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Abstract1

Post-translational modifications of histone residue tails are an important compo-2

nent of genome regulation. It is becoming increasingly clear that the combinatorial3

presence and absence of various modifications define discrete chromatin states which4

determine the functional properties of a locus. An emerging experimental goal is5

to compare genome-wide chromatin state maps across different conditions, such as6

experimental treatments, cell-types or developmental time points. Here we present7

chromstaR, an algorithm for the computational inference of combinatorial chro-8

matin state dynamics across an arbitrary number of conditions. ChromstaR uses9

a multivariate Hidden Markov Model to assign every genomic region to a discrete10

combinatorial chromatin state based on the presence/absence of each modification11

in every condition. This interpretation makes it easy to relate the inferred chro-12

matin states back to the underlying histone modification patterns. Moreover, the13

algorithm computes the number of combinatorial chromatin states that are present14

in the genome without having to specify them a priori, thus providing an unbi-15

ased picture of their genome-wide frequencies. We demonstrate the advantages of16

chromstaR in the context of three common experimental data scenarios. First, we17

study how different histone modifications combine to form combinatorial chromatin18

states in a single tissue. Second, we infer genome-wide patterns of combinato-19

rial state differences between two cell types or conditions. Finally, we study the20

dynamics of combinatorial chromatin states during tissue differentiation involving21

up to six differentiation points. chromstaR is a versatile computational tool that22

facilitates a deeper biological understanding of chromatin organization and dynam-23

ics. The algorithm is written in C++ and freely available as an R-package at24

https://github.com/ataudt/chromstaR.25
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Introduction1

Epigenetic marks such as DNA methylation or histone modifications play a central role2

in genome regulation. They are involved in a diversity of biological processes such as lin-3

eage commitment during development (Mikkelsen et al., 2007), maintenance of cellular4

identity (Barski et al., 2007; Koch et al., 2007) and silencing of transposable elements5

(Huda et al., 2010). The modification status of many histone marks has been exten-6

sively studied in recent years, first with ChIP-chip and later with ChIP-seq, now the7

de-facto standard procedure for genome wide mapping of protein-DNA interactions and8

histone modifications. Since its advent in 2007 (Mikkelsen et al., 2007; Barski et al.,9

2007; Robertson et al., 2007), ChIP-seq technologies have been widely used to survey10

genome-wide patterns of histone modifications in a variety of organisms (Pokholok et al.,11

2005; Rintisch et al., 2014; Barski et al., 2007), cell lines (Bernstein et al., 2012) and12

tissues (Bernstein et al., 2010; Consortium et al., 2015).13

14

The multitude of possible histone modifications has led to the idea of a “histone code”15

(Jenuwein and Allis, 2001), a layer of epigenetic information that is encoded by com-16

binatorial patterns of histone modification states (Fig. 1a). Major resources have been17

allocated in recent years to decipher this code, culminating in projects such as the EN-18

CODE (Hoffman et al., 2013) and Epigenomics Roadmap (Consortium et al., 2015).19

Following their examples, most experiments nowadays are designed to probe several20

histone modifications at once, and often in various cell types, strains and at different21

developmental time points. These types of experiments pose new computational chal-22

lenges, since initial solutions were designed to analyze one modification and condition at23

a time, therefore treating them as independent. Indeed, a commonly used strategy has24

been to perform peak calling for each experiment separately (univariate analysis) and25

to combine the peak calls post-hoc into combinatorial patterns (Luo et al., 2013; Wang26

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 4, 2016. ; https://doi.org/10.1101/038612doi: bioRxiv preprint 

https://doi.org/10.1101/038612


et al., 2008). This approach is problematic for several reasons: Because of the noise asso-1

ciated with ChIP-seq experiments and peak calling, combining univariate peak calls will2

lead to the discovery of spurious combinatorial states that do not actually occur in the3

genome. Furthermore, different tools or parameter settings are often used for different4

modifications (e.g. peak calling for broad or narrow marks), making the outcome sensi-5

tive to parameter changes and control of the overall false discovery rate difficult. Lastly,6

this approach requires ample time and bioinformatic expertise, rendering it impractical7

for many experimentalists.8

9

Accurate inferences regarding combinatorial histone modification patterns are neces-10

sary to be able to understand the basic principles of chromatin organization and its role in11

determining gene expression programs. One way forward is to develop computational al-12

gorithms that can analyze all measured histone modifications at once (i.e. combinatorial13

analysis) and across different conditions (i.e. differential analysis). Several such methods14

have been proposed in recent years, all of which employ graphical probabilistic methods15

such as Hidden Markov Models (HMM) or dynamic Bayesian networks. ChromHMM16

(Ernst and Kellis, 2012) employs a multivariate HMM to classify the genome into a17

preselected number of chromatin states and was used to annotate the epigenome in the18

ENCODE (Hoffman et al., 2013) and Epigenomics Roadmap (Consortium et al., 2015)19

projects. Segway (Hoffman et al., 2012) is another tool based on dynamic Bayesian net-20

works that classifies the genome into a preselected number of states. It requires, however,21

extensive computational resources and special cluster management, limiting its usabil-22

ity. TreeHMM (Biesinger et al., 2013) is an extension of ChromHMM which explicitly23

takes lineage information into account. Another tool, hiHMM (Sohn et al., 2015), was24

designed to share state definitions across different genomes. Finally, ChromDiff (Yen25

and Kellis, 2015) has been proposed for the group-wise comparison of chromatin states26

between two conditions.27
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1

A major drawback of these approaches is the need to specify the number of distinct2

chromatin states beforehand, which is usually not known a priori. Furthermore, the3

learned states are probabilistic, meaning that each state can consist of multiple and4

overlapping combinatorial states (Fig. 1b). This probabilistic state definition is useful5

to reduce noise and to identify functionally similar genomic regions for the purpose of an-6

notation, but at the same time it obscures a more direct interpretation of combinatorial7

states in terms of the presence/absence patterns of the underlying histone modifications.8

9

To adress some of these issues we developed chromstaR, a method for multivariate10

peak- and broad-region calling. chromstaR has the following conceptual advantages:11

