifications only 21 of the 128 possible combinatorial states
o already covered 99% of the total genome. This striking sparsity in the combinatorial
10 code is interesting and points at certain biochemical contraints that determine which
11 histone modifications can or cannot co-occur at a genomic locus. Clearly, the genome-
12 wide frequency of inferred combinatorial chromatin states depends on the number and
13 the type of different histone modifications that are used in the analysis. Future stud-
14 ies should systematically investigate the dependency of the number of chromatin states
15 on factors such as number and type of measured histone marks, resolution, organism etc.
16

17 By treating discrete combinatorial chromatin states as units of analysis chromstaR
18 can also easily track chromatin state dynamics across cell types or developmental time
19 points. In that respect chromstaR is unique as no other methdods exist to date that
20 can peform a similar task. To illustrate this we have analyzed four different histone
2z modification in 5 different cell types that are part of the mouse T-cell differentiation
2 pathway. Of the 1048576 combinatorial state transitions, we find that only 99 comprise
23 over 99.60% of the genome. Again, the sparsity in state transition shows that a few key
2 transitions define the developmental trajectory of T-cell differentiation. One notable
25 transition is the gain or loss of state [mel] near promoters. We note that this state
26 means that only H3K4mel is present at a locus and no other marks. This is not the

27 same as tracking H3K4mel modification by itself as this latter mark can appear in a
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number of different, and often funtionally distinct, chromatin states such as [mel+ac],
[mel/2+ac], [mel/2/3]. Hence, focusing on H3K4mel alone would tag other chromatin

state changes that may not be fully informative about T-cell differentiation.

Conclusions

chromstaR is a computational algorithm that can identify discrete chromatin states from
multiple ChIP-seq experiments and detect combinatorial state differences betweeen cell-
types and/or developmental time points. By defining chromatin states in terms of the
presence and absence of combinatorial histone modification patterns, it provides an
intuitive way to understand genome regulation in terms of chromatin composition at
a locus. chromstaR can be used for the annotation of reference epigenomes as well as
for annotation of chromatin state transitions in well-described developmental systems.
The algorithm is written in C++ and runs in the popular R computing environment.
It therefore combines computational speed with the extensive bioinformatic toolsets
available through Bioconductor (Gentleman et al.,|2004; [Huber et al., 2015)). chromstaR

is freely available at https://github.com/ataudt/chromstaRl.
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Figure 1: Definition of chromatin states. (a) Combinatorial chromatin state defi-
nition: Based on the presence (blue) or absence (white) of a histone modifica-
tion, a chromatin state is the combination of the presence/absence calls at a
given position. With N histone modifications there are 2V different chromatin
states. (b) Probabilistic chromatin state definition: Each chromatin state has
a probability (shades of blue) of finding a histone modification at a given po-
sition. Note that a probabilistic state can consist of multiple combinatorial
states and vice versa. There is iﬁ%rinciple no upper limit for the number of
possible probabilistic chromatin states (here, T'). (c) Differential combinato-
rial chromatin states across two conditions: Based on the presence (blue) or
absence (white) of a histone modification across different conditions. With NV
histone modifications and M conditions there are 2V*M different states.
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Figure 2: Overview of analytical approach. (a) Aligned reads are counted in
equidistant, non-overlapping bins. (b) The resulting read count is used to fit a
univariate Hidden Markov Model to each ChIP-seq experiment separately. (c)
From the univariate emission densities, a multivariate emission density is con-
structed (shown here for two dimensions). (d) A multivariate Hidden Markov
Model is employed to obtain peak-calls for all ChIP-seq experiments combined.
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Figure 3: Chromatin states in monocytes. (a) Genomic frequency, i.e. the per-
centage of the genome that is covered by the chromatin state. The sum over
all states equals 100%. (b) Overlap with known genes. (c) Expression levels
of genes whose TSS overlaps the chromatin state. (d) Heatmap showing the
chromatin state definition. Histones in chromstaR and MACS?2 states are ei-
ther present (blue) or absent (white). ChromHMM states have a continuous
emission probability from zero (white) to one (blue).
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Figure 5: Genome browser snapshot showing an example of several active promoter
signatures [mel/2/3+ac| flanked by the [mel] signature.
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Figure 6: Expression levels of genes whose T'SS shows either the [mel/2/3+ac| signature
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show significantly higher expression levels (p ~ 107101 t-test).
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Figure 8: Differential chromatin signature at the Cd4 locus. Example of a differ-
ential promoter and enhancer signature at the Cd4 gene. The differential pro-
moter signature [mel/2/3+ac] is only present in CD4 T-cells (shaded green),
while the differential enhancer [mel] is present only in monocytes (shaded
blue).
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H3K4mel tracks are shown. Combinatorial chromatin states as obtained by
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. Tables