1) Every genomic region is assigned to a discrete, readily interpretable combinatorial12

chromatin state, based on presence/absence of every histone mark. 2) The number of13

chromatin states does not have to be preselected but is a result of the analysis. 3) Histone14

modifications with narrow and broad profiles can be combined in a joint analysis along15

with an arbitrary number of conditions. 4) The same approach can be used for mapping16

combinatorial chromatin states in one condition, or for identifying differentially enriched17

regions between several conditions, or for both situations combined. 5) Our formalism18

offers an elegant way to include replicates as separate experiments without prior merging.19

20

We demonstrate the advantages of chromstaR in the context of three common ex-21

perimental scenarios (Fig. S1b). First, we consider that several histone modifications22

have been collected on a single tissue at a given time point (Fig. S1b, Application 1).23

The goal is to infer how these different modifications combine to form distinct combi-24

natorial chromatin states and to describe their genome-wide distribution. Second, we25

consider that several histone modifications have been collected in two different cell types26

or conditions (Fig. S1b, Application 2). Here, the goal is to infer genome-wide patterns27

5
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of combinatorial state differences between cell types or conditions. Third, we consider1

the more complex secenario where several histone modifications have been collected for2

multiple different time points or tissue types (Fig. S1b, Application 3). In this case, the3

goal is to infer how combinatorial chromatin states are modified during tissue differen-4

tiation or development. These three experimental scenarios broadly summarize many of5

the data problems that biologists and bioinformaticians currently face when analyzing6

epigenomic data. We show that chromstaR provides efficient computational solutions to7

these types of data problems, and facilitates deeper biological insights into the dynamic8

co-ordination of combinatorial chromatin states in genome regulation.9

Results10

Brief overview of analytical approach11

Consider N ChIP-seq experiments: N histone modifications measured in one condition,12

or one histone modification measured in N conditions, or a combination of the two. After13

mapping the sequencing reads to the reference genome our method can be summarized14

in three steps (Fig. 2): (1) For each ChIP-seq experiment, we partition the genome into15

non-overlapping bins (default 1kb) and count the number of reads that map into each16

bin (i.e. the read count) (Lawrence et al., 2013). (2) For every ChIP-seq experiment,17

we consider that the read count distribution is a two-component mixture of zero-inflated18

negative binomials (Rashid et al., 2011; Spyrou et al., 2009), with one component at19

low number of reads that describes the background noise and one component at high20

number of reads describing the signal. We use a univariate Hidden Markov Model21

(HMM) with two hidden states (i.e. unmodified, modified) to fit the parameters of these22

distributions (van der Graaf et al., 2015). (3) We consider all ChIP-seq experiments at23

once and assume that the multivariate vector of read counts is described by a multivariate24

distribution which is a mixture of 2N components. We use a multivariate HMM to25

6
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assign every bin in the genome to one of the multivariate components. The multivariate1

emission densities of the multivariate HMM, with marginals equal to the univariate2

distributions from step (2), are defined using a Gaussian copula (Sklar, 1959). A detailed3

description can be found in Supplementary Materials.4

Application 1: Mapping combinatorial chromatin states in a reference tissue5

Lara-Astiaso et al. (Lara-Astiaso et al., 2014) measured four histone modifications6

(H3K4me1, H3K4me2, H3K4me3 and H3K27ac) and gene expression in 16 mouse hematopoi-7

etic cell lines and their progenitors (Fig. S1). The authors’ goal was to document the8

dynamic enhancer landscape during hematopoietic differentiation. With four measured9

histone modifications there are 24 = 16 possible combinatorial states defined by the10

presence/absence of each of the modifications. In order to provide a snapshot of the11

genome-wide distribution of these combinatorial states in a given cell-type, we applied12

chromstaR to the ChIP-seq samples collected from monocytes (see Fig. S2 for the analysis13

of other cell types). In the following we introduce a shorthand notation where combi-14

natorial states are denoted between brackets [ ] and each mark is abbreviated by its15

chemical modification. For example, the combination [H3K4me1+H3K4me2+H3K27ac]16

will be abbreviated as [me1/2+ac]. If we use the full name of a mark (e.g. “H3K4me1”)17

we are referring to the mark in a classical, non-combinatorial, context. See Fig. 3d for18

all combinations with shorthands.19

20

chromstaR found that many of the 16 possible combinatorial states were nearly absent21

at the genome-wide scale, with 7 of the 16 states accounting for nearly 100% (99.998%)22

of the genome (Fig. 3a). This observation indicates that the “histone code” defined by23

these four histone modifications is much less complex than theoretically possible, per-24

haps as a result of biochemical constraints on the co-occurance of certain modifications25

on the same or neighboring aminoacid residues. The empty state, which we here define26

7
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as the simultaneous absence of all measured marks at a given genomic position, was the1

most frequent state, covering 93.10% of the genome. The high prevalence of this state2

reflects the fact that Lara-Astiaso et al. (Lara-Astiaso et al., 2014) focused on marks3

that had previously been shown to occur proximal to genic sequences (Bernstein et al.,4

2005; Barski et al., 2007; Koch et al., 2007). Indeed, only 36% of the empty state over-5

lapped known genes while the remaining 64% mapped to non-genic regions throuhgout6

the genome, and probably tag other (unmeasured) histone modifications, such as repres-7

sive heterochromatin-associated marks. In order to explore this possibility we analyzed8

human Hippocampus tissue data from the Epigenomics Roadmap (Consortium et al.,9

2015), where seven histone modifications, both expressive and repressive, had been mea-10

sured (Supplementary Materials). We found in this case that only 21 out of the 12811

possible combinatorial states were necessary to explain more than 99% of the epigenome,12

and indeed the empty state covered only ∼ 32% of the genome (Fig. S3).13

14

Contrary to the empty state, on average 67.11% (range: 57.34-80.42%) of the genomic15

regions found to be in one of the 6 most frequent (non-empty) combinatorial states16

in mouse monocytes overlap known genes (Fig. 3b), thus suggesting an active role in17

the regulation of gene expression. To assess this, we examined the combinatorial state18

profiles of the 6 most frequent states relative to the transcription start site (TSS) of19

expressed and non-expressed genes (Fig. 4a). In contrast to non-expressed genes, ex-20

pressed genes were clearly characterized by the presence of state [me1/2/3+ac] proximal21

to the TSS. This is consistent with previous reports that have used H3K4me3 together22

with H3K27ac to tag promoters (Heintzman et al., 2009). However, our analysis also23

uncovered a more subtle enrichment of state [me1] shouldering the TSS (Fig. 4a). We24

found that 42% of [me1] sites occur in regions directly flanking state [me1/2/3+ac] and25

74% of all [me1] can be found within 10kb of [me1/2/3+ac] sites (see Fig. 5 for an ex-26

ample). These two states therefore constitute a single, broad chromatin signature that27

8
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defines a subset of expressed genes. Interestingly, this subset of genes had significantly1

higher expression levels (p ≈ 10−101, t-test) and distinct GO terms compared with genes2

marked only by the active promoter state (i.e. [me1/2/3+ac] at the TSS and no [me1]3

in flanking regions, Fig. 6 and Table 1). This observation suggests that the co-occurance4

of [me1/2/3+ac] and [me1] in broad regions surrounding the TSS marks what may be5

called “enhanced” active promoters ([me1/2/3+ac]+[me1]).6

7

To compare the results obtained with chromstaR to other computational approaches,8

we analyzed the same datasets using MACS2 (Zhang et al., 2008), one of the most9

widely used univariate peak callers, and ChromHMM (Ernst and Kellis, 2012). When10

using a multivariate segmentation method like ChromHMM, the number of chromatin11

states needs to be decided beforehand, which is difficult as this number is rarely known12

a priori. In the absence of detailed guidelines we fitted a 16 state model to the mouse13

hematopoietic data. Our comparison uncovered substantial method-specific differences14

in state frequencies (Fig. 3). Both ChromHMM and MACS2 found all 16 states present in15

the genome with more than 0.01% genome coverage. To understand how state-calls com-16

pared between methods, we evaluated to which extent the states detected by one method17

coincided with those detected by the other method(s) (Fig. S4). Most notable, we found18

that genomic regions corresponding to chromstaR’s active promoter state [me1/2/3+ac]19

were assigned to two alternative states (E7 and E9) by ChromHMM. These latter two20

states were very similar in terms of their emission densities, but significantly different at21

the level of gene expression (p ≈ 10−90, t-test, Fig. 3c). Moreover, chromstaR’s single22

empty state corresponded to two functionally similar (nearly) empty states (E2, E3) de-23

tected by ChromHMM. A third almost empty state E4 with very weak H3K27ac signal24

had slightly higher expression levels than the other two empty states and partially over-25

lapped with chromstaR states [me1] and [me1+ac] (Fig. S4). These state redundancies26

highlight the difficulty in selecting the number of chromatin states for ChromHMM, for27

9
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without extensive manual curation it is difficult to know if two states are truly redundant1

or if they are biologically different on some level.2

3

Although MACS2 is not designed for multivariate analysis, we constructed ad hoc4

combinatorial state calls from the univariate analyses obtained from each ChIP-seq ex-5

periment. As expected, MACS2 results were noisy: many of the combinatorial states6

detected by chromstaR showed very heterogenous state calls with MACS2 (Fig. S4). For7

instance, a considerable proportion (45%) of genomic regions detected by chromstaR as8

being in the active promoter state [me1/2/3+ac] were assigned to another promoter9

state (containing H3K4me3) by MACS2. We suspect that this is due to the limitations10

of MACS2 in calling broader marks (e.g. H3K4me1) or moderate enrichment with the11

default parameters, which results in frequent missed calls for individual modifications,12

and subsequently also in the limited detection of ‘complex’ combinatorial states such as13

[me1/2/3+ac] that are defined by the presence of all modifications.14

15

To better understand the functional implications of the state frequency and state pat-16

tern differences between these methods, we evalute the chromatin state signatures of both17

ChromHMM and MACS2 around TSS of expressed and non-expressed genes (Fig. 4b,c).18

In contrast to chromstaR, chromatin signatures obtained by the other two methods did19

not as effectively distinguish these two classes of genes, suggesting that chromstaR has20

a higher sensitivity for detecting these signatures (Supplementary Materials).21

Application 2: Differential analysis of combinatorial chromatin states22

In order to understand combinatorial chromatin state signatures that are specific to a23

given cell type or disease state, it is necessary to compare at least two different tissues24

with each other, or a case and a control. In this context, the goal is to identify genomic25

regions showing differential (or non-differential) combinatorial state patterns. Such dif-26

10
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ferential patterns are indicative of regions that underly the tissue differences and are1

therefore of substantial biological or clinical interest. chromstaR solves this problem by2

considering all 22N possible combinatorial/differential chromatin states (Fig. 1c), where3

N is the number of histone modifications measured in both conditions. Out of the 22N4

states, 2N are non-differential and 22N − 2N are differential.5

6

We anlayzed two differentiated mouse hematopoietic cells (monocytes versus CD47

T-cells) from (Lara-Astiaso et al., 2014), with four histone marks each (H3K4me1,8

H3K4me2, H3K4me3 and H3K27ac). We found that 5.37% of the genome showed9

differences in combinatorial state patterns between the two cell types (Fig. 7a, exam-10

ple browser shot in Fig. 8). The most frequent differential regions involved the [me1]11

combination (2.37%) followed by regions with the [me1/2/3+ac] combination (0.92%).12

These differences are even more striking when viewed in relative numbers: 59% of the13

[me1/2/3+ac] sites were concordant between the two cell types, while only 8% of the14

[me1] sites were concordant. This is in line with previous findings showing that H3K4me115

is highly cell type specific (Leung et al., 2015; Andersson et al., 2014; Dixon et al., 2015;16

Amin et al., 2015).17

18

In order to determine if these differences in chromatin play a role in cellular iden-19

tity, we explored gene expression differences for differential chromatin states. We found20

that loss of state [me1] as well as of state [me1/2/3+ac] is correlated with a decrease21

in expression levels (Fig. 7b). This is consistent with our previous observation (section22

Application 1) that [me1/2/3+ac] defines active promoters and [me1] together with23

[me1/2/3+ac] defines enhanced active promoters (Fig. 6). To investigate the function24

of the differential loci, we performed a GO term enrichment of these regions (McLean25

et al., 2010) and found an impressive confirmation of cell type identity in the GO terms26