[mel/2/3+ac] + flanking [mel]

[mel/2/34ac]

nucleobase-containing compound transport

RNA localization

negative regulation of mRNA splicing, via spliceosome
RNA transport

negative regulation of mRNA processing

mRNA transport

peptidyl-lysine modification

response to misfolded protein

purinergic nucleotide receptor signaling pathway
regulation of gene expression, epigenetic

© 00 O UL i W N+

[t
)

ncRNA metabolic process

ncRNA processing

tRNA metabolic process

protein folding

DNA replication

rRNA metabolic process

tRNA processing

rRNA processing

protein peptidyl-prolyl isomerization
pseudouridine synthesis

Table 1: The first 10 significant gene ontology terms for TSS overlapping the
[mel/2/3+ac] state with the [mel] state flanking it, versus the T'SS overlapping

the [mel/2/3+ac] state.
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. Supplementary Materials

s Model Specification

4 The construction of the multivariate Hidden Markov Model can be divided in two steps. In the first step, we fit
5 a univariate Hidden Markov Model to each individual ChIP-seq sample. The obtained parameters of the mixture
6 distributions are then used in the second step to construct the multivariate emission distributions. Finally, the
7 multivariate Hidden Markov Model is fitted to the (combined) ChIP-seq samples. The following sections describe

8 the two steps in detail.

s Univariate Hidden Markov Model

10 For each individual ChIP-seq sample, we partition the genome into 7' non-overlapping, equally sized bins. We
11 count the number of aligned reads (regardless of strand) that overlap any given bin ¢ and denote this read count
12 with z;. Following others (Rashid et al.} 2011} |Spyrou et al.} |2009), we model the distribution of the read counts x
13 with a two-component mixture of (zero-inflated) negative binomial distributions. In our case, the first component
14 describes the unmodified regions and is modeled by a zero-inflated negative binomial distribution. The second
15 component describes the modified regions and is modeled by a negative binomial distribution. Furthermore, for
16 computational efficiency, we split the first component into the zero-inflation and the negative binomial distribution
17 (van der Graaf et al., 2015). Our univariate Hidden Markov Model has thus three states i: zero-inflation,

18 unmodified and modified. We write the probability of observing a given read count as

P(x4|0) = v1 f1(2t]01) + 72 f2(we]02) + v3 f3(x¢]03) (1)

19  where ; are the mixing weights and 6; are the component density parameters. The emission distribution of state

20 1 is defined as

1 1fa:t:0
fi(@e) = 2)
0 ifxze >0

21 and the emission distributions of state 2 and 3 are defined as

T'(n+ )

Fladd = (np) =

(1 —p)*t (3)

22 where I' denotes the Gamma function and p and n denote the probability and dispersion parameter of the negative
23 binomial distribution, respectively.

24 We use the Baum-Welch algorithm (Baum et al., [1970) to obtain a best fit for the distribution parameter
25  estimates, transition probabilities and posterior probabilities of being in a given state. We call a bin modified if

1 the posterior probability of being in that state is > 0.5 and unmodified otherwise.
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> Multivariate Hidden Markov Model

3 Given N individual ChIP-sep samples with states unmodified and modified, the number of possible combinatorial
4 states is 2V. Let x; be the vector of N read counts for the t-th bin. The probability of observing a random vector

5 x4t can be written as a mixture distribution of 2V components:

21\7
P(x:]0) = Z’Yifi(xtﬂi) (4)
i=1

6 Again, the ~; denote the mixing weights and 6; denote the component density parameters for each component
7 4. We assume that the marginal densities of the multivariate count distributions f; are given by the univariate
8 distributions described in the previous section. A convenient way to construct a multivariate distribution from
9 known marginal (univariate) distributions is copula theory (Sklar 1959; |[Heinig et al., 2015)).