(Table S1): While regions that are marked by [me1/2/3+ac] or [me1] in both cell types27

11
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show enrichment for general immune cell differentiation terms, regions that are marked1

with [me1] or [me1/2/3+ac] only in CD4 T-cells show terms such as “T-cell activation2

and differentiation”. Vice versa, regions that are marked with those signatures in mono-3

cytes but not in T-cells show enrichment of terms such as “response to other organism”4

and “inflammatory response”.5

6

Again, we compared our results on the same dataset with MACS2 (Zhang et al.,7

2008) and ChromHMM (Ernst and Kellis, 2012). Neither method was specifically de-8

signed to deal with differences between combinatorial states, but both tools represent9

approaches that could have been chosen for that task in the absence of other suitable10

methods. For both methods, the percentage of the epigenome that was differentially11

modified was found to be 2.5 times higher than predicted by chromstaR, 13.02% for12

MACS2 and 13.59% for ChromHMM. MACS2 found most differences (3.90%) in state13

[me1], followed by the combination [me2+ac] (2.11%). None of these states yielded any14

significant enrichment in GO terms or showed correlation with expression data (Fig. S5c15

and Table S2). The third most frequent differential state was [me1+ac] (1.88%) and16

this state yielded GO term enrichments which reflect cellular identity. ChromHMM pre-17

dicted two “enhancer-like states” E8 and E9 (Fig. S5b) as most differential between cell18

types (2.71% and 2.54%) which also showed cell type specific terms in the GO analy-19

sis (Table S3). However, expression analysis showed that ChromHMM’s most frequent20

differential state (CD4:E12 and Mono:E14) corresponded to proximal genes that were21

transcriptionally nearly inactive (Fig. S5b), which raises the question if these differential22

chromatin states produce cell-specific functional differences.23

24

12
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Application 3: Tracking combinatorial chromatin state dynamics in time1

Arguably the most challenging experimental set up is when several histone modifications2

have been collected for a large number of conditions, such as different cell types along3

a differentiation tree or different terminally differentiated tissues (Fig. S1). We consider4

M conditions with N histone modifications measured in each of them. This leads to 2N5

possible combinatorial states per condition, or alternatively to 2M differential states per6

mark across all samples. Therefore, the number of possible dynamic combinatorial chro-7

matin states is 2M×N . For M × N ≤ C the whole dynamic/combinatorial chromatin8

landscape is treatable computationally, while for M × N > C the problem becomes9

intractable with current computational resources. The value of C is dependent on com-10

putational resources, genome length and bin size (see section Limitations).11

12

We considered again the mouse hematopoietic data from (Lara-Astiaso et al., 2014),13

with four histone modifications (H3K4me1, H3K4me2, H3K4me3 and H3K27ac) mea-14

sured in 16 different cell types during hematopoietic differentiation (stem cells, progen-15

itor and terminally differentiated cells). We explored the chromatin dynamics during16

the differentiation process for every hematopoietic branch (Fig. S1a): first, long term17

hematopoietic stem cells (LT-HSC) are transformed into short term hematopoietic stem18

cells (ST-HSC) and further into multipotent progenitors (MPP). The MPP cells dif-19

ferentiate into the several common lineage oligopotent progenitors, giving rise to the20

three different hematopoietic branches (myeloid, leukocyte and erythrocyte). Finally,21

after another one or two stages, cells become fully differentiated at the bottom of the22

tree. Every branch from root to leaf consists therefore of four histone marks in five23

or six time points, with 2M×N = 1048576 or 16777216 possible dynamic combinatorial24

chromatin states, respectively. Because this number is computationally intractable, we25

implemented the following two-step approach for each branch: (1) for each of the four26

histone marks separately, we performed a multivariate differential analysis along the five27

13
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or six cells in the brach, therefore assigning every bin in the genome to one of the 32 or1

64 possible differential combinatorial states; (2) We reconstructed the full combinatorial2

chromatin state dynamics by combining the differential calls of all four marks in step 1,3

bin by bin (Fig. S6a).4

5

Using this two-step approach, we studied the dynamics of the inferred chromatin states6

over developmental time. We observed an initial increase in the frequency of the [me1]7

state from the LT-HSC to intermediate progenitor stages, followed by a decrease to the8

fully differentiated stages (Fig. S7). This decrease in [me1] was especially pronounced9

in the lymphoid and erythroid lineage. In the [me1/2/3+ac] signature we found a small10

but continuous decrease from LT-HSC to terminally differentiated stages. These observa-11

tions are consistent with the view that chromatin transitions from an open configuration12

in multipotent cells to a closed configuration in differentiated cells. Figure S8 shows13

two examples of pluripotency genes that lose their open chromatin configuration in the14

differentiated stage.15

16

We next explored the specific dynamic chromatin state transitions that occur in every17

region of the genome during the differentiation process. We found that the majority of18

all possible dynamic chromatin state transitions were not present in this system. For19

example, in the CD4 T-cell branch of the hematopoietic tree there are 5 developmen-20

tal time points and at each stage 16 combinatorial states can be theoretically present.21

This leads to 165 = 1048576 potential transitions between combinatorial states in this22

branch. However, we found only 1086 different chromatin transitions and the first most23

frequent 99 transitions (with frequency ≥ 0.01%) already involved 99.60% of the genome.24

To summarize these transitions further, we grouped them into 4 different classes: (1)25

“Empty” transitions, i.e. those regions that have no histone modification in any of26

the developmental stages. (2) “Constant” transitions, i.e. those regions that show the27

14
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same (non-empty) combinatorial state in all stages of differentiation. (3) “Stage-specific”1

transitions, i.e. those regions that show a combinatorial state only in a subset of differ-2

entiation stages and are in the “empty” state otherwise. (4) All other transitions (see3

Fig. 9 for examples). In the CD4 T-cell branch, 85.98% of the genome has no mea-4

sured chromatin signature in all 5 stages (class 1). The constant transitions (class 2)5

comprise 5.87% of the genome, stage-specific transitions 5.69% (class 3) and all other6

transitions 2.46% (class 4), respectively. Altogether, only 8.15% of the genome changes7

its chromatin state during differentiation and more than half of these changes are due8

to changes in the [me1] signature. This signature is highly cell type specific and gains9

and losses correspond to stage-specific terms in a GO analysis (Table S4) and to changes10

in gene expression (Fig. S9a). Among the constant transitions, regions with signature11

[me1/2/3+ac] mark constitutively expressed genes (Fig. S9a). Therefore we expect those12

regions to be enriched with housekeeping functions, which is confirmed by the GO anal-13

ysis (Table S5).14

15

We compared our results on the CD4 T-cell branch with MACS2 (Zhang et al., 2008)16

and ChromHMM (Ernst and Kellis, 2012). Strikingly, MACS2 found 34470 different17

chromatin state transitions with the most frequent 330 (with frequency ≥ 0.01%) cov-18

ering only 94.47% of the genome. This large number is expected since MACS2 is a uni-19

variate peak caller and not designed for differential analysis. Furthermore, this dataset20

represents a differential analysis not between 2 cell types, but between 5 different cell21

types and thus boundary effects (false positives, e.g. falsely detected differences) are22

extremely likely. This interpretation is supported by the expression data, which could23

not find clear expression differences for the most frequent differentially modified re-24

gions (Fig. S9c). Also the GO analysis could not identify any significant GO terms.25

ChromHMM found 38288 different state transitions of which the first 656 cover only26

91.21% of the genome. This large number of transitions is dependent on the number of27

15
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states that are used to train ChromHMM, since extra states will artificially inflate the1

number of chromatin state transitions. However, consistent with the chromstaR pre-2

dictions, ChromHMM predicts many stage-specific enhancer (state E15 and E16) and3

constant promoter (state E9) regions among the most frequent transitions. The expres-4

sion profiles associated with those transitions show the expected behaviour (Fig. S9b).5

Limitations and Solutions6

The number of possible combinatorial states for N ChIP-seq experiments is 2N , meaning7

that for each additional ChIP-seq experiment the number of combinatorial states dou-8

bles. Thus it soon becomes computationally prohibitive to consider all combinatorial9

states. We found that with current computational resources (Intel Xeon E5 2680v3, 2410

cores @ 2.5 GHz, 128GB memory) a practical limit seems to be 256 states (= 8 ex-11

periments) with a run-time of several days for a mouse genome (≈ 2.6 · 109bp) and a12

bin size of 1000bp (≈ 2.6M datapoints). We investigated several possibilities to extend13

the usability of chromstaR beyond this limit: (1) The run-time of our algorithm scales14

linearly with the number of data points, and thus the easiest strategy is to decrease15

the resolution, e.g. halfing the run-time by doubling the bin size. (2) Calculations can16

be performed for each chromosome separately, allowing for easy parallelization of the17

task. (3) For the case of one cell type or tissue where the number of measured histone18

modifications N exceeds the upper limit, chromstaR provides a strategy to artificially19

restrict the number of combinatorial states to any number lower than 2N . This strategy20

can yield proper results if the correct states are included, since our results have shown21

that the majority of combinatorial states are absent in the genome. In order to identify22

the states which are the most present in the genome, chromstaR ranks the combinatorial23

states based on their presence according to the combination of univariate results from24

the first step of the chromstaR pipeline. This ranking is a good approximation of the25

true multivariate state-distribution (Fig. S10). (4) If there are multiple marks N in26

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 4, 2016. ; https://doi.org/10.1101/038612doi: bioRxiv preprint 

https://doi.org/10.1101/038612


multiple tissues M , and 2N∗M is bigger than the maximum number of states that the1

algorithm can handle computationally, two strategies are possible: One can either per-2

form a differential analysis for each mark and then reconstruct combinatorial states in a3

classical way (Fig. S6a) or one can perform a multivariate peak-calling of combinatorial4

states for each tissue and then obtain the differences by a simple comparison between5

tissues (Fig. S6b). Both strategies give a different perspective on the data: The former6

accurately identifies differences between marks, while the combinatorial states might be7

subject to boundary effects (similar to a univariate peak-calling method). The latter8

gives an accurate picture of the combinatorial chromatin landscape, while differences9

between cells might be overestimated.10

Discussion11

Understanding how various histone modifications interact to determine cis-regulatory12

gene expression states is a fundamental problem in chromatin biology. It is becoming13

increasingly clear that certain combinatorial patterns of these modifications define dis-14

crete chromatin states along the genome. These chromatin states “encode” cell-specific15

transcriptional programs, and constitute funtional units that are subject to dynamic16

changes in response to developmental and environmental cues.17

18

Many experimental studies have recognized this and collected ChIP-seq data for a19

number of histone modifications on the same or different tissue(s) as well as for several20

developmental time points. Integrative analyses of such datasets often present formidable21

bioinformatic challenges. Only a few computational methods exist that can analyze mul-22

tiple ChIP-seq experiments together and cluster them into a finite number of chromatin23

states (Biesinger et al., 2013; Ernst and Kellis, 2012; Hoffman et al., 2012; Sohn et al.,24

2015; Zeng et al., 2013). Interestingly, these methods often demand that the user speci-25

17
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fies the number of chromatin states beforehand. We find this problematic because this1

number is often a desired output of the analysis rather than an input. Indeed, the true2

number of distinct chromatin states in the genomes of various species is subject to debate.3

In D. melanogaster 9 chromatin states have been reported (Kharchenko et al., 2011),4

while in A. thaliana 4 main states were found (Roudier et al., 2011). In human, Ernst5

et al. found 51 states in human T-cells (Ernst and Kellis, 2010). The Roadmap Consor-6

tium reported 15 to 18 states (Consortium et al., 2015). It remains unclear whether these7

differences reflect species divergence at the level of chromatin organization, or whether8

they are due to differences in the assessed chromatin marks and bioinformatic treatment9

of the data. Without a formal computational framework for defining chromatin states10

these two possibilities cannot be confidently distinguished.11

12

While multivariate methods such as ChromHMM or Segway provide possible compu-13

tational solutions to such questions, these methods employ probablistic chromatin state14

definitions that are not always readily interpretatble. A probalistic interpretation means15

that different combinatorial histone modification patterns can be simultaneously part of16

different underlying chromatin states. However, it is not immediately obvious whether17

the underlying chromatin state are biologically distinct or if they are only statistical18

entities that are otherwise biologically redundant. Identifying such redundancies is not19

easy, because of a lack of rules to decide whether two or more chromatin states can or20

cannot be considered to be equivalent. Such decisions require extensive manual curation21

of the output, and often presuppose the kind of biological knowledge that one wishes to22

obtain from the data in the first place.23

24

In contrast to this probabilistic state definition, chromstaR outputs discrete chromatin25

states that are defined on the basis of the presence/absence of various histone modifica-26

tions. That is, with N histone modifications, it infers all 2N combinatorial chromatin27