10 Under the assumption of a Gaussian copula, the multivariate emission density for combinatorial state ¢ can be

11 written as

Zit (Z;l ) zzjt }

N
Ji(xe) = Hfz‘,j(ffj,t) x |27 2 exp { 5
j=1

with z;¢ = [ ¢ (Fi1(z14)), 6 (Fio(xat)), o ¢ “(Fin(zne)) ], (6)

12 where f; ; are the marginal density functions for combinatorial state i and 3; is the correlation matrix between
13 the transformed read counts z;; = ¢~ 1(F;(z¢)). The cumulative distribution function (CDF) of f; ; is denoted
14 by Fj; ;, while ¢~ ! denotes the inverse of the CDF of a standard normal (Renard and Lang] |2007).

15 The correlation matrix X; for a given multivariate (combinatorial) state ¢ is computed as follows: From
16 the combination of univariate state calls (unmodified or modified) of all samples, we pick those bins that show
17 combinatorial state i. The read counts x;c; in those bins are transformed to z:c; using equation @ and XJ; is
18 calculated from the transformed read counts.

19 Similarly to the univariate Hidden Markov Model, we use the Baum-Welch algorithm to obtain a best fit for
20 the transition probabilities and posterior probabilities of being in a given state. However, the emission densities
21 remain fixed in the multivariate case. We assign a combinatorial state to each bin by maximizing over the posterior

22 probabilities.

» Data Acquisition

24 ChIP-seq data for the hematopoietic data (GSE60103) was downloaded from the Gene Expression Omnibus
25 (GEO) and aligned to mouse reference mm9 following the procedure in (Lara-Astiaso et al.| [2014) with bowtie2
26 (version 2.2.3) (Langmead and Salzberg} |2012)), keeping only reads that mapped to a unique location. The number
27 of identical reads at each genomic position was restricted to 3. For the expression analysis, we used the provided

1 RNA-seq data (GSE60101). We normalized the read counts by transcript length and scaled them to 1M reads.
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2 To reduce the effect of extreme expression values, we applied an arc-sinh transformation on the data.

s Multivariate peak-calling

4 chromstaR was run with a bin size of 1000bp and convergence threshold of eps = 0.01 for both the univariate and
5 multivariate part. Univariate fits were checked manually for proper convergence and rerun with different random
6 initial parameter settings where necessary. For all analysis and comparisons, we excluded replicates SRR1521819,
7 SRR1521851 and SRR1521852 (corresponding to CD8-H3K27ac-Repl, MF-H3K4mel-Repl, MF-H3K4mel-Rep2)
8 because we could not obtain a proper fit with our method, regardless of initial parameter settings. Replicates were
9 included in the chromstaR analysis as separate ChIP-seq experiments but forced to yield the same state calls see
10 ”Inclusion of replicates” below). Likewise, ChromHMM was run with a bin size of 1000bp, 16 states, parallel mode,
11 assembly mm9 and default parameters otherwise. Signal input files for ChromHMM were produced by adding
12 the read counts over replicates. MACS2 (version 2.1.0.20150731) was run with parameters “-g mm —keep-dup all”
13 and default settings otherwise. Replicates were specified separately and handled by MACS2 internally. For the
14 comparison with chromstaR and ChromHMM, MACS2 calls were transformed into a 1000bp-bin representation
15 by simply extending each peak into its overlapping bin(s). chromstaR and ChromHMM were run on chromosomes

16 1-19 and X, MACS2 was run with all scaffolds but only chromosomes 1-19 and X retained for analysis.

17 AnalySiS

18 Genomic coordinates were downloaded with biomaRt (Durinck et al.L|2005|[2009) (dataset=mmusculus_gene_ensembl,
19 host=aug2010.archive.ensembl.org) and the first three basepairs of each gene were defined as coordinates for the
20 transcription start site. For the overlap of chromation states with genes (Fig. ) we included the promoter
21 region defined as 2kb upstream of each gene in the gene definition. Gene ontology enrichment was performed with
22 GREAT (McLean et al., 2010) using the whole genome as background set. Significant terms were filtered out
23 with the following thresholds: BinomFdrQ < 0.05, HyperFdrQ < 0.1, RegionFoldEnrich > 2. Presented terms in
24  all tables are from category “GO Biological Process” and ordered by BinomFdrQ with the most significant results

25 on top.

» Enrichment profiles around TSS

27 We calculated sensitivity (recall), precision and F1-score for the detection of expressed T'SS based on the following
28 assumptions: True positives are expressed TSS which are called into the promoter state ([mel/2/34ac] for
29 chromstaR, E7 and E9 for ChromHMM, [mel/3] and [me3] for MACS2, see Fig. [4). False negatives are expressed
30 T'SS which are not assigned into the promoter state. True negatives are non-expressed T'SS which are not assigned
31 into the promoter state. False positives are non-expressed T'SS which are assigned the promoter state. We found
32 that chromstaR has a higher sensitivity than the other methods and a lower precision. The F1-score is highest

1 for chromstaR (Table .
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sensitivity precision Fl-score

chromstaR 0.77 0.95 0.85
MACS2 0.60 0.98 0.75
ChromHMM 0.59 0.98 0.73

Table 2: Performance for detecting expressed T'SS.

> Analysis of human Hippocampus tissue

3 Bed-files for Hippocampus tissue were downloaded from “ftp://ftp.genboree.org/EpigenomeAtlas/Current-Release/sample-
4 experiment/” for donors number 112 and 149. Histone marks H3K27ac, H3K27me3, H3K36me3, H3K4mel,

5  H3K4me3, H3K9ac, H3K9me3 were analyzed at bin size 1000bp with convergence threshold of eps = 0.01 and

6 donors 112 and 149 included as replicates. We found 21 out of 27 = 128 possible states (genomic frequency

7 > 0.1%) covering more than 99% of the genome (Fig.[S3]).

s Univariate approximation of multivariate state distribution

9 chromstaR offers the possibility to restrict the number of combinatorial states to any number lower than 2%V, where
10 N is the number of ChIP-seq experiments. Because the first step of the chromstaR workflow is a univariate peak
11 calling, we can combine those peak calls into combinatorial states and use their ranking to determine which states
12 to use for the multivariate peak-calling. Because most systems seem to be sparse in their combinatorial patterns,
13 i.e. do not utilize the full combinatorial state space, it is often not necessary to run the multivariate part with all
14 2N combinations. For instance, for the human Hippocampus tissue with 7 marks, running the multivariate with

15 only 30 instead of 128 states recovers 98.2% of correct state assignments compared to the full 128 state model,

16 and choosing 60 instead of 128 states recovers already 99.5% of correct state assignments compared to the full

17 128 state model (Fig.|S10).

i« Inclusion of replicates

19 The chromstaR formalism offers an elegant way to include replicates. For a single ChIP-seq experiment, there are
20 two states - unmodified (background) and modified (peaks). For an arbitrary number of N experiments, there
21 are thus 2V combinatorial states. The same is true for an arbitrary number of replicates R, which would yield
22 2 combinatorial states. However, in the case of replicates, the number of states can be fixed to 2, such that all
23 replicates are forced to have the same state in all replicates (e.g. either peak or background). Treating replicates
24  in this way allows to find the most likely state for each position considering information from all replicates without

1 prior merging.
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Figure S2: Boxplots depict values for all 4136 measured hematopoietic cell types from
Lara-Astiaso et al. (2014). (a) Genomic frequency, i.e. the percentage of
the genome that is covered by the chromatin state. (b) Overlap with known
genes. (c¢) Expression levels of genes whose TSS overlaps the chromatin state.
(d) Heatmap showing the chromatin state definition (blue is present, white
is absent).
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Figure S3: Chromatin states in human Hippocampus tissue. (a) Genomic fre-
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state, for the 40 most frequent states. (b) Overlap with known genes. (c)
Heatmap showing the chromatin state definition.
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Figure S6: Two-step approach for inferring combinatorial state differences.
(a) In a first step, multivariate peak-calls are obtained along all cells for each
mark separately (differential analysis). Those calls are then combined, ad-
hoc, into the combinatorial states. (b) In a first step, combinatorial states are
obtained for each cell using the multivariate approach. Differences between
those states are then obtained by a simple comparison between cells.
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Figure S8: Chromatin state transitions at (a) Gata2 and (b) Cebpa. Black
genome browser tracks show H3K4mel levels and combinatorial chromatin
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cells and transition from an open into a closed chromatin configuration during
differentiation.
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Figure S9: Chromatin state transitions for the CD4 branch. Genomic frequency
and expression levels for genes that overlap the 6 most frequent chromatin
state transitions for (a) chromstaR, (b) ChromHMM and (c) MACS2.
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