18
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states (Fig. 1a). This interpretation makes it easy to relate the inferred chromatin states1

back to the underlying histone modification patterns and thus fashions a direct mech-2

anistic link between chromatin structure and function. Moreover, chromstaR’s discrete3

state defintion also provides an “unbiased” picture of the genome-wide frequency of vari-4

ous chromatin states and allows for easy genome-wide summary statistics. For instance,5

in our analysis of four histone modifications in mouse embryonic stem cells we found that6

only 7 of the 16 possible states covered almost 100% of the genome, and for the human7

hippocampus with seven modifications only 21 of the 128 possible combinatorial states8

already covered 99% of the total genome. This striking sparsity in the combinatorial9

code is interesting and points at certain biochemical contraints that determine which10

histone modifications can or cannot co-occur at a genomic locus. Clearly, the genome-11

wide frequency of inferred combinatorial chromatin states depends on the number and12

the type of different histone modifications that are used in the analysis. Future stud-13

ies should systematically investigate the dependency of the number of chromatin states14

on factors such as number and type of measured histone marks, resolution, organism etc.15

16

By treating discrete combinatorial chromatin states as units of analysis chromstaR17

can also easily track chromatin state dynamics across cell types or developmental time18

points. In that respect chromstaR is unique as no other methdods exist to date that19

can peform a similar task. To illustrate this we have analyzed four different histone20

modification in 5 different cell types that are part of the mouse T-cell differentiation21

pathway. Of the 1048576 combinatorial state transitions, we find that only 99 comprise22

over 99.60% of the genome. Again, the sparsity in state transition shows that a few key23

transitions define the developmental trajectory of T-cell differentiation. One notable24

transition is the gain or loss of state [me1] near promoters. We note that this state25

means that only H3K4me1 is present at a locus and no other marks. This is not the26

same as tracking H3K4me1 modification by itself as this latter mark can appear in a27

19
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number of different, and often funtionally distinct, chromatin states such as [me1+ac],1

[me1/2+ac], [me1/2/3]. Hence, focusing on H3K4me1 alone would tag other chromatin2

state changes that may not be fully informative about T-cell differentiation.3

4

Conclusions5

chromstaR is a computational algorithm that can identify discrete chromatin states from6

multiple ChIP-seq experiments and detect combinatorial state differences betweeen cell-7

types and/or developmental time points. By defining chromatin states in terms of the8

presence and absence of combinatorial histone modification patterns, it provides an9

intuitive way to understand genome regulation in terms of chromatin composition at10

a locus. chromstaR can be used for the annotation of reference epigenomes as well as11

for annotation of chromatin state transitions in well-described developmental systems.12

The algorithm is written in C++ and runs in the popular R computing environment.13

It therefore combines computational speed with the extensive bioinformatic toolsets14

available through Bioconductor (Gentleman et al., 2004; Huber et al., 2015). chromstaR15

is freely available at https://github.com/ataudt/chromstaR.16
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Figure 1: Definition of chromatin states. (a) Combinatorial chromatin state defi-
nition: Based on the presence (blue) or absence (white) of a histone modifica-
tion, a chromatin state is the combination of the presence/absence calls at a
given position. With N histone modifications there are 2N different chromatin
states. (b) Probabilistic chromatin state definition: Each chromatin state has
a probability (shades of blue) of finding a histone modification at a given po-
sition. Note that a probabilistic state can consist of multiple combinatorial
states and vice versa. There is in principle no upper limit for the number of
possible probabilistic chromatin states (here, T ). (c) Differential combinato-
rial chromatin states across two conditions: Based on the presence (blue) or
absence (white) of a histone modification across different conditions. With N
histone modifications and M conditions there are 2N×M different states.
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Figure 2: Overview of analytical approach. (a) Aligned reads are counted in
equidistant, non-overlapping bins. (b) The resulting read count is used to fit a
univariate Hidden Markov Model to each ChIP-seq experiment separately. (c)
From the univariate emission densities, a multivariate emission density is con-
structed (shown here for two dimensions). (d) A multivariate Hidden Markov
Model is employed to obtain peak-calls for all ChIP-seq experiments combined.
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Figure 3: Chromatin states in monocytes. (a) Genomic frequency, i.e. the per-
centage of the genome that is covered by the chromatin state. The sum over
all states equals 100%. (b) Overlap with known genes. (c) Expression levels
of genes whose TSS overlaps the chromatin state. (d) Heatmap showing the
chromatin state definition. Histones in chromstaR and MACS2 states are ei-
ther present (blue) or absent (white). ChromHMM states have a continuous
emission probability from zero (white) to one (blue).
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Figure 4: Enrichment of chromatin states around TSS of expressed and non-expressed
genes. Shown are the enrichment profiles for the 6 states that are most enriched
around TSS.
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Figure 6: Expression levels of genes whose TSS shows either the [me1/2/3+ac] signature
alone or the [me1/2/3+ac] signature flanked by [me1]. TSS flanked by [me1]
show significantly higher expression levels (p ≈ 10−101, t-test).
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Tables1

[me1/2/3+ac] + flanking [me1] [me1/2/3+ac]
1 nucleobase-containing compound transport ncRNA metabolic process
2 RNA localization ncRNA processing
3 negative regulation of mRNA splicing, via spliceosome tRNA metabolic process
4 RNA transport protein folding
5 negative regulation of mRNA processing DNA replication
6 mRNA transport rRNA metabolic process
7 peptidyl-lysine modification tRNA processing
8 response to misfolded protein rRNA processing
9 purinergic nucleotide receptor signaling pathway protein peptidyl-prolyl isomerization

10 regulation of gene expression, epigenetic pseudouridine synthesis

Table 1: The first 10 significant gene ontology terms for TSS overlapping the
[me1/2/3+ac] state with the [me1] state flanking it, versus the TSS overlapping
the [me1/2/3+ac] state.
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Supplementary Materials2

Model Specification3

The construction of the multivariate Hidden Markov Model can be divided in two steps. In the first step, we fit4

a univariate Hidden Markov Model to each individual ChIP-seq sample. The obtained parameters of the mixture5

distributions are then used in the second step to construct the multivariate emission distributions. Finally, the6

multivariate Hidden Markov Model is fitted to the (combined) ChIP-seq samples. The following sections describe7

the two steps in detail.8

Univariate Hidden Markov Model9

For each individual ChIP-seq sample, we partition the genome into T non-overlapping, equally sized bins. We10

count the number of aligned reads (regardless of strand) that overlap any given bin t and denote this read count11

with xt. Following others (Rashid et al., 2011; Spyrou et al., 2009), we model the distribution of the read counts x12

with a two-component mixture of (zero-inflated) negative binomial distributions. In our case, the first component13

describes the unmodified regions and is modeled by a zero-inflated negative binomial distribution. The second14

component describes the modified regions and is modeled by a negative binomial distribution. Furthermore, for15

computational efficiency, we split the first component into the zero-inflation and the negative binomial distribution16

(van der Graaf et al., 2015). Our univariate Hidden Markov Model has thus three states i: zero-inflation,17

unmodified and modified. We write the probability of observing a given read count as18

P (xt|θ) = γ1f1(xt|θ1) + γ2f2(xt|θ2) + γ3f3(xt|θ3) (1)

where γi are the mixing weights and θi are the component density parameters. The emission distribution of state19

1 is defined as20

f1(xt) =

{
1 if xt = 0

0 if xt > 0
(2)

and the emission distributions of state 2 and 3 are defined as21

f(xt|θ = (n, p)) =
Γ(n+ xt)
Γ(n)xt!

pn(1− p)xt (3)

where Γ denotes the Gamma function and p and n denote the probability and dispersion parameter of the negative22

binomial distribution, respectively.23

We use the Baum-Welch algorithm (Baum et al., 1970) to obtain a best fit for the distribution parameter24

estimates, transition probabilities and posterior probabilities of being in a given state. We call a bin modified if25

the posterior probability of being in that state is > 0.5 and unmodified otherwise.1
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Multivariate Hidden Markov Model2

Given N individual ChIP-sep samples with states unmodified and modified, the number of possible combinatorial3

states is 2N . Let xt be the vector of N read counts for the t-th bin. The probability of observing a random vector4

xt can be written as a mixture distribution of 2N components:5

P (xt|θ) =
2N∑
i=1

γifi(xt, θi) (4)

Again, the γi denote the mixing weights and θi denote the component density parameters for each component6

i. We assume that the marginal densities of the multivariate count distributions fi are given by the univariate7

distributions described in the previous section. A convenient way to construct a multivariate distribution from8

known marginal (univariate) distributions is copula theory (Sklar, 1959; Heinig et al., 2015).9

Under the assumption of a Gaussian copula, the multivariate emission density for combinatorial state i can be10

written as11

fi(xt) =
N∏

j=1

fi,j(xj,t)× |Σi|−1/2 exp
{
−

zi,t (Σ−1
i − I) zT

i,t

2

}
, (5)

with zi,t = [ φ−1(Fi,1(x1,t)) , φ−1(Fi,2(x2,t)) , ... , φ−1(Fi,N (xN,t)) ] , (6)

where fi,j are the marginal density functions for combinatorial state i and Σi is the correlation matrix between12

the transformed read counts zi,t = φ−1(Fi(xt)). The cumulative distribution function (CDF) of fi,j is denoted13

by Fi,j , while φ−1 denotes the inverse of the CDF of a standard normal (Renard and Lang, 2007).14

The correlation matrix Σi for a given multivariate (combinatorial) state i is computed as follows: From15

the combination of univariate state calls (unmodified or modified) of all samples, we pick those bins that show16

combinatorial state i. The read counts xt∈i in those bins are transformed to zt∈i using equation 6 and Σi is17

calculated from the transformed read counts.18

Similarly to the univariate Hidden Markov Model, we use the Baum-Welch algorithm to obtain a best fit for19

the transition probabilities and posterior probabilities of being in a given state. However, the emission densities20

remain fixed in the multivariate case. We assign a combinatorial state to each bin by maximizing over the posterior21

probabilities.22

Data Acquisition23

ChIP-seq data for the hematopoietic data (GSE60103) was downloaded from the Gene Expression Omnibus24

(GEO) and aligned to mouse reference mm9 following the procedure in (Lara-Astiaso et al., 2014) with bowtie225

(version 2.2.3) (Langmead and Salzberg, 2012), keeping only reads that mapped to a unique location. The number26

of identical reads at each genomic position was restricted to 3. For the expression analysis, we used the provided27

RNA-seq data (GSE60101). We normalized the read counts by transcript length and scaled them to 1M reads.1
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To reduce the effect of extreme expression values, we applied an arc-sinh transformation on the data.2

Multivariate peak-calling3

chromstaR was run with a bin size of 1000bp and convergence threshold of eps = 0.01 for both the univariate and4

multivariate part. Univariate fits were checked manually for proper convergence and rerun with different random5

initial parameter settings where necessary. For all analysis and comparisons, we excluded replicates SRR1521819,6

SRR1521851 and SRR1521852 (corresponding to CD8-H3K27ac-Rep1, MF-H3K4me1-Rep1, MF-H3K4me1-Rep2)7

because we could not obtain a proper fit with our method, regardless of initial parameter settings. Replicates were8

included in the chromstaR analysis as separate ChIP-seq experiments but forced to yield the same state calls see9

”Inclusion of replicates” below). Likewise, ChromHMM was run with a bin size of 1000bp, 16 states, parallel mode,10

assembly mm9 and default parameters otherwise. Signal input files for ChromHMM were produced by adding11

the read counts over replicates. MACS2 (version 2.1.0.20150731) was run with parameters “-g mm –keep-dup all”12

and default settings otherwise. Replicates were specified separately and handled by MACS2 internally. For the13

comparison with chromstaR and ChromHMM, MACS2 calls were transformed into a 1000bp-bin representation14

by simply extending each peak into its overlapping bin(s). chromstaR and ChromHMM were run on chromosomes15

1-19 and X, MACS2 was run with all scaffolds but only chromosomes 1-19 and X retained for analysis.16

Analysis17

Genomic coordinates were downloaded with biomaRt (Durinck et al., 2005, 2009) (dataset=mmusculus gene ensembl,18

host=aug2010.archive.ensembl.org) and the first three basepairs of each gene were defined as coordinates for the19

transcription start site. For the overlap of chromation states with genes (Fig. 3b) we included the promoter20

region defined as 2kb upstream of each gene in the gene definition. Gene ontology enrichment was performed with21

GREAT (McLean et al., 2010) using the whole genome as background set. Significant terms were filtered out22

with the following thresholds: BinomFdrQ < 0.05, HyperFdrQ < 0.1, RegionFoldEnrich > 2. Presented terms in23

all tables are from category “GO Biological Process” and ordered by BinomFdrQ with the most significant results24

on top.25

Enrichment profiles around TSS26

We calculated sensitivity (recall), precision and F1-score for the detection of expressed TSS based on the following27

assumptions: True positives are expressed TSS which are called into the promoter state ([me1/2/3+ac] for28

chromstaR, E7 and E9 for ChromHMM, [me1/3] and [me3] for MACS2, see Fig. 4). False negatives are expressed29

TSS which are not assigned into the promoter state. True negatives are non-expressed TSS which are not assigned30

into the promoter state. False positives are non-expressed TSS which are assigned the promoter state. We found31

that chromstaR has a higher sensitivity than the other methods and a lower precision. The F1-score is highest32

for chromstaR (Table 2).1
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sensitivity precision F1-score
chromstaR 0.77 0.95 0.85

MACS2 0.60 0.98 0.75
ChromHMM 0.59 0.98 0.73

Table 2: Performance for detecting expressed TSS.

Analysis of human Hippocampus tissue2

Bed-files for Hippocampus tissue were downloaded from “ftp://ftp.genboree.org/EpigenomeAtlas/Current-Release/sample-3

experiment/” for donors number 112 and 149. Histone marks H3K27ac, H3K27me3, H3K36me3, H3K4me1,4

H3K4me3, H3K9ac, H3K9me3 were analyzed at bin size 1000bp with convergence threshold of eps = 0.01 and5

donors 112 and 149 included as replicates. We found 21 out of 27 = 128 possible states (genomic frequency6

≥ 0.1%) covering more than 99% of the genome (Fig. S3).7

Univariate approximation of multivariate state distribution8

chromstaR offers the possibility to restrict the number of combinatorial states to any number lower than 2N , where9

N is the number of ChIP-seq experiments. Because the first step of the chromstaR workflow is a univariate peak10

calling, we can combine those peak calls into combinatorial states and use their ranking to determine which states11

to use for the multivariate peak-calling. Because most systems seem to be sparse in their combinatorial patterns,12

i.e. do not utilize the full combinatorial state space, it is often not necessary to run the multivariate part with all13

2N combinations. For instance, for the human Hippocampus tissue with 7 marks, running the multivariate with14

only 30 instead of 128 states recovers 98.2% of correct state assignments compared to the full 128 state model,15

and choosing 60 instead of 128 states recovers already 99.5% of correct state assignments compared to the full16

128 state model (Fig. S10).17

Inclusion of replicates18

The chromstaR formalism offers an elegant way to include replicates. For a single ChIP-seq experiment, there are19

two states - unmodified (background) and modified (peaks). For an arbitrary number of N experiments, there20

are thus 2N combinatorial states. The same is true for an arbitrary number of replicates R, which would yield21

2R combinatorial states. However, in the case of replicates, the number of states can be fixed to 2, such that all22

replicates are forced to have the same state in all replicates (e.g. either peak or background). Treating replicates23

in this way allows to find the most likely state for each position considering information from all replicates without24

prior merging.1
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Figure S2: Boxplots depict values for all 16 measured hematopoietic cell types from
Lara-Astiaso et al. (2014). (a) Genomic frequency, i.e. the percentage of
the genome that is covered by the chromatin state. (b) Overlap with known
genes. (c) Expression levels of genes whose TSS overlaps the chromatin state.
(d) Heatmap showing the chromatin state definition (blue is present, white
is absent).
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Figure S3: Chromatin states in human Hippocampus tissue. (a) Genomic fre-
quency, i.e. the percentage of the genome that is covered by the chromatin
state, for the 40 most frequent states. (b) Overlap with known genes. (c)
Heatmap showing the chromatin state definition.
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Figure S4: Confusion matrix for the comparison of chromstaR with (a) MACS2 and (b)
ChromHMM. The confusion matrix shows the fold enrichment of states from
both methods with each other, with darker tiles (blue) indicating a higher
overlap.
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Figure S5: Differential analysis of monocytes and CD4 T-cells. Genomic fre-
quency and expression levels for genes that overlap the 6 most frequent differ-
ential chromatin states for (a) chromstaR, (b) ChromHMM and (c) MACS2.
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mark separately (differential analysis). Those calls are then combined, ad-
hoc, into the combinatorial states. (b) In a first step, combinatorial states are
obtained for each cell using the multivariate approach. Differences between
those states are then obtained by a simple comparison between cells.
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Figure S7: Genomic frequency of combinatorial states during differentiation for all
branches of the hematopoietic tree (Fig. S1a).
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Figure S9: Chromatin state transitions for the CD4 branch. Genomic frequency
and expression levels for genes that overlap the 6 most frequent chromatin
state transitions for (a) chromstaR, (b) ChromHMM and (c) MACS2.
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Figure S10: Approximation of multivariate state distribution with less than 2N
states. For the Hippocampus data with 7 marks there are 27 = 128 possible
combinatorial states (last data point). The figure shows the proportion of
the genome that is correctly assigned compared to the full 128-state model
(y-axis) if the multivariate is run with fewer than 128 states (x-axis).
